Introduction to hyperbolic surfaces

Exercises VIII

Let \(g \geq 0 \) and \(n \geq 0 \) be integers such that \(2 - 2g - n < 0 \). We denote by \(S_g \) a closed hyperbolic surface of genus \(g \), and by \(S_{g,n} \) a hyperbolic surface of genus \(g \) with \(n \) cusps.

1. We would like to study short geodesics on hyperbolic surfaces of genus \(g \).

 a) (Easy) Let \(p \in S_g \). The injective radius \(R_p \) at \(p \) is the maximal positive real number such that the interior of a hyperbolic disk of radius \(R_p \) can be mapped isometrically to the \(R_p \)-neighborhood of \(p \). Show that there exists a constant \(c_1 > 0 \), such that for any \(S_g \),

 \[
 \min\{R_p \mid p \in S_g\} < c_1.
 \]

 (Hint: The area of a hyperbolic surface of genus \(g \) is constant.)

 b) (Easy) Use a) to show that there is a constant \(c_2 > 0 \), such that on any \(S_g \), there is a simple closed geodesic shorter than \(c_2 \).

 c) (Normal) Use Collar lemma and b), show that there is a constant \(c_3 > 0 \), such that on any \(S_g \), there exists a simple closed geodesic \(\gamma \) which has a collar of area greater or equal to \(c_3 \).

 (Hint: A collar can be foliated by hypercycles which can be used to compute the area of the collar. Consider the monotonicity of the function \(f(x) = x/\sinh x \).)

 d) (Normal) Use Collar lemma to show that on any \(S_g \), any two distinct simple geodesics of length 1 must be disjoint.

 (Hint: \(\sinh 0.5 > 0.52 \).)

2. (Hard) Let \(p \) be a cusp on \(S_{g,n} \). If a horocycle \(H \) centered at \(p \) is embedded in \(S_{g,n} \), we call the part between \(H \) and its center \(p \) the cusp region, and denote it by \(D_p(r) \) where \(r \) is the length of \(H \). Use Collar Lemma for cusps to show that any geodesic on \(S_{g,n} \) intersecting \(D_p(1) \) have self-intersections.

 (Hint: Lift \(S_{g,n} \) to \(\mathbb{H} \), and assume that \(\infty \) is a lift of one cusp. Up to a conjugacy by an isometry, the cyclic group in \(\Gamma_{g,n} \) fixing \(\infty \) can be generated by \(f(z) = z + 2 \). Find the horizontal line \(H \) projected to the horocycle of length 2 and the horizontal line \(H' \) projected to the horocycle of length 1 on \(S_{g,n} \). Consider a geodesic intersecting the horizontal line of \(H' \). Find its image under \(\Gamma_{g,n} \) which intersects itself.)