Introduction to hyperbolic surfaces

Exercises III

For $x \in \mathbb{R}$, y > 0 and r > 0, we use H_y for the horizontal line passing iy, V_x for the vertical geodesic with end point x and ∞ , and C(x, r) for the circular geodesic with Euclidean center x and Euclidean radius r.

- 1. Let $x \in (0,1)$. Let γ_x denote the circular geodesic with end points x and 1/x.
 - a) (Easy) Compute the formula for the reflection ι_x of \mathbb{H} along γ_x .
 - b) (Easy) Show that

$$\lim_{x \to 0+} \iota_x = \iota_0$$

where ι_0 is the reflection along V_0 , i.e. for any $z \in \mathbb{H}$, we have

$$\lim_{x \to 0+} \iota_x(z) = \iota_0(z).$$

- c) (Normal) Compute the distance d(x) between γ_x and V_0 .
- d) (Normal) Let $d_0 > 0$ be a constant. Find the hyperbolic isometry f such that
 - the axis of f is C(0,1);
 - the translation distance l(f) of f is d_0 ;
 - the translation direction is from -1 to 1.

(Hint: Write x as a function of d. Use ι_0 as one of the two reflections)

- 2. Consider the parabolic isometry ϕ_t .
 - a) (Easy) Find $x \in \mathbb{R}$ such that $V_x = \phi_t(V_0)$.
 - b) (Easy) Compute the length l_y of the segment in H_y between V and V_0 .
 - c) (Easy) Show

$$\lim_{y \to +\infty} l_y = 0,$$

and use it to conclude that the translation distance $l(\phi_t)$ of ϕ_t is 0.

d) (Easy) Show that $l(\phi_t)$ is not realizable, i.e. there is no $z \in \mathbb{H}$ such that

$$l(\phi_t) = \mathrm{d}_{\mathbb{H}}(z, \phi_t(z)).$$

3. (Easy) Let $z = x + iy \in \mathbb{H}$. Find the elliptic isometry whose fixed point is z with rotation angle π . (Hint: Find two geodesics intersecting each other at z with intersection angle $\pi/2$.)