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1. Basic Riemannian geometry

Exercise 1.1. Let γ(t) = (t, y(t)), t ∈ [0, 1] be the curve defined by

y(t) =

{
t cos( π

2t
), t 6= 0,

0, t = 0.
(1.1)

Show that γ is non-rectifiable.

Exercise 1.2. Let g be a Riemannian structure on U . Show that dg : U ×U → [0,∞) gives
a metric structure on U such that (U, g) becomes a metric space.

Exercise 1.3. Show that any geodesic in Rn is a line segment. Then prove that (Rn, d0) is
a length space. Under what condition of U is the space (U, d0) a length space?

Recall the definition of covariant derivative along a curve γ.

Definition 1.4 (Covariant derivative). For any smooth map Γ : U → (Rn)∗ ⊗ (Rn)∗ that
maps every x ∈ U to a bilinear map Γx : Rn × Rn → Rn, the corresponding covariant
derivative X along γ is defined by

∇γX =
d

dt
X(t) + Γγ(t)(γ

′(t), X). (1.2)

Exercise 1.5. In (1.2), assume that Γ is chosen such that Γx(u, v) ≡ 1
2
G−1
x DGx(u)v for any

x ∈ U . Let X, Y be C1-vector fields along γ and let f : U → R be any C1-function. Show
that

(1) ∇γ(αX + βY ) = α∇γX + β∇γY ,
(2) ∇γ(fX) = f ′ ·X + f∇γX,
(3) d

dt
gγ(X, Y ) = gγ(∇γX, Y ) + (X,∇γY ).

Exercise 1.6. In geodesic normal coordinates centered at p ∈ U , we denote

gij ≡ g(∂i, ∂j), ∇∂i∂j = Γkij∂k. (1.3)

Show that gij(p) = δij, Γkij(p) = 0.
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Exercise 1.7. We define R(X, Y )Z ≡ ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z for X, Y, Z ∈ X(U).
Show that R is tensorial and R = R.

Exercise 1.8. Let {xi}ni=1 be the geodesic normal coordinate system at p ∈ U . Let γ :
[0, 1]→ U be a geodesic with γ(0) = p and γ′(0) = σ. Prove the following Taylor expansions:

(1) Let J(t) be a Jacobi field along γ with J(0) = 0 and J ′(0) = v. Then

‖J(t)‖2 = t2 − 1

3
secp(σ, v) · t4 +O(t5). (1.4)

(2) Let G ≡ det(gij). Then

√
G = 1− 1

6
Ricij(p)xixj +O(|x|3). (1.5)

(3) Let Br(p) ≡ {x ∈ U |dg(x, p) ≤ p}. Then

Vol(Br(p))

ωnrn
= 1− Sc(p)

6(n+ 2)
r2 +O(r3). (1.6)

(4) Let Sr(p) ≡ ∂Br(p). Then

Area(Sr(p))

nωnrn−1
= 1− Sc(p)

6
r2 +O(r3). (1.7)

Exercise 1.9. Consider the following warped product metrics on the 2-disc D ⊂ R2:

g+ = dr2 + sin2(r) · dθ2, (1.8)

g− = dr2 + sinh2(r) · dθ2. (1.9)

Prove that secg+ ≡ 1 and secg− ≡ −1.

2. Geometry of Riemannian manifolds

Exercise 2.1. Let γ : [0, 1] → U be a curve. Let ∇ be a linear connection on U . A vector
field X is said to be parallel along γ if ∇γ′(t)X(t) ≡ 0 for any t ∈ [0, 1]. Prove that for any
v ∈ Tγ(0)U , there exists a unique parallel vector field X along γ with X(0) = v.

Exercise 2.2. Let ∇ be the Levi-Civita connection on (U, g). Prove the following Koszul
formula

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+ g([X, Y ], Z) + g([Z,X], Y )− g([Y, Z], X). (2.1)

Exercise 2.3. Let Mn be a differentiable n-manifold. Then dim(TpM
n) = n for any p ∈Mn.

Exercise 2.4. Let (T2 = R2/Z2, gflat) be a flat torus. Write a geodesic γ ⊂ T2 which is
dense T2.

Exercise 2.5. Let ϕ : (U, g0) → (ϕ(U), g0) be an isometry. Show that there exists an
isometry ϕ̄ on Rn such that ϕ = ϕ̄|U .

Exercise 2.6. Show that ∆(fg) = f∆g + g∆f + 2g(∇f,∇g).
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Exercise 2.7. Let (Mn, g) and (Nk, h) be Riemannian manifolds. Then the Levi-Civita
connection ∇ of (Mn ×Nk, g ⊕ h) satisfies

∇Y1+Y2(X1 +X2) = ∇g
Y1
X1 +∇h

Y2
X2, Xi + Yi ∈ TMn ⊕ TNk, i = 1, 2. (2.2)

In particular, γ(t) = (γ1(t), γ2(t)) is a geodesic if γ1 and γ2 are geodesics on Mn and Nk,
respectively.

Exercise 2.8. Let p = (x1, y1) and q = (x2, y2) be any points on the product manifold
(Mn ×Nk, g ⊕ h). Then

d2
g⊕h(p, q) = d2

g(x1, x2) + d2
h(y1, y2). (2.3)

Exercise 2.9. Let (Mn, g) be a Riemannian manifold. Show that for any r > 0, Scḡr =
r−2 Scgr . Then establish the similar rescaling relation for sectional and Ricci curvatures.

Exercise 2.10. Consider the Euclidean metric g0 on Rn+1 in polar coordinates g0 = dr2 +
r2gSn. Prove that secSn ≡ +1.

Exercise 2.11. Let η : TM × . . .× TM︸ ︷︷ ︸
r

→ C∞(Mn) be a tensor multilinear map on Mn,

called a (0, r)-tensor field. Let X ∈ X(Mn). We define

LXη(Y1, . . . , Yr) ≡ X(η(Y1, . . . , Yr))−
r∑
i=1

η(X1, . . . , [X, Yi], . . . , Xr). (2.4)

Exercise 2.12. Let η and ζ be (0, r) and (0, s) tensor fields on Mn, repsectively. For any
X ∈ X(Mn), show that

LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS). (2.5)

As a special case, LX(fT ) = X(f) + fLXT for any f ∈ C∞(Mn).

Exercise 2.13. Prove that in the above warped product metric, 2 Hess(r) = L∂rg and
Hess(r) = (f · ∂rf)h.

Exercise 2.14. Let (r, x1, . . . , xn−1) be local coordinates on (a, b)×Nn−1. Prove the following
curvature identities for the warped product metric dr2 + f 2(r)h:

(1) Rg
ijk` = f 2(r)Rh

ijk` + f 2(r)(f ′(r))2(hikhj` − hi`hjk).

(2) Rg
ij`r = 0 and Rg

rijr = −f(r) · f ′′(r)gij.
(3) secg(∂i, ∂j) = f−2(r)(sech(∂i, ∂j)− (f ′(r))2) and secg(∂r, ∂i) = −f−1(r)f ′′(r).

(4) Ricgij = Richij −
(

(n− 2)(f ′(r))2 + f(r)f ′′(r)
)
gij.

(5) Ricgir = 0 and Ricgrr = −(n− 1)f−1(r)f ′′(r).

3. More examples of Riemannian structures

Exercise 3.1. Let gC = dr2 + r2 · h be the cone metric of C(Σ). Show that L∂rg = 2
r
g.

Exercise 3.2. Prove that a metric cone C(Σ) is smooth everywhere if and only if C(Σ) is flat
which is equivalent to say the cross-section Σ is isometric to the round sphere of curvature
+1.

Exercise 3.3. Let (C(Σ), gC , z∗) be a metric cone over a compact manifold (Σ, h), where z∗
is the cone tip. Prove that away from the cone tip z∗, RicgC ≡ 0 iff Rich ≡ (n− 2)h, and gC
is flat iff sech ≡ +1.
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Exercise 3.4. Let Z ≡ Suspk(Σ) with k ∈ {−1, 1}. Show that secΣ ≡ 1 if and only if
secZ ≡ k.

Exercise 3.5. Let Mn be a differentiable manifold. Show that for any X, Y, Z ∈ X(Mn), we
have the following identities:

(1) [Y,X] = −[X, Y ].
(2) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

As a result, X(Mn) is a Lie algebra (of infinite dimension).

Exercise 3.6 (An alternative definition of Lie derivative). Let R be a (0, r) tensor field on
Mn. Let X be a vector field with a flow φt. Then we define

(LXR)p(v1, . . . , vr) =
d

dt

∣∣∣
t=0

(φ∗tRp(v1, . . . , vr)), (3.1)

where φ∗tR(v1, . . . , vr) ≡ R(Dφt(v1), . . . , Dφt(vr)) and v1, . . . , vr ∈ TpM
n. Show that this

definition coincides with the previous one involving the Lie bracket.

Exercise 3.7. Let X ∈ X(M). Show that LXg = 0 if and only if the flow of X is an
isometric action .

4. The space of metric structures

Exercise 4.1. Show that the tangent cone at any point in Riemannian n-manifold is iso-
metric to Rn.

Exercise 4.2. Let (Σ, h) be any closed Riemannian manifold with diamh(Σ) ≤ π. Let
(C(Σ), dC) be the metric cone over Σ with a vertex z∗. Show that the tangent cone of C(Σ)
at p 6= z∗ is isometric to Rn, and the tangent cone of C(Σ) at z∗ is isometric to itself.

Exercise 4.3. Let (Σ, h) be any closed Riemannian manifold with diamh(Σ) ≤ π. Let
(Susp+1(Σ), dC) be the spherical suspension over Σ with vertices z∗ and w∗. Show that the
tangent cone of Susp+1(Σ) at any vertex is a metric cone.

Exercise 4.4. Show that the asymptotic cone of a complete non-compact metric space (X, d)
is independent of the choice of the reference point p.

Exercise 4.5. Let (X, d) be a compact metric space. Show that for any ε > 0, there is a
finite ε-net X(ε) ⊂ X.

Exercise 4.6. Read Chapter 5 of Petersen’s textbook. Understand the concepts: conjugate
point, injectivity radius, and segment domain.
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