Introduction to hyperbolic surfaces

Exercises IX

Let D denote the open set in \mathbb{H} bounded by three geodesics $V_{1 / 2}, V_{-1 / 2}$ and $C(0,1)$:

$$
D=\left\{z \in \mathbb{H}\left|\operatorname{Re} z \in\left(-\frac{1}{2}, \frac{1}{2}\right),|z|>1\right\} .\right.
$$

We would like to show that D is a fundamental domain for $\operatorname{PSL}(2, \mathbb{Z})$ action on \mathbb{H}. For our convenience, we use $\mathrm{SL}(2, \mathbb{Z})$ during the proof.

1. (Normal) Consider a matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right],
$$

in $\operatorname{SL}(2, \mathbb{Z})$. Compute the imaginary part of $A(z)$.
2. (Normal) Show that for $z \in D$, we have $|c z+d| \geq 1$.
3. (Normal) Show that for any $A \in \operatorname{SL}(2, \mathbb{Z})$ and any $z \in D$, if $A(z) \in D$, then $A= \pm \mathrm{I}_{2}$.
4. (Easy) Show that any point $z \in \mathbb{H}$ can always be sent to the region between $V_{1 / 2}$ and $V_{-1 / 2}$, i.e. $\operatorname{Re} z \in[-1 / 2,1 / 2]$.
5. (Easy) Use 4. and the matrix

$$
B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

to show that any point $z \in \mathbb{H}$ with $\operatorname{Im} z \geq \sqrt{3} / 2$ can always be sent \bar{D} by an element in $\mathrm{SL}(2, \mathbb{Z})$.
6. (Normal) Show that for any point $z \in \mathbb{H}$ with $\operatorname{Re} z \in[-1 / 2,1 / 2]$ and $\operatorname{Im} z<\sqrt{3} / 2$, we have

$$
\operatorname{Im} B(z)>\operatorname{Im} z .
$$

7. (Normal) Show that there exists a constant $\epsilon>0$, such that for any point z with

$$
\operatorname{Re} z \in[-1 / 2,-1 / 2] \quad \text { and } \quad \frac{\sqrt{3}}{2}-\epsilon<\operatorname{Im} z<\frac{\sqrt{3}}{2},
$$

we have

$$
\operatorname{Im} B(z)>\frac{\sqrt{3}}{2} .
$$

8. (Hard) Let z be any point in \mathbb{H}. We construct a sequence of points in \mathbb{H} in the following way.
a) Check if $z \in \bar{D}$, if yes, stop; otherwise, apply

$$
\left[\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right],
$$

for some $n \in \mathbb{Z}$ on z, so that $\operatorname{Re} z \in[-1 / 2,1 / 2]$. We denote the new point by z_{1}. If z_{1} is in \bar{D}, stop; otherwise go to step b).
b) Apply B and we get $z_{2}=B\left(z_{1}\right)$. Check if z_{2} is in \bar{D}. If yes, stop; otherwise back to a). Show that this process will stop in finite time and we will get a point in \bar{D}.
(Hint: Prove it by contradiction.)
9. (Easy) Conclude that D is a fundamental domain for $\operatorname{PSL}(2, \mathbb{Z})$-action on \mathbb{H}.

