PROBLEM SET

RUOBING ZHANG

CONTENTS

1.	Basic Riemannian geometry	1
2.	Geometry of Riemannian manifolds	2
3.	More examples of Riemannian structures	3
4.	The space of metric structures	4

1. BASIC RIEMANNIAN GEOMETRY

Exercise 1.1. Let $\gamma(t) = (t, y(t)), t \in [0, 1]$ be the curve defined by

$$y(t) = \begin{cases} t \cos(\frac{\pi}{2t}), & t \neq 0, \\ 0, & t = 0. \end{cases}$$
(1.1)

Show that γ is non-rectifiable.

Exercise 1.2. Let g be a Riemannian structure on U. Show that $d_g: U \times U \to [0, \infty)$ gives a metric structure on U such that (U, g) becomes a metric space.

Exercise 1.3. Show that any geodesic in \mathbb{R}^n is a line segment. Then prove that (\mathbb{R}^n, d_0) is a length space. Under what condition of U is the space (U, d_0) a length space?

Recall the definition of covariant derivative along a curve γ .

Definition 1.4 (Covariant derivative). For any smooth map $\Gamma : U \to (\mathbb{R}^n)^* \otimes (\mathbb{R}^n)^*$ that maps every $x \in U$ to a bilinear map $\Gamma_x : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, the corresponding covariant derivative X along γ is defined by

$$\nabla_{\gamma} X = \frac{d}{dt} X(t) + \Gamma_{\gamma(t)}(\gamma'(t), X).$$
(1.2)

Exercise 1.5. In (1.2), assume that Γ is chosen such that $\Gamma_x(u, v) \equiv \frac{1}{2}G_x^{-1}DG_x(u)v$ for any $x \in U$. Let X, Y be C¹-vector fields along γ and let $f : U \to \mathbb{R}$ be any C¹-function. Show that

(1) $\nabla_{\gamma}(\alpha X + \beta Y) = \alpha \nabla_{\gamma} X + \beta \nabla_{\gamma} Y$,

(2)
$$\nabla_{\gamma}(fX) = f' \cdot X + f \nabla_{\gamma} X$$
,

(3) $\frac{d}{dt}g_{\gamma}(X,Y) = g_{\gamma}(\nabla_{\gamma}X,Y) + (X,\nabla_{\gamma}Y).$

Exercise 1.6. In geodesic normal coordinates centered at $p \in U$, we denote

$$g_{ij} \equiv g(\partial_i, \partial_j), \quad \nabla_{\partial_i} \partial_j = \Gamma^k_{ij} \partial_k.$$
 (1.3)

Show that $g_{ij}(p) = \delta_{ij}$, $\Gamma^k_{ij}(p) = 0$.

Exercise 1.7. We define $\mathscr{R}(X,Y)Z \equiv \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z$ for $X, Y, Z \in \mathfrak{X}(U)$. Show that \mathscr{R} is tensorial and $R = \mathscr{R}$.

Exercise 1.8. Let $\{x_i\}_{i=1}^n$ be the geodesic normal coordinate system at $p \in U$. Let $\gamma : [0,1] \to U$ be a geodesic with $\gamma(0) = p$ and $\gamma'(0) = \sigma$. Prove the following Taylor expansions: (1) Let J(t) be a Jacobi field along γ with J(0) = 0 and J'(0) = v. Then

$$||J(t)||^{2} = t^{2} - \frac{1}{3}\sec_{p}(\sigma, v) \cdot t^{4} + O(t^{5}).$$
(1.4)

(2) Let $G \equiv \det(g_{ij})$. Then

$$\sqrt{G} = 1 - \frac{1}{6} \operatorname{Ric}_{ij}(p) x_i x_j + O(|x|^3).$$
(1.5)

(3) Let $B_r(p) \equiv \{x \in U | d_g(x, p) \le p\}$. Then

$$\frac{\operatorname{Vol}(B_r(p))}{\omega_n r^n} = 1 - \frac{\operatorname{Sc}(p)}{6(n+2)}r^2 + O(r^3).$$
(1.6)

(4) Let $S_r(p) \equiv \partial B_r(p)$. Then

$$\frac{\operatorname{Area}(S_r(p))}{n\omega_n r^{n-1}} = 1 - \frac{\operatorname{Sc}(p)}{6}r^2 + O(r^3).$$
(1.7)

Exercise 1.9. Consider the following warped product metrics on the 2-disc $\mathbb{D} \subset \mathbb{R}^2$:

$$g_{+} = dr^{2} + \sin^{2}(r) \cdot d\theta^{2},$$
 (1.8)

$$g_{-} = dr^2 + \sinh^2(r) \cdot d\theta^2. \tag{1.9}$$

Prove that $\sec_{g_+} \equiv 1$ and $\sec_{g_-} \equiv -1$.

2. Geometry of Riemannian manifolds

Exercise 2.1. Let $\gamma : [0,1] \to U$ be a curve. Let ∇ be a linear connection on U. A vector field X is said to be parallel along γ if $\nabla_{\gamma'(t)}X(t) \equiv 0$ for any $t \in [0,1]$. Prove that for any $v \in T_{\gamma(0)}U$, there exists a unique parallel vector field X along γ with X(0) = v.

Exercise 2.2. Let ∇ be the Levi-Civita connection on (U,g). Prove the following Koszul formula

$$2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) + g([X, Y], Z) + g([Z, X], Y) - g([Y, Z], X).$$
(2.1)

Exercise 2.3. Let M^n be a differentiable n-manifold. Then $\dim(T_pM^n) = n$ for any $p \in M^n$.

Exercise 2.4. Let $(\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}_2, g_{flat})$ be a flat torus. Write a geodesic $\gamma \subset \mathbb{T}^2$ which is dense \mathbb{T}^2 .

Exercise 2.5. Let $\varphi : (U, g_0) \to (\varphi(U), g_0)$ be an isometry. Show that there exists an isometry $\overline{\varphi}$ on \mathbb{R}^n such that $\varphi = \overline{\varphi}|_U$.

Exercise 2.6. Show that $\Delta(fg) = f\Delta g + g\Delta f + 2g(\nabla f, \nabla g)$.

Exercise 2.7. Let (M^n, g) and (N^k, h) be Riemannian manifolds. Then the Levi-Civita connection ∇ of $(M^n \times N^k, g \oplus h)$ satisfies

$$\nabla_{Y_1+Y_2}(X_1+X_2) = \nabla_{Y_1}^g X_1 + \nabla_{Y_2}^h X_2, \quad X_i+Y_i \in TM^n \oplus TN^k, \ i = 1, 2.$$
(2.2)

In particular, $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ is a geodesic if γ_1 and γ_2 are geodesics on M^n and N^k , respectively.

Exercise 2.8. Let $p = (x_1, y_1)$ and $q = (x_2, y_2)$ be any points on the product manifold $(M^n \times N^k, g \oplus h)$. Then

$$d_{g\oplus h}^2(p,q) = d_g^2(x_1, x_2) + d_h^2(y_1, y_2).$$
(2.3)

Exercise 2.9. Let (M^n, g) be a Riemannian manifold. Show that for any r > 0, $Sc_{\bar{g}_r} =$ $r^{-2} \operatorname{Sc}_{a_r}$. Then establish the similar rescaling relation for sectional and Ricci curvatures.

Exercise 2.10. Consider the Euclidean metric g_0 on \mathbb{R}^{n+1} in polar coordinates $g_0 = dr^2 + dr^2$ $r^2 q_{\mathbb{S}^n}$. Prove that $\sec_{\mathbb{S}^n} \equiv +1$.

Exercise 2.11. Let $\eta : \underbrace{TM \times \ldots \times TM}_{r} \to C^{\infty}(M^{n})$ be a tensor multilinear map on M^{n} , called a (0, r)-tensor field. Let $X \in \mathfrak{X}(M^n)$. We define

$$\mathfrak{L}_X \eta(Y_1, \dots, Y_r) \equiv X(\eta(Y_1, \dots, Y_r)) - \sum_{i=1}^r \eta(X_1, \dots, [X, Y_i], \dots, X_r).$$
(2.4)

Exercise 2.12. Let η and ζ be (0,r) and (0,s) tensor fields on M^n , repsectively. For any $X \in \mathfrak{X}(M^n)$, show that

$$\mathfrak{L}_X(T \otimes S) = (\mathfrak{L}_X T) \otimes S + T \otimes (\mathfrak{L}_X S).$$
(2.5)

As a special case, $\mathfrak{L}_X(fT) = X(f) + f\mathfrak{L}_XT$ for any $f \in C^{\infty}(M^n)$.

Exercise 2.13. Prove that in the above warped product metric, $2 \operatorname{Hess}(r) = \mathfrak{L}_{\partial_r}g$ and $\operatorname{Hess}(r) = (f \cdot \partial_r f)h.$

Exercise 2.14. Let $(r, x_1, \ldots, x_{n-1})$ be local coordinates on $(a, b) \times N^{n-1}$. Prove the following curvature identities for the warped product metric $dr^2 + f^2(r)h$:

- (1) $R^g_{ijk\ell} = f^2(r)R^h_{ijk\ell} + f^2(r)(f'(r))^2(h_{ik}h_{j\ell} h_{i\ell}h_{jk}).$ (2) $R^g_{ij\ell r} = 0$ and $R^g_{rijr} = -f(r) \cdot f''(r)g_{ij}.$
- (3) $\operatorname{sec}_g(\partial_i, \partial_j) = f^{-2}(r)(\operatorname{sec}_h(\partial_i, \partial_j) (f'(r))^2)$ and $\operatorname{sec}_g(\partial_r, \partial_i) = -f^{-1}(r)f''(r)$.
- (4) $\operatorname{Ric}_{ij}^{g} = \operatorname{Ric}_{ij}^{h} \left((n-2)(f'(r))^{2} + f(r)f''(r) \right) g_{ij}.$
- (5) $\operatorname{Ric}_{ir}^{g} = 0$ and $\operatorname{Ric}_{rr}^{g} = -(n-1)f^{-1}(r)f''(r)$.

3. More examples of Riemannian structures

Exercise 3.1. Let $g_C = dr^2 + r^2 \cdot h$ be the cone metric of $C(\Sigma)$. Show that $\mathfrak{L}_{\partial_r}g = \frac{2}{r}g$.

Exercise 3.2. Prove that a metric cone $C(\Sigma)$ is smooth everywhere if and only if $C(\Sigma)$ is flat which is equivalent to say the cross-section Σ is isometric to the round sphere of curvature +1.

Exercise 3.3. Let $(C(\Sigma), g_C, z_*)$ be a metric cone over a compact manifold (Σ, h) , where z_* is the cone tip. Prove that away from the cone tip z_* , $\operatorname{Ric}_{q_C} \equiv 0$ iff $\operatorname{Ric}_h \equiv (n-2)h$, and g_C is flat iff $\operatorname{sec}_h \equiv +1$.

Exercise 3.4. Let $Z \equiv \text{Susp}_k(\Sigma)$ with $k \in \{-1, 1\}$. Show that $\sec_{\Sigma} \equiv 1$ if and only if $\sec_{Z} \equiv k$.

Exercise 3.5. Let M^n be a differentiable manifold. Show that for any $X, Y, Z \in \mathfrak{X}(M^n)$, we have the following identities:

(1) [Y, X] = -[X, Y].(2) [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

As a result, $\mathfrak{X}(M^n)$ is a Lie algebra (of infinite dimension).

Exercise 3.6 (An alternative definition of Lie derivative). Let R be a (0,r) tensor field on M^n . Let X be a vector field with a flow ϕ_t . Then we define

$$(\mathfrak{L}_X \mathcal{R})_p(v_1, \dots, v_r) = \frac{d}{dt} \Big|_{t=0} (\phi_t^* \mathcal{R}_p(v_1, \dots, v_r)),$$
(3.1)

where $\phi_t^* \mathcal{R}(v_1, \ldots, v_r) \equiv \mathcal{R}(D\phi_t(v_1), \ldots, D\phi_t(v_r))$ and $v_1, \ldots, v_r \in T_p M^n$. Show that this definition coincides with the previous one involving the Lie bracket.

Exercise 3.7. Let $X \in \mathfrak{X}(M)$. Show that $\mathfrak{L}_X g = 0$ if and only if the flow of X is an isometric action.

4. The space of metric structures

Exercise 4.1. Show that the tangent cone at any point in Riemannian n-manifold is isometric to \mathbb{R}^n .

Exercise 4.2. Let (Σ, h) be any closed Riemannian manifold with $\operatorname{diam}_h(\Sigma) \leq \pi$. Let $(C(\Sigma), d_C)$ be the metric cone over Σ with a vertex z_* . Show that the tangent cone of $C(\Sigma)$ at $p \neq z_*$ is isometric to \mathbb{R}^n , and the tangent cone of $C(\Sigma)$ at z_* is isometric to itself.

Exercise 4.3. Let (Σ, h) be any closed Riemannian manifold with $\operatorname{diam}_h(\Sigma) \leq \pi$. Let $(\operatorname{Susp}_{+1}(\Sigma), d_C)$ be the spherical suspension over Σ with vertices z_* and w_* . Show that the tangent cone of $\operatorname{Susp}_{+1}(\Sigma)$ at any vertex is a metric cone.

Exercise 4.4. Show that the asymptotic cone of a complete non-compact metric space (X, d) is independent of the choice of the reference point p.

Exercise 4.5. Let (X, d) be a compact metric space. Show that for any $\epsilon > 0$, there is a finite ϵ -net $X(\epsilon) \subset X$.

Exercise 4.6. Read Chapter 5 of Petersen's textbook. Understand the concepts: conjugate point, injectivity radius, and segment domain.