Introduction to hyperbolic surfaces

Exercises VIII

Let $g \geq 0$ and $n \geq 0$ be integers such that $2-2 g-n<0$. We denote by S_{g} a closed hyperbolic surface of genus g, and by $S_{g, n}$ a hyperbolic surface of genus g with n cusps.

1. We would like to study short geodesics on hyperbolic surfaces of genus g.
a) (Easy) Let $p \in S_{g}$. The injective radius R_{p} at p is the maximal positive real number such that the interior of a hyperbolic disk of radius R_{p} can be mapped isometrically to the R_{p}-neighborhood of p. Show that the exists a constant $c_{1}>0$, such that for any S_{g},

$$
\min \left\{R_{p} \mid p \in S_{g}\right\}<c_{1} .
$$

(Hint: The area of a hyperbolic surface of genus g is constant.)
b) (Easy) Use a) to show that there is a constant $c_{2}>0$, such that on any S_{g}, there is a simple closed geodesic shorter than c_{2}.
c) (Normal) Use Collar lemma and b), show that there is a constant $c_{3}>0$, such that on any S_{g}, there exists a simple closed geodesic γ which has a collar of area greater or equal to c_{3}.
(Hint: A collar can be foliated by hypercycles which can be used to compute the area of the collar. Consider the monotonicity of the function $f(x)=x / \sinh x$.)
d) (Normal) Use Collar lemma to show that on any S_{g}, any two distinct simple geodesics of length 1 must be disjoint.
(Hint: $\sinh 0.5>0.52$.)
2. (Hard) Let p be a cusp on $S_{g, n}$. If a horocycle H centered at p is embedded in $S_{g, n}$, we call the part between H and its center p the cusp region, and denote it by $D_{p}(r)$ where r is the length of H. Use Collar Lemma for cusps to show that any geodesic on $S_{g, n}$ intersecting $D_{p}(1)$ have self-intersections.
(Hint: Lift $S_{g, n}$ to \mathbb{H}, and assume that ∞ is a lift of one cusp. Up to a conjugacy by an isometry, the cyclic group in $\Gamma_{g, n}$ fixing ∞ can be generated by $f(z)=z+2$. Find the horizontal line H projected to the horocycle of length 2 and the horizontal line H^{\prime} projected to the horocycle of length 1 on $S_{g, n}$. Consider a geodesic intersecting the horizontal line of H^{\prime}. Find its image under $\Gamma_{g, n}$ which intersects itself.)

