Introduction to hyperbolic surfaces

Exercises III

For $x \in \mathbb{R}, y>0$ and $r>0$, we use H_{y} for the horizontal line passing $i y, V_{x}$ for the vertical geodesic with end point x and ∞, and $C(x, r)$ for the circular geodesic with Euclidean center x and Euclidean radius r.

1. Let $x \in(0,1)$. Let γ_{x} denote the circular geodesic with end points x and $1 / x$.
a) (Easy) Compute the formula for the reflection ι_{x} of \mathbb{H} along γ_{x}.
b) (Easy) Show that

$$
\lim _{x \rightarrow 0+} \iota_{x}=\iota_{0},
$$

where ι_{0} is the reflection along V_{0}, i.e. for any $z \in \mathbb{H}$, we have

$$
\lim _{x \rightarrow 0+} \iota_{x}(z)=\iota_{0}(z)
$$

c) (Normal) Compute the distance $d(x)$ between γ_{x} and V_{0}.
d) (Normal) Let $d_{0}>0$ be a constant. Find the hyperbolic isometry f such that

- the axis of f is $C(0,1)$;
- the translation distance $l(f)$ of f is d_{0};
- the translation direction is from -1 to 1 .
(Hint: Write x as a function of d. Use ι_{0} as one of the two reflections)

2. Consider the parabolic isometry ϕ_{t}.
a) (Easy) Find $x \in \mathbb{R}$ such that $V_{x}=\phi_{t}\left(V_{0}\right)$.
b) (Easy) Compute the length l_{y} of the segment in H_{y} between V and V_{0}.
c) (Easy) Show

$$
\lim _{y \rightarrow+\infty} l_{y}=0
$$

and use it to conclude that the translation distance $l\left(\phi_{t}\right)$ of ϕ_{t} is 0 .
d) (Easy) Show that $l\left(\phi_{t}\right)$ is not realizable, i.e. there is no $z \in \mathbb{H}$ such that

$$
l\left(\phi_{t}\right)=\mathrm{d}_{\mathbb{H}}\left(z, \phi_{t}(z)\right) .
$$

3. (Easy) Let $z=x+i y \in \mathbb{H}$. Find the elliptic isometry whose fixed point is z with rotation angle π. (Hint: Find two geodesics intersecting each other at z with intersection angle $\pi / 2$.)
