Introduction to hyperbolic surfaces

Exercises IX

Let D denote the open set in \mathbb{H} bounded by three geodesics $V_{1/2}$, $V_{-1/2}$ and C(0,1):

$$D = \{ z \in \mathbb{H} \mid \operatorname{Re} z \in \left(-\frac{1}{2}, \frac{1}{2} \right), \ |z| > 1 \}$$

We would like to show that D is a fundamental domain for $PSL(2,\mathbb{Z})$ action on \mathbb{H} . For our convenience, we use $SL(2,\mathbb{Z})$ during the proof.

1. (Normal) Consider a matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

in SL(2, \mathbb{Z}). Compute the imaginary part of A(z).

- 2. (Normal) Show that for $z \in D$, we have $|cz + d| \ge 1$.
- 3. (Normal) Show that for any $A \in SL(2,\mathbb{Z})$ and any $z \in D$, if $A(z) \in D$, then $A = \pm I_2$.
- 4. (Easy) Show that any point $z \in \mathbb{H}$ can always be sent to the region between $V_{1/2}$ and $V_{-1/2}$, i.e. Re $z \in [-1/2, 1/2]$.
- 5. (Easy) Use 4. and the matrix

$$B = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$$

to show that any point $z \in \mathbb{H}$ with $\operatorname{Im} z \geq \sqrt{3}/2$ can always be sent \overline{D} by an element in $\operatorname{SL}(2,\mathbb{Z})$.

6. (Normal) Show that for any point $z \in \mathbb{H}$ with $\operatorname{Re} z \in [-1/2, 1/2]$ and $\operatorname{Im} z < \sqrt{3}/2$, we have

$$\operatorname{Im} B(z) > \operatorname{Im} z.$$

7. (Normal) Show that there exists a constant $\epsilon > 0$, such that for any point z with

Re
$$z \in [-1/2, -1/2]$$
 and $\frac{\sqrt{3}}{2} - \epsilon < \text{Im } z < \frac{\sqrt{3}}{2}$,

we have

$$\operatorname{Im} B(z) > \frac{\sqrt{3}}{2}.$$

8. (Hard) Let z be any point in \mathbb{H} . We construct a sequence of points in \mathbb{H} in the following way.

a) Check if $z \in \overline{D}$, if yes, stop; otherwise, apply

$$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix},$$

for some $n \in \mathbb{Z}$ on z, so that $\operatorname{Re} z \in [-1/2, 1/2]$. We denote the new point by z_1 . If z_1 is in \overline{D} , stop; otherwise go to step b).

b) Apply B and we get $z_2 = B(z_1)$. Check if z_2 is in \overline{D} . If yes, stop; otherwise back to a). Show that this process will stop in finite time and we will get a point in \overline{D} . (Hint: Prove it by contradiction.)

9. (Easy) Conclude that D is a fundamental domain for $PSL(2,\mathbb{Z})$ -action on \mathbb{H} .