Introduction to hyperbolic surfaces

Exercises VIII

Let $g \ge 0$ and $n \ge 0$ be integers such that 2 - 2g - n < 0. We denote by S_g a closed hyperbolic surface of genus g, and by $S_{g,n}$ a hyperbolic surface of genus g with n cusps.

- 1. We would like to study short geodesics on hyperbolic surfaces of genus g.
 - a) (Easy) Let $p \in S_g$. The *injective radius* R_p at p is the maximal positive real number such that the interior of a hyperbolic disk of radius R_p can be mapped isometrically to the R_p -neighborhood of p. Show that the exists a constant $c_1 > 0$, such that for any S_g ,

$$\min\{R_p \mid p \in S_g\} < c_1.$$

(Hint: The area of a hyperbolic surface of genus g is constant.)

- b) (Easy) Use a) to show that there is a constant $c_2 > 0$, such that on any S_g , there is a simple closed geodesic shorter than c_2 .
- c) (Normal) Use Collar lemma and b), show that there is a constant $c_3 > 0$, such that on any S_g , there exists a simple closed geodesic γ which has a collar of area greater or equal to c_3 .

(Hint: A collar can be foliated by hypercycles which can be used to compute the area of the collar. Consider the monotonicity of the function $f(x) = x/\sinh x$.)

d) (Normal) Use Collar lemma to show that on any S_g , any two distinct simple geodesics of length 1 must be disjoint.

(Hint: $\sinh 0.5 > 0.52$.)

2. (Hard) Let p be a cusp on $S_{g,n}$. If a horocycle H centered at p is embedded in $S_{g,n}$, we call the part between H and its center p the cusp region, and denote it by $D_p(r)$ where r is the length of H. Use Collar Lemma for cusps to show that any geodesic on $S_{g,n}$ intersecting $D_p(1)$ have self-intersections.

(Hint: Lift $S_{g,n}$ to \mathbb{H} , and assume that ∞ is a lift of one cusp. Up to a conjugacy by an isometry, the cyclic group in $\Gamma_{g,n}$ fixing ∞ can be generated by f(z) = z + 2. Find the horizontal line H projected to the horocycle of length 2 and the horizontal line H' projected to the horocycle of length 1 on $S_{g,n}$. Consider a geodesic intersecting the horizontal line of H'. Find its image under $\Gamma_{g,n}$ which intersects itself.)