PROBLEM SET

RUOBING ZHANG

Contents

1. Basic Riemannian geometry 1
2. Geometry of Riemannian manifolds 2
3. More examples of Riemannian structures 3
4. The space of metric structures 4

1. Basic Riemannian geometry

Exercise 1.1. Let $\gamma(t)=(t, y(t)), t \in[0,1]$ be the curve defined by

$$
y(t)= \begin{cases}t \cos \left(\frac{\pi}{2 t}\right), & t \neq 0 \tag{1.1}\\ 0, & t=0\end{cases}
$$

Show that γ is non-rectifiable.
Exercise 1.2. Let g be a Riemannian structure on U. Show that $d_{g}: U \times U \rightarrow[0, \infty)$ gives a metric structure on U such that (U, g) becomes a metric space.

Exercise 1.3. Show that any geodesic in \mathbb{R}^{n} is a line segment. Then prove that $\left(\mathbb{R}^{n}, d_{0}\right)$ is a length space. Under what condition of U is the space $\left(U, d_{0}\right)$ a length space?

Recall the definition of covariant derivative along a curve γ.
Definition 1.4 (Covariant derivative). For any smooth map $\Gamma: U \rightarrow\left(\mathbb{R}^{n}\right)^{*} \otimes\left(\mathbb{R}^{n}\right)^{*}$ that maps every $x \in U$ to a bilinear map $\Gamma_{x}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the corresponding covariant derivative X along γ is defined by

$$
\begin{equation*}
\nabla_{\gamma} X=\frac{d}{d t} X(t)+\Gamma_{\gamma(t)}\left(\gamma^{\prime}(t), X\right) \tag{1.2}
\end{equation*}
$$

Exercise 1.5. In (1.2), assume that Γ is chosen such that $\Gamma_{x}(u, v) \equiv \frac{1}{2} G_{x}^{-1} D G_{x}(u) v$ for any $x \in U$. Let X, Y be C^{1}-vector fields along γ and let $f: U \rightarrow \mathbb{R}$ be any C^{1}-function. Show that
(1) $\nabla_{\gamma}(\alpha X+\beta Y)=\alpha \nabla_{\gamma} X+\beta \nabla_{\gamma} Y$,
(2) $\nabla_{\gamma}(f X)=f^{\prime} \cdot X+f \nabla_{\gamma} X$,
(3) $\frac{d}{d t} g_{\gamma}(X, Y)=g_{\gamma}\left(\nabla_{\gamma} X, Y\right)+\left(X, \nabla_{\gamma} Y\right)$.

Exercise 1.6. In geodesic normal coordinates centered at $p \in U$, we denote

$$
\begin{equation*}
g_{i j} \equiv g\left(\partial_{i}, \partial_{j}\right), \quad \nabla_{\partial_{i}} \partial_{j}=\Gamma_{i j}^{k} \partial_{k} . \tag{1.3}
\end{equation*}
$$

Show that $g_{i j}(p)=\delta_{i j}, \quad \Gamma_{i j}^{k}(p)=0$.

Exercise 1.7. We define $\mathscr{R}(X, Y) Z \equiv \nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$ for $X, Y, Z \in \mathfrak{X}(U)$. Show that \mathscr{R} is tensorial and $R=\mathscr{R}$.

Exercise 1.8. Let $\left\{x_{i}\right\}_{i=1}^{n}$ be the geodesic normal coordinate system at $p \in U$. Let γ : $[0,1] \rightarrow U$ be a geodesic with $\gamma(0)=p$ and $\gamma^{\prime}(0)=\sigma$. Prove the following Taylor expansions:
(1) Let $J(t)$ be a Jacobi field along γ with $J(0)=0$ and $J^{\prime}(0)=v$. Then

$$
\begin{equation*}
\|J(t)\|^{2}=t^{2}-\frac{1}{3} \sec _{p}(\sigma, v) \cdot t^{4}+O\left(t^{5}\right) \tag{1.4}
\end{equation*}
$$

(2) Let $G \equiv \operatorname{det}\left(g_{i j}\right)$. Then

$$
\begin{equation*}
\sqrt{G}=1-\frac{1}{6} \operatorname{Ric}_{i j}(p) x_{i} x_{j}+O\left(|x|^{3}\right) \tag{1.5}
\end{equation*}
$$

(3) Let $B_{r}(p) \equiv\left\{x \in U \mid d_{g}(x, p) \leq p\right\}$. Then

$$
\begin{equation*}
\frac{\operatorname{Vol}\left(B_{r}(p)\right)}{\omega_{n} r^{n}}=1-\frac{\mathrm{Sc}(p)}{6(n+2)} r^{2}+O\left(r^{3}\right) \tag{1.6}
\end{equation*}
$$

(4) Let $S_{r}(p) \equiv \partial B_{r}(p)$. Then

$$
\begin{equation*}
\frac{\operatorname{Area}\left(S_{r}(p)\right)}{n \omega_{n} r^{n-1}}=1-\frac{\operatorname{Sc}(p)}{6} r^{2}+O\left(r^{3}\right) \tag{1.7}
\end{equation*}
$$

Exercise 1.9. Consider the following warped product metrics on the 2 -disc $\mathbb{D} \subset \mathbb{R}^{2}$:

$$
\begin{align*}
& g_{+}=d r^{2}+\sin ^{2}(r) \cdot d \theta^{2} \tag{1.8}\\
& g_{-}=d r^{2}+\sinh ^{2}(r) \cdot d \theta^{2} \tag{1.9}
\end{align*}
$$

Prove that $\sec _{g+} \equiv 1$ and $\sec _{g_{-}} \equiv-1$.

2. Geometry of Riemannian manifolds

Exercise 2.1. Let $\gamma:[0,1] \rightarrow U$ be a curve. Let ∇ be a linear connection on U. A vector field X is said to be parallel along γ if $\nabla_{\gamma^{\prime}(t)} X(t) \equiv 0$ for any $t \in[0,1]$. Prove that for any $v \in T_{\gamma(0)} U$, there exists a unique parallel vector field X along γ with $X(0)=v$.

Exercise 2.2. Let ∇ be the Levi-Civita connection on (U, g). Prove the following Koszul formula

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X(g(Y, Z))+Y(g(Z, X))-Z(g(X, Y)) \\
& +g([X, Y], Z)+g([Z, X], Y)-g([Y, Z], X) \tag{2.1}
\end{align*}
$$

Exercise 2.3. Let M^{n} be a differentiable n-manifold. Then $\operatorname{dim}\left(T_{p} M^{n}\right)=n$ for any $p \in M^{n}$.
Exercise 2.4. Let $\left(\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}_{2}, g_{\text {flat }}\right)$ be a flat torus. Write a geodesic $\gamma \subset \mathbb{T}^{2}$ which is dense \mathbb{T}^{2}.

Exercise 2.5. Let $\varphi:\left(U, g_{0}\right) \rightarrow\left(\varphi(U), g_{0}\right)$ be an isometry. Show that there exists an isometry $\bar{\varphi}$ on \mathbb{R}^{n} such that $\varphi=\left.\bar{\varphi}\right|_{U}$.

Exercise 2.6. Show that $\Delta(f g)=f \Delta g+g \Delta f+2 g(\nabla f, \nabla g)$.

Exercise 2.7. Let $\left(M^{n}, g\right)$ and $\left(N^{k}, h\right)$ be Riemannian manifolds. Then the Levi-Civita connection ∇ of $\left(M^{n} \times N^{k}, g \oplus h\right)$ satisfies

$$
\begin{equation*}
\nabla_{Y_{1}+Y_{2}}\left(X_{1}+X_{2}\right)=\nabla_{Y_{1}}^{g} X_{1}+\nabla_{Y_{2}}^{h} X_{2}, \quad X_{i}+Y_{i} \in T M^{n} \oplus T N^{k}, i=1,2 \tag{2.2}
\end{equation*}
$$

In particular, $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$ is a geodesic if γ_{1} and γ_{2} are geodesics on M^{n} and N^{k}, respectively.
Exercise 2.8. Let $p=\left(x_{1}, y_{1}\right)$ and $q=\left(x_{2}, y_{2}\right)$ be any points on the product manifold $\left(M^{n} \times N^{k}, g \oplus h\right)$. Then

$$
\begin{equation*}
d_{g \oplus h}^{2}(p, q)=d_{g}^{2}\left(x_{1}, x_{2}\right)+d_{h}^{2}\left(y_{1}, y_{2}\right) \tag{2.3}
\end{equation*}
$$

Exercise 2.9. Let $\left(M^{n}, g\right)$ be a Riemannian manifold. Show that for any $r>0, \mathrm{Sc}_{\bar{g}_{r}}=$ $r^{-2} \mathrm{Sc}_{g_{r}}$. Then establish the similar rescaling relation for sectional and Ricci curvatures.
Exercise 2.10. Consider the Euclidean metric g_{0} on \mathbb{R}^{n+1} in polar coordinates $g_{0}=d r^{2}+$ $r^{2} g_{\mathbb{S}^{n}}$. Prove that $\sec _{\mathbb{S}^{n}} \equiv+1$.
Exercise 2.11. Let $\eta: \underbrace{T M \times \ldots \times T M}_{r} \rightarrow C^{\infty}\left(M^{n}\right)$ be a tensor multilinear map on M^{n}, called a $(0, r)$-tensor field. Let $X^{r} \in \mathfrak{X}\left(M^{n}\right)$. We define

$$
\begin{equation*}
\mathfrak{L}_{X} \eta\left(Y_{1}, \ldots, Y_{r}\right) \equiv X\left(\eta\left(Y_{1}, \ldots, Y_{r}\right)\right)-\sum_{i=1}^{r} \eta\left(X_{1}, \ldots,\left[X, Y_{i}\right], \ldots, X_{r}\right) \tag{2.4}
\end{equation*}
$$

Exercise 2.12. Let η and ζ be $(0, r)$ and $(0, s)$ tensor fields on M^{n}, repsectively. For any $X \in \mathfrak{X}\left(M^{n}\right)$, show that

$$
\begin{equation*}
\mathfrak{L}_{X}(T \otimes S)=\left(\mathfrak{L}_{X} T\right) \otimes S+T \otimes\left(\mathfrak{L}_{X} S\right) \tag{2.5}
\end{equation*}
$$

As a special case, $\mathfrak{L}_{X}(f T)=X(f)+f \mathfrak{L}_{X} T$ for any $f \in C^{\infty}\left(M^{n}\right)$.
Exercise 2.13. Prove that in the above warped product metric, $2 \operatorname{Hess}(r)=\mathfrak{L}_{\partial_{r}} g$ and $\operatorname{Hess}(r)=\left(f \cdot \partial_{r} f\right) h$.
Exercise 2.14. Let $\left(r, x_{1}, \ldots, x_{n-1}\right)$ be local coordinates on $(a, b) \times N^{n-1}$. Prove the following curvature identities for the warped product metric $d r^{2}+f^{2}(r) h$:
(1) $R_{i j k \ell}^{g}=f^{2}(r) R_{i j k \ell}^{h}+f^{2}(r)\left(f^{\prime}(r)\right)^{2}\left(h_{i k} h_{j \ell}-h_{i \ell} h_{j k}\right)$.
(2) $R_{i j \ell r}^{g}=0$ and $R_{r i j r}^{g}=-f(r) \cdot f^{\prime \prime}(r) g_{i j}$.
(3) $\sec _{g}\left(\partial_{i}, \partial_{j}\right)=f^{-2}(r)\left(\sec _{h}\left(\partial_{i}, \partial_{j}\right)-\left(f^{\prime}(r)\right)^{2}\right)$ and $\sec _{g}\left(\partial_{r}, \partial_{i}\right)=-f^{-1}(r) f^{\prime \prime}(r)$.
(4) $\operatorname{Ric}_{i j}^{g}=\operatorname{Ric}_{i j}^{h}-\left((n-2)\left(f^{\prime}(r)\right)^{2}+f(r) f^{\prime \prime}(r)\right) g_{i j}$.
(5) $\operatorname{Ric}_{i r}^{g}=0$ and $\operatorname{Ric}_{r r}^{g}=-(n-1) f^{-1}(r) f^{\prime \prime}(r)$.

3. More examples of Riemannian structures

Exercise 3.1. Let $g_{C}=d r^{2}+r^{2} \cdot h$ be the cone metric of $C(\Sigma)$. Show that $\mathfrak{L}_{\partial_{r}} g=\frac{2}{r} g$.
Exercise 3.2. Prove that a metric cone $C(\Sigma)$ is smooth everywhere if and only if $C(\Sigma)$ is flat which is equivalent to say the cross-section Σ is isometric to the round sphere of curvature +1 .
Exercise 3.3. Let $\left(C(\Sigma), g_{C}, z_{*}\right)$ be a metric cone over a compact manifold (Σ, h), where z_{*} is the cone tip. Prove that away from the cone tip $z_{*}, \operatorname{Ric}_{g_{C}} \equiv 0$ iff $\operatorname{Ric}_{h} \equiv(n-2) h$, and g_{C} is flat iff $\sec _{h} \equiv+1$.

Exercise 3.4. Let $Z \equiv \operatorname{Susp}_{k}(\Sigma)$ with $k \in\{-1,1\}$. Show that $\sec _{\Sigma} \equiv 1$ if and only if $\sec _{Z} \equiv k$.

Exercise 3.5. Let M^{n} be a differentiable manifold. Show that for any $X, Y, Z \in \mathfrak{X}\left(M^{n}\right)$, we have the following identities:
(1) $[Y, X]=-[X, Y]$.
(2) $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$.

As a result, $\mathfrak{X}\left(M^{n}\right)$ is a Lie algebra (of infinite dimension).
Exercise 3.6 (An alternative definition of Lie derivative). Let R be a $(0, r)$ tensor field on M^{n}. Let X be a vector field with a flow ϕ_{t}. Then we define

$$
\begin{equation*}
\left(\mathfrak{L}_{X} \mathcal{R}\right)_{p}\left(v_{1}, \ldots, v_{r}\right)=\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{t}^{*} \mathcal{R}_{p}\left(v_{1}, \ldots, v_{r}\right)\right), \tag{3.1}
\end{equation*}
$$

where $\phi_{t}^{*} \mathcal{R}\left(v_{1}, \ldots, v_{r}\right) \equiv \mathcal{R}\left(D \phi_{t}\left(v_{1}\right), \ldots, D \phi_{t}\left(v_{r}\right)\right)$ and $v_{1}, \ldots, v_{r} \in T_{p} M^{n}$. Show that this definition coincides with the previous one involving the Lie bracket.
Exercise 3.7. Let $X \in \mathfrak{X}(M)$. Show that $\mathfrak{L}_{X} g=0$ if and only if the flow of X is an isometric action.

4. The space of metric structures

Exercise 4.1. Show that the tangent cone at any point in Riemannian n-manifold is isometric to \mathbb{R}^{n}.

Exercise 4.2. Let (Σ, h) be any closed Riemannian manifold with $\operatorname{diam}_{h}(\Sigma) \leq \pi$. Let $\left(C(\Sigma), d_{C}\right)$ be the metric cone over Σ with a vertex z_{*}. Show that the tangent cone of $C(\Sigma)$ at $p \neq z_{*}$ is isometric to \mathbb{R}^{n}, and the tangent cone of $C(\Sigma)$ at z_{*} is isometric to itself.

Exercise 4.3. Let (Σ, h) be any closed Riemannian manifold with $\operatorname{diam}_{h}(\Sigma) \leq \pi$. Let $\left(\operatorname{Susp}_{+1}(\Sigma), d_{C}\right)$ be the spherical suspension over Σ with vertices z_{*} and w_{*}. Show that the tangent cone of $\operatorname{Susp}_{+1}(\Sigma)$ at any vertex is a metric cone.

Exercise 4.4. Show that the asymptotic cone of a complete non-compact metric space (X, d) is independent of the choice of the reference point p.
Exercise 4.5. Let (X, d) be a compact metric space. Show that for any $\epsilon>0$, there is a finite ϵ-net $X(\epsilon) \subset X$.

Exercise 4.6. Read Chapter 5 of Petersen's textbook. Understand the concepts: conjugate point, injectivity radius, and segment domain.

