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1 Preliminary

This note is based on a mini-course given in Chern Institute, Nankai University, in July 2021.
Pre-required Knowledge:

• Linear Algebra (2 × 2 matrices with real or complex coefficients);

• Analysis (limits, Riemann integral, (partial) derivative of real value functions);

• Geometry in Euclidean plane (line, circle, length, angle, tangent, computation with
different coordinate systems)

• Basic notions in Group Theory (group, subgroup, generator, relations, presentations of
groups, homomorphism, isomorphism)

• Basic notions in Topology (basis, open/closed set, fundamental group, universal cover)

1.1 Introduction

Euclidean geometry is one geometry (maybe the geometry) with which we are familiar the
most. Its axiomatic system is based on 5 postulates where the 5th one which is usually called
the ’Parallel Postulate’. An equivalent statement of this postulate given by Playfair says that:

’In a plane, through a point not on a given straight line,
at most one line can be drawn that never meets the given line.’

By modifying this postulate, we are getting into the world of non-Euclidean geometry which
includes two main types: spherical geometry and hyperbolic geometry. As one main type of the
non-Euclidean geometry, hyperbolic geometry not only is a beautiful and rich research area
of mathematics by itself, but also has connections to various other areas in mathematics and
physics, such as dynamical system, geometric group theory, number theory, projective geometry,
mathematical physics, etc.

The 2-dimensional hyperbolic geometry is the basic of this area. The main objects studied
in this area are hyperbolic surfaces which, on one hand, admit many interesting properties
and a rich deformation theory, and at the same time, provide elementary examples in different
research areas. In this mini course, we would like to give an introduction to this topic.

1.2 First impression of non Euclidean geometry

Before getting into details, we may start by comparing triangles and disks in non-Euclidean
space with those in the Euclidean plane to get a first impression of non-Euclidean geometry.

Recall that in the Euclidean plane, any triangle have the sum of interior angles to be 𝜋. Now
let us consider the Earth. Assume that it is a ball. Two persons A and B walk from the north
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1 Preliminary

pole to the equator along different meridians. Then when they get to the equator, their traces
and the segment in the equator connecting them form a triangle in the sphere. Notice that
there are two angles which are already right angles. Hence the sum of interior this triangle on
the sphere is bigger than 𝜋.

In fact, this is a general phenomenon: in the spherical geometry, the sum of interior angles of
a triangle is bigger than 𝜋, and the triangle looks "fatter" than a triangle with the same side
lengths in the Euclidean plane.

Figure 1.2.1: 𝛼+ 𝛽 + 𝛾: Spherical > Euclidean= 𝜋 > Hyperbolic

Then we may wonder: what about the triangles in the hyperbolic geometry? Since we have
"strictly bigger than 𝜋", and "equal to 𝜋", one possible guess would be: in hyperbolic geometry,
the sum of interior angles of a triangle is strictly smaller than 𝜋. This is exactly what happens.
Moreover, a triangle in the hyperbolic space looks "thinner" than the triangle with the same
side lengths in the Euclidean plane. We will explain these in this mini-course.

Another object which we meet a lot when studying Euclidean geometry is the disk. We may
take a piece of paper and cut a disk out. Then we can try to cover some part of a sphere (one
may think about covering a chocolate ball). No matter how we adjust the paper disk, there is
always some part of the disk folded and the disk overlaps with itself. This means that we have
some extra area, and the area of the paper disk is bigger than that of the disk that it covers on
the sphere.

Figure 1.2.2: Areas of disks of a same radius: Spherical < Euclidean < Hyperbolic

On the other hand, if we try to use the paper disk to cover the top surface of a saddle, we
may find that if we push the paper disk to make it touching the saddle, then the paper breaks
along radius. This means that there is not enough area. In the other words, the area of the
paper disk is smaller than that of the disk that it tries to cover on the saddle. We will explain
this phenomenon later in this mini-course as well.

1.3 Plan of the mini course

In this mini course, we will focus on the hyperbolic geometry, more precisely, 2-dimensional
hyperbolic geometry. The mini course contains three parts:
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1 Preliminary

(i) In the first part, we give an elementary introduction to the geometry of the hyperbolic
plane by discussing lines, circles and triangles in this space. We will also talk about the
isometry group of the hyperbolic plane and its discrete subgroups.

(ii) In the second part, we will study the geometry on hyperbolic surfaces. We will end this
part by introducing briefly the Teichmüller space and the mapping class group which are
the main objects studied in the Teichmüller theory and are closely related to the study of
hyperbolic surfaces.

(iii) In the end of the mini course, we will briefly discuss two interesting topics in the study of
hyperbolic surfaces: identities associated to hyperbolic surfaces and counting curves on
hyperbolic surfaces.

1.4 References

There are many references for studying hyperbolic geometry and hyperbolic surfaces. Here is a
short list of references which I use a lot.

[1] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91,
Springer-Verlag, New York, 1983.

[2] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical
Series, vol. 49, Princeton University Press, Princeton, NJ, 2012.

[3] Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque No. 66-67, Société
Mathématique de France, Paris, 1991.

[4] Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago
Press, Chicago, IL, 1992.

6



2 Hyperbolic plane

2.1 Models of hyperbolic plane

Instead of using the abstract definition, we usually study hyperbolic space using its different
models. Below is a list of four models that we often meet:

• Upper half plane model;

• Poincaré disk model;

• Kleinian model;

• Minkowski model.

Figure 2.1.1: Upper half plane model; Poincaré disk model; Kleinian model; Minkowski model

Different models have different advantages. We usually choose the model according to the
problem that we would like to study, or maybe use several models at the same time. The most
basic models are the first two which we will introduce in the following.

2.2 Upper half plane model H

As described in its name, the set for this model is the upper half of the complex plane C:

H = {𝑥+ 𝑖𝑦 ∈ C | 𝑦 > 0}.

The hyperbolic metric (length element) can be described using coordinates (𝑥, 𝑦) as follows:

d𝑠H =
√︀

d𝑥2 + d𝑦2

𝑦
,

which is given by renormalizing the Euclidean metric by the 𝑦 coordinate (See Figure 2.2.1).
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2 Hyperbolic plane

Figure 2.2.1: H with Cartesian coordinates (for Euclidean plane)

Informally speaking, one may think the upper half plane is cut into very thin horizontal
strips. On each horizontal strip, the metric is Euclidean metric, but renormalized by the
the inverse of the 𝑦-coordinate of a boundary of the strip. Hence if we have a segment,
under the Euclidean metric its length is independent of its position. Now under the
hyperbolic metric, the higher it is, the shorter it is (See Figure 2.2.2).

Figure 2.2.2: partition by 1; partition by 1
2 ( d𝑒𝑢 stands for the Euclidean length element)

On may notice that the shortest path may be changed under this new metric. If a path goes
vertically, it seems still be shortest. But if a path goes horizontally, there maybe a way to find
a shorter path. (See Figure 2.2.3) For example, we may go up a little then move horizontally
then come down. Although going up and coming down add some distance, but the horizontal
path with bigger 𝑦 coordinate is shorter. In fact this is what would happen to the shortest path
between points, i.e. geodesics. We will discuss in details in the next part.

Figure 2.2.3: Which one is the shortest?
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2 Hyperbolic plane

Remark 2.2.1.
If we consider the light travels in some material, we know that its speed depends on the material.
We may consider the upper half plane is obtained by gluing layers of different materials together,
such that the higher the material is, the faster the light travels inside this material.

Consider two points in the upper half plane. Given any path connecting them, instead of
the ’length’ of the path, we may consider the time that the light spends when travel along this
path. The path along which the light spends the least time can be considered as the ’geodesic’.

We may consider what happens when the light goes from a point in the water to a point in
the air. Instead of being an Euclidean straight segment, our experience tells us that the path is
bent. (Light travels faster in the air than in the water.)

From the expression of the metric, we know that infinitesimally the hyperbolic geometry is
still Euclidean geometry (up to a rescaling by a constant). The notion of angle is the same as
that in the Euclidean geometry. We will use them directly without any change.

Remark 2.2.2.
We usually use H𝑛 to denote 𝑛-dimensional hyperbolic space. Since we only consider dimension
2, we omit the index 2, and use H to denote the hyperbolic plane, instead of H2.

Sometimes, we also consider the polar coordinates of C (See Figure 2.2.4). Then we have
(𝑥, 𝑦) = (𝑟 cos 𝜃, 𝑟 sin 𝜃) and

d𝑥 = cos 𝜃 d𝑟 − 𝑟 sin 𝜃 d𝜃
d𝑦 = sin 𝜃 d𝑟 + 𝑟 cos 𝜃 d𝜃

Figure 2.2.4: The point 𝑧 = 𝑟𝑒𝑖𝜃 has polar coordinates (𝑟, 𝜃) (for Euclidean plane)

Then the hyperbolic metric can be written as the following:

d𝑠H =
√︀

d𝑥2 + d𝑦2

𝑦
=

√
d𝑟2 + 𝑟2 d𝜃2

𝑟 sin 𝜃 =
√
𝑟−2 d𝑟2 + d𝜃2

sin 𝜃 .

2.3 Distance in H

Once we have the metric infinitesimally, we can start talking about length of paths by taking
integral. Of course, in order to do so, we will use "parametrizations" and need the path to have
certain regularity. More precisely, we consider the following definitions.
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2 Hyperbolic plane

Definition 2.3.1
A (parametrized) path in H connecting points 𝑤 and 𝑧 is the image of a continuous map 𝛾 from
an interval [𝑎, 𝑏] to H with 𝛾(𝑎) = 𝑤 and 𝛾(𝑏) = 𝑧. We call 𝛾 the parametrization of the path
𝛾([𝑎, 𝑏]).

For 𝑡 ∈ [𝑎, 𝑏], we denote 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) or 𝑥(𝑡) + 𝑖𝑦(𝑡), and each coordinate is also a
continuous function on the parameter in 𝑡.

Remark 2.3.2.
We will abuse the notation and use 𝛾 to denote the corresponding path as well.

Definition 2.3.3
A path 𝛾 : [𝑎, 𝑏] → H is said to be of class 𝐶1 (or simply 𝐶1) if both functions

𝑥 : [𝑎, 𝑏] → R and 𝑦 : [𝑎, 𝑏] → R,

are of class 𝐶1, i.e. they are differentiable and their derivative 𝑥̇ and 𝑦̇ are continuous.

Definition 2.3.4
The tangent vector of a regular path 𝛾 at 𝛾(𝑡) is defined to be the vector 𝛾̇(𝑡) = (𝑥̇(𝑡), 𝑦̇(𝑡)).

Figure 2.3.1: A regular path 𝛾 : [𝑎, 𝑏] → H

Definition 2.3.5
A path 𝛾 is said to be piecewise 𝐶1 if there is a finite partition of the parameter interval
𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏 such that the restriction 𝛾 is 𝐶1 on each part [𝑡𝑗 , 𝑡𝑗+1] for
0 ≤ 𝑗 ≤ 𝑛− 1.

We will denote its Euclidean norm by

|𝛾̇(𝑡)|E =
√︁
𝑥̇(𝑡)2 + 𝑦̇(𝑡)2
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2 Hyperbolic plane

Figure 2.3.2: A piecewise regular path

and its hyperbolic norm by

|𝛾̇(𝑡)|H = |𝛾̇(𝑡)|E
𝑦(𝑡) =

√︀
𝑥̇(𝑡)2 + 𝑦̇(𝑡)2

𝑦(𝑡) .

Let 𝛾 : [𝑎, 𝑏] → H be a regular path.

Definition 2.3.6
The (hyperbolic) length of path 𝛾 is defined to be the following quantity:

𝑙H(𝛾) =
∫︁ 𝑏

𝑎
|𝛾̇(𝑡)|H d𝑡 =

∫︁ 𝑏

𝑎

√︀
𝑥̇(𝑡)2 + 𝑦̇(𝑡)2

𝑦(𝑡) d𝑡.

Informally the above integral can be understood as follows. we may consider a partition
of the regular path. At each partition point, we take the Euclidean straight line tangent
to the path. By taking segments in these lines, we find a piecewise straight line. By
adding more and more points to the partition to get a finer and finer partition, we may
get a sequence of piecewise straight lines which approximate to the regular path. The
lengths of these piecewise lines will converge to that of the regular path. By taking the
limit, taking the sum becomes taking the integral.

Figure 2.3.3: Approximation using piecewise Euclidean straight line

A path may have different parametrizations. However, the length of the path is independent
of the parametrization.
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2 Hyperbolic plane

Informally speaking, changing parameter changes only the speed used when we go through
this path and how much time we spend to pass this path, but not the length of this path.

More precisely, if 𝜑 : 𝑠 ↦→ 𝑡 is a change of parameters which is 𝐶1 without changing the
starting and ending points. Let 𝜂(𝑠) = (𝛾 ∘ 𝜑)(𝑠) = (𝑢(𝑠), 𝑣(𝑠)). Then we have

Proposition 2.3.7

𝑙H(𝛾) = 𝑙H(𝜂).

Proof. We verify this relation as follows:

𝑙H(𝛾) =
∫︁ 𝑏

𝑎
|𝛾̇(𝑡)|H d𝑡 =

∫︁ 𝜑−1(𝑏)

𝜑−1(𝑎)

√︀
𝑥̇(𝜑(𝑠))2 + 𝑦̇(𝜑(𝑠))2

𝑦(𝜑(𝑠)) |𝜑′(𝑠)| d𝑠

=
∫︁ 𝜑−1(𝑏)

𝜑−1(𝑎)

√︀
𝑢̇(𝑠)2 + 𝑣̇(𝑠)2

𝑣(𝑠) d𝑠

=
∫︁ 𝜑−1(𝑏)

𝜑−1(𝑎)
|𝜂̇(𝑠)|H d𝑠 = 𝑙H(𝜂)

A different way to approximate a path is by first taking a partition of the path, then
connecting the partition points using Euclidean straight segments. By taking finer and finer
partition of the path, we have a sequence of Euclidean piecewise straight lines.

As before, to each Euclidean segment, we may associate to it the ’length’ given by its
Euclidean length renormalized by 1/𝑦 where 𝑦 is the imaginary part of a point in this segment.
In this way, to each of these Euclidean piecewise straight lines, we can associate to it a ’length’.

If the supreme of the ’length’s of these Euclidean piecewise straight lines is finite, then we
say that the path is rectifiable and its actual hyperbolic length equals to this supreme.

Remark 2.3.8.
A rectifiable path could be more general than piecewise regular paths. For example, we may
construct a rectifiable path which is not differentiable on a dense subset of the parameter
interval. (Bending sub-arcs in a circle arc)

In the rest of this note, most of the paths that we will consider have certain natural
parametrizations. We will use them directly. Before moving further, let us see some examples.

Example 2.3.9.
Let 𝛾(𝑡) = (0, 𝑡) with 𝑡 ∈ [𝑎, 𝑏]. Then 𝛾̇(𝑡) = (𝑥̇(𝑡), 𝑦̇(𝑡)) = (0, 1).

Thus its length is:

𝑙H(𝛾) =
∫︁ 𝑏

𝑎
|𝛾̇(𝑡)|H d𝑡 =

∫︁ 𝑏

𝑎

√
02 + 12

𝑡
d𝑡 =

∫︁ 𝑏

𝑎

1
𝑡

d𝑡 = log 𝑏
𝑎
.
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2 Hyperbolic plane

Figure 2.3.4: Path 𝛾(𝑡) = 𝑖𝑡 for 𝑡 ∈ [𝑎, 𝑏]

Remark 2.3.10.
The formula of the length is independent of 𝑥 coordinate for the vertical line. If we consider
the path 𝛾(𝑡) = (𝑥, 𝑡) with 𝑡 ∈ [𝑎, 𝑏], the length of 𝛾 will be the same.

Example 2.3.11.
We consider the half circle centered at the origin passing 𝑖 (with Euclidean radius 1). We would
like to compute the hyperbolic length of the arc between 𝑒𝑖𝑎 and 𝑒𝑖𝑏 with 0 < 𝑎 < 𝑏 < 𝜋. We
use the polar coordinate of C, and the path can be described as 𝛾(𝑡) = (𝑟(𝑡), 𝜃(𝑡)) = (1, 𝑡) for
𝑡 ∈ [𝑎, 𝑏]. Hence 𝛾̇(𝑡) = (0, 1).

Figure 2.3.5: Path 𝛾(𝑡) = 𝑒𝑖𝑡 for 𝑡 ∈ [𝑎, 𝑏]

Its length is:

𝑙H(𝛾) =
∫︁ 𝑏

𝑎
|𝛾̇(𝑡)|H d𝑡 =

∫︁ 𝑏

𝑎

√
0 + 1
sin 𝑡 d𝑡 =

∫︁ 𝑏

𝑎

sin2 𝑡
2 + cos2 𝑡

2
2 sin 𝑡

2 cos 𝑡
2

d𝑡

=
∫︁ 𝑏

𝑎

(︃
−

d cos 𝑡
2

cos 𝑡
2

+
d sin 𝑡

2
sin 𝑡

2

)︃

= log
cos 𝑎

2
cos 𝑏

2
+ log

sin 𝑏
2

sin 𝑎
2

= log tan 𝑏2 − log tan 𝑎2
= log sin 𝑏

cos 𝑏+ 1 − log sin 𝑎
cos 𝑎+ 1
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2 Hyperbolic plane

Remark 2.3.12.
The formula of the length is independent of the center 𝑥 and the radius 𝑟 of the circle. If we
consider the path 𝛾(𝑡) = 𝑥+ 𝑟𝑒𝑖𝑡 with 𝑡 ∈ [𝑎, 𝑏], the length of 𝛾 will be the same.

Definition 2.3.13
The distance (length metric) between 𝑤 and 𝑧 two points in H is defined to be the following
quantity:

dH(𝑤, 𝑧) = inf{𝑙H(𝛾) | 𝛾 : [𝑎, 𝑏] → H is piecewise 𝐶1, 𝛾(𝑎) = 𝑤 and 𝛾(𝑏) = 𝑧}.

Remark 2.3.14.
Alternatively, for any two points in H, we may consider the Euclidean piecewise straight paths
connecting them. By taking the infimum of the hyperbolic lengths of these paths, we get the
distance between two points in H which is equivalent to the above one.

Proposition 2.3.15
The function dH is a distance function.

Proof. Let 𝑧, 𝑧′ and 𝑧′′ be three points in H. It is enough to check that it satisfies all three
conditions in the definition of a distance function.

(i) dH(𝑧, 𝑧′) ≥ 0, and dH(𝑧, 𝑧′) = 0 if and only if 𝑧 = 𝑧′;

(ii) dH(𝑧, 𝑧′) = dH(𝑧′, 𝑧);

(iii) dH(𝑧, 𝑧′′) ≤ dH(𝑧, 𝑧′) + dH(𝑧′, 𝑧′′).

The second condition is satisfied, since a path going from 𝑧 to 𝑧′ can be obtained from reversing
the orientation of a path going from 𝑧′ to 𝑧, and verse versa.

The third condition is also satisfied. If we connect a piecewise 𝐶1 path going from 𝑧 to 𝑧′ to
a piecewise 𝐶1 path going from 𝑧′ to 𝑧′′, we get a piecewise 𝐶1 path going from 𝑧 to 𝑧′′.

The positivity part of the first condition is immediate, since the length of a path is always
positive (≥ 0). To see the "if and only if" part, without loss of generality, we may consider a
regular path 𝛾 : [𝑎, 𝑏] → H connecting 𝑧 and 𝑧′, and assume that Im 𝑧 ≤ Im 𝑧′. Since the path
is compact, there is a horizontal strip in H contained it with boundary 𝑦 = 𝑦0 and 𝑦 = 𝑦1 with
𝑦0 ≤ Im 𝑧 ≤ Im 𝑧′ ≤ 𝑦1.

If 𝑦1 ≤ 2Im 𝑧, , we have

𝑙H(𝛾) =
∫︁ 𝑏

𝑎

√︀
𝑥̇(𝑡)2 + 𝑦̇(𝑡)2

𝑦(𝑡) d𝑡

≥
∫︁ 𝑏

𝑎

√︀
𝑥̇(𝑡)2 + 𝑦̇(𝑡)2

2Im 𝑧
d𝑡

= 𝑙E(𝛾)
2Im 𝑧

.
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2 Hyperbolic plane

If 𝑦1 ≥ 2Im 𝑧, then

𝑙H(𝛾) =
∫︁ 𝑏

𝑎

√︀
𝑥̇(𝑡)2 + 𝑦̇(𝑡)2

𝑦(𝑡) d𝑡

≥
∫︁ 𝑏

𝑎

√︀
𝑦̇(𝑡)2

𝑦(𝑡) d𝑡

= 𝑙H(𝜋𝑦(𝛾))

≥ log 𝑦1
𝑦0

(𝑦0 ≤ ℑ𝑧)

≥ log 𝑦1
Im 𝑧

(𝑦1 ≥ 2Im 𝑧)

≥ log 2.
where 𝜋𝑦 is the horizontal projection to the imaginary axis of H. Hence we have

dH(𝑧, 𝑧′) ≥ min
{︂

log 2, 𝑙E(𝛾)
2Im 𝑧

}︂
,

which is strictly bigger than 0, when 𝑧 and 𝑧′ are distinct. When 𝑧 = 𝑧′, the constant path has
0 length. Therefore, we have dH(𝑧, 𝑧′) = 0 if and only if 𝑧 = 𝑧′.

Remark 2.3.16.
In next part, we will show that for each pair of points 𝑧 and 𝑤 in H, the infimum in the
definition of dH is realized by a unique path whose length is 0 if and only if 𝑤 = 𝑧. This in fact
provides a constructive proof of the above lemma.

We can also define distance between non empty subsets of H. Let 𝐾 and 𝐾 ′ be two non-empty
subsets of H.

Definition 2.3.17
The distance between 𝐾 and 𝐾 ′ are defined as the following quantity:

dH(𝐾,𝐾 ′) = inf{dH(𝑧, 𝑧′) | 𝑧 ∈ 𝐾, 𝑧′ ∈ 𝐾 ′}.

If moreover, there exists 𝑧0 ∈ 𝐾 and 𝑧′
0 ∈ 𝐾 ′, such that

dH(𝑧0, 𝑧
′
0) = dH(𝐾,𝐾 ′),

then we say that 𝑧0 and 𝑧′
0 realize the distance between 𝐾 and 𝐾 ′.

We may check that the distance between two disjoint non empty sets is not always strictly
positive. For example, two disjoint Euclidean open disks with boundaries tangent to each other
have distance 0.

2.4 Geodesics in H

Definition 2.4.1
A path 𝛾 : [𝑎, 𝑏] → H is said to be a geodesic (segment) if it locally minimizes the distance, i.e.

15



2 Hyperbolic plane

for any 𝑐 ∈ [𝑎, 𝑏], there exists 𝜖 > 0, such that for any subinterval [𝑡, 𝑡′] in [𝑐− 𝜖, 𝑐+ 𝜖] ∩ [𝑎, 𝑏],
we have dH(𝛾(𝑡), 𝛾(𝑡′)) = 𝑙H(𝛾|[𝑡,𝑡′]).

We use "locally minimize" in the definition. This is because in general given two points in
the space, it is possible that there are several geodesics with different lengths connecting them.
See the following example on sphere:

Figure 2.4.1: The two colored paths are both geodesics.

See another example with non-trivial topology:

Figure 2.4.2: The two colored paths are both geodesics.

This is not the case when we consider H. A path 𝛾 in H locally minimize the distance if and
only if it globally minimize the distance, i.e. for any pair of parameters 𝑎 < 𝑡 < 𝑡′ < 𝑏, we have
dH(𝛾(𝑡), 𝛾(𝑡′)) = 𝑙H(𝛾|[𝑡,𝑡′]).

Proposition 2.4.2
The geodesics in H are either vertical lines or half circles with center at the real axis.

Proof. Without loss of generality, we consider only regular paths.
(Proof for vertical lines) Let 𝑧 and 𝑤 be two points on a same vertical line 𝑉 defined by 𝑥 = 𝑥0.
Let 𝛾 : [𝑎, 𝑏] → H be a regular arc with 𝛾(𝑎) = 𝑧 and 𝛾(𝑏) = 𝑤. We consider its horizontal
projection to 𝑉 and get a regular arc 𝜂 : [𝑎, 𝑏] → H. More precisely, for each 𝑡 ∈ [𝑎, 𝑏], we have
𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡) and 𝜂(𝑡) = (𝑥0, 𝑦(𝑡)).
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2 Hyperbolic plane

Figure 2.4.3: Paths connecting points on a same vertical line

Notice that there maybe back track in 𝜂. Then we have the following comparison:

𝑙H(𝛾) =
∫︁ 𝑏

𝑎

√︀
𝑥̇(𝑡)2 + 𝑦̇(𝑡)2

𝑦(𝑡) d𝑡

≥
∫︁ 𝑏

𝑎

√︀
0 + 𝑦̇(𝑡)2

𝑦(𝑡) d𝑡

= 𝑙H(𝜂).

Moreover the equality is realized if and only if 𝑥̇(𝑡) = 0 for all 𝑡, which is equivalent to 𝑥(𝑡) = 𝑥0
for all 𝑡. Hence the vertical segment connecting 𝑧 and 𝑤 realizes the minimum of the lengths of
all piecewise 𝐶1 path connecting them.
(Proof for half circles) The proof for the second type is similar. We use the formula for polar
coordinates that we have studied previously.

Given any two points 𝑧 and 𝑤 which are not on a same vertical line, there is a unique half
circle 𝐶 which passes them with center contained in the real axis. Without loss of generality,
we may consider the center of the half circle is the origin with radius 𝑟0. (otherwise, we may
consider a change of the coordinates by moving the origin to the center of the circle) Given a
regular path connecting 𝑧 and 𝑤, we consider its projection to 𝐶 along Euclidean rays issued
from the original.

Figure 2.4.4: Paths connecting points on a same circular arc with center on the real axis

Then we have the following

𝑙H(𝛾) =
∫︁ 𝑏

𝑎

√︁
𝑟−2𝑟̇(𝑡)2 + 𝜃(𝑡)2

sin 𝜃(𝑡) d𝑡

≥
∫︁ 𝑏

𝑎

√︁
0 + 𝜃(𝑡)2

sin 𝜃(𝑡) d𝑡

= 𝑙H(𝜂).
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2 Hyperbolic plane

Moreover the equality is realized if and only if 𝑟̇(𝑡) = 0 for all 𝑡, which is equivalent to 𝑟(𝑡) = 𝑟0
for all 𝑡. Hence the circular arc on 𝐶(0, 𝑟0) connecting 𝑧 and 𝑤 realizes the minimum of the
lengths of all piecewise 𝐶1 path connecting them, where 𝐶(0, 𝑟0) stands for the Euclidean circle
centered at 𝑥 = 0 of radius 𝑟0.

Remark 2.4.3.
We have not only proved that the geodesic between two points is either a segment in a vertical
line or an arc in a half circle with center on the real axis, but also shown that this geodesic is
unique for each pair of points. Moreover, the distance between two points is 0 if and only if the
geodesic is a point which means that the two points are a same one. For our convenience, we
will call the former a vertical geodesic and the latter a circular geodesic of H.

Definition 2.4.4
A complete geodesic is a path 𝛾 : R → H such that for any 𝑡 < 𝑡′, we have

𝑑H(𝛾(𝑡), 𝛾(𝑡′)) = |𝑡− 𝑡′|.

Figure 2.4.5: Complete geodesics in H with their end points

Since each circular geodesic is a half Euclidean circle with center on real axis, it is determined
by its intersection with R which are two distinct points on R. We can formally add a point ∞
to R, then the vertical geodesic is determined by a real number and ∞. Reciprocally, given
two distinct points in ̂︀R = R ∪ {∞}, they determine a unique geodesic with them as ending
points. Hence this induces a parametrization of the space of geodesics in H and which can be
identified with a Möbius band. The points on ̂︀R associated to each geodesic 𝛾 will be called the
end points of 𝛾. We will come back to this later, and will see that using ̂︀R is not an arbitrary
choice and that it plays an important role in the geometry of H.

There are three relative positions between two geodesics:

• they intersect each other;

• (Parallel) they share one end point;

• (Ultra-parellel) they do not intersect each other and share no end point.

18



2 Hyperbolic plane

Remark 2.4.5.
Sometimes, the third type is also called disjoint (which we used in the lecture). To avoid the
ambiguity when we use the word ’disjoint’, we use ultra-parellel.

Figure 2.4.6: Relative position between geodesics
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3 Distance formula and its convexity

3.1 Distance formula

Using the help of Euclidean geometry, we have described all possible types of geodesics, and we
also know that any pair of points are connected by a geodesic segment. It is then possible to
compute the distance formula for any pair of points, which is stated as follows.

Proposition 3.1.1
For any points 𝑤 and 𝑧 in H, their hyperbolic distance is given by the following formula:

dH(𝑤, 𝑧) = log |𝑤 − 𝑧| + |𝑤 − 𝑧|
|𝑤 − 𝑧| − |𝑤 − 𝑧|

.

Proof. Notice that we can classify the relative position between two points into two types:

• They are on the same vertical geodesic;

• or not, then there is a unique circular geodesic passing through them.

We will try to get a formula for the distance between a pair of points of the second type,
then show that it also holds for the first type.

Let 𝑤 and 𝑧 be two points in H which are not on a same vertical geodesic. There is a unique
Euclidean circle 𝐶 passing through them with center on the real axis. Let 𝑥 be the center and
𝑟 be the radius of 𝐶.

Figure 3.1.1: Setting

Then 𝑤 and 𝑧 can be expressed as:

𝑤 = 𝑥+ 𝑟𝑒𝑖𝑎

𝑧 = 𝑥+ 𝑟𝑒𝑖𝑏
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3 Distance formula and its convexity

for some 𝑎 and 𝑏 in (0, 𝜋). Without loss of generality, we may assume that 𝑏 > 𝑎. By our
previous computation, the distance between 𝑧 and 𝑤 can be then expressed as

dH(𝑤, 𝑧) = log sin 𝑏
cos 𝑏+ 1 − log sin 𝑎

cos 𝑎+ 1 .

We would like express sin 𝑎, cos 𝑎, sin 𝑏 and cos 𝑏 in term of 𝑤, 𝑤, 𝑧, 𝑧. One way to to this is to
compute 𝑥 and 𝑟, then compute out the formula for the distance. However, this computation is
very complicated. Hence, we would like to use some help from the Euclidean geometry. We
consider the plane C endowed with Euclidean metric.

▼▼▼ Recall some basic in Euclidean geometry:

We recall two facts from the Euclidean geometry about inscribed angles and center angles. Let
𝐶 be a circle with center 𝑂. Let 𝑝 and 𝑞 be two distinct points on 𝐶. They separate 𝐶 into
two arcs. We choose one point on each arc and denote them by 𝐴 and 𝐵 respectively. Without
loss of generality, we assume that 𝐴 and 𝑜 are on the same side of the segment 𝑝𝑞.

Figure 3.1.2: Inscribed angle and central angle

We consider only angles in [0, 𝜋], and have the following two facts:

Proposition 3.1.2

∠𝑝𝐴𝑞 + ∠𝑝𝐵𝑞 = 𝜋.

Proposition 3.1.3

2∠𝑝𝐴𝑞 = ∠𝑝𝑂𝑞.

Moreover if 𝐴′ and 𝐵′ are two points on the same arcs as 𝐴 and 𝐵 respectively, then we have

Proposition 3.1.4

∠𝑝𝐴′𝑞 = ∠𝑝𝐴𝑞,

∠𝑝𝐵′𝑞 = ∠𝑝𝐵𝑞.
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3 Distance formula and its convexity

▲▲▲

Now back to our question, notice that the center of 𝐶 is on the real axis, hence 𝑧 and 𝑤 are
on the same circle as 𝑧 and 𝑤. Using above facts from Euclidean geometry, we have

∠𝑤𝑧𝑤 = 𝑎,

∠𝑧𝑤𝑧 = 𝜋 − 𝑏.

Figure 3.1.3: Equal angles

Using complex numbers, we have the following two relations:

𝑤 − 𝑧

𝑤 − 𝑧
= 𝑒𝑖𝑎 |𝑤 − 𝑧|

|𝑤 − 𝑧|
,

𝑧 − 𝑤

𝑧 − 𝑤
= 𝑒𝑖(𝜋−𝑏) |𝑧 − 𝑤|

|𝑧 − 𝑤|
.

To simplify the notation, we use 𝑧1 = 𝑤 − 𝑧 and 𝑧2 = 𝑤 − 𝑧. Notice that 𝑧1 + 𝑧1 = 𝑧2 + 𝑧2.
Then we have the following expressions:

𝑒𝑖𝑎 = 𝑧1|𝑧2|
𝑧2|𝑧1|

,

𝑒𝑖𝑏 = −𝑧2|𝑧1|
𝑧1|𝑧2|

.

Hence the two terms under the logarithm function in the distance formula can be expressed as:

sin 𝑎
cos 𝑎+ 1 = 1

𝑖

𝑒𝑖𝑎 − 𝑒−𝑖𝑎

𝑒𝑖𝑎 + 𝑒−𝑖𝑎 + 2 = 1
𝑖

𝑧1|𝑧2| − 𝑧2|𝑧1|
𝑧1|𝑧2| + 𝑧2|𝑧1|

,

sin 𝑏
cos 𝑏+ 1 = 1

𝑖

𝑒𝑖𝑏 − 𝑒−𝑖𝑏

𝑒𝑖𝑏 + 𝑒−𝑖𝑏 + 2 = 1
𝑖

𝑧1|𝑧2| + 𝑧2|𝑧1|
𝑧1|𝑧2| − 𝑧2|𝑧1|

.

Hence we have

dH(𝑤, 𝑧) = log |𝑧2|(𝑧1 + 𝑧1) + |𝑧1|(𝑧2 + 𝑧2)
|𝑧2|(𝑧1 + 𝑧1) − |𝑧1|(𝑧1 + 𝑧1) = log |𝑧2| + |𝑧1|

|𝑧2| − |𝑧1|
.

which is
dH(𝑤, 𝑧) = log |𝑤 − 𝑧| + |𝑤 − 𝑧|

|𝑤 − 𝑧| − |𝑤 − 𝑧|
.
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3 Distance formula and its convexity

When 𝑤 and 𝑧 are on the same vertical line, we have Re𝑤 = Re 𝑧. Hence we have

dH(𝑤, 𝑧) = log |𝑤 − 𝑧| + |𝑤 − 𝑧|
|𝑤 − 𝑧| − |𝑤 − 𝑧|

= log (Im𝑤 + Im 𝑧) + |Im𝑤 − Im 𝑧|
(Im𝑤 + Im 𝑧) − |Im𝑤 − Im 𝑧|

=
⃒⃒⃒⃒
log Im𝑤

Im 𝑧

⃒⃒⃒⃒
.

Therefore the formula works in both cases.

Remark 3.1.5.
For practical reasons, we can change it to a simpler form:

dH(𝑤, 𝑧) = log

⎛⎝ 2
1 − |𝑤−𝑧|

|𝑤−𝑧|

− 1

⎞⎠ ,
or consider one of the following formulas:

cosh dH(𝑤, 𝑧) = 1 + |𝑤 − 𝑧|2

Im𝑤 Im 𝑧
,

sinh
(︂1

2dH(𝑤, 𝑧)
)︂

= |𝑧 − 𝑤|
2(Im𝑤 Im 𝑧)1/2 ,

cosh
(︂1

2dH(𝑤, 𝑧)
)︂

= |𝑧 − 𝑤|
2(Im𝑤 Im 𝑧)1/2 ,

tanh
(︂1

2dH(𝑤, 𝑧)
)︂

= |𝑧 − 𝑤|
|𝑧 − 𝑤|

,

This is because sometimes we do not care about the exact value of the distance, but rather
the questions such as whether two distance are equal, or what is the derivative of the distance
function as the points moving along certain path, etc. The above formula will simplify the
computation for such questions. For example, to show

dH(𝑤, 𝑧) = dH(𝑤′, 𝑧′),

we only need to verify the following relation:⃒⃒⃒⃒
𝑤 − 𝑧

𝑤 − 𝑧

⃒⃒⃒⃒
=
⃒⃒⃒⃒
⃒𝑤′ − 𝑧′

𝑤′ − 𝑧′

⃒⃒⃒⃒
⃒ .

3.2 Distance function

Given pair of points 𝑤 and 𝑧, we can fix 𝑤 and move 𝑧 along certain path, then the distance
between 𝑤 and 𝑧 can be considered as a function on 𝑧. In this part, we would like to study this
function.
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3 Distance formula and its convexity

3.2.1 Along horizontal lines 𝐻𝑦

Let 𝑤 = 𝑢 + 𝑖𝑣 and 𝑧 = 𝑥 + 𝑖𝑦. Let 𝑧 move along the horizontal line 𝐻𝑦 with imaginary
coordinate 𝑦. We consider the formula

cosh dH(𝑤, 𝑧) = 1 + |𝑤 − 𝑧|2

Im𝑤 Im 𝑧
.

Figure 3.2.1: Distance to points in a horizontal line

Since we fix 𝑤 and move 𝑧 along the horizontal line, the real numbers 𝑢, 𝑣 and 𝑦 are constant,
and the quantity cosh dH(𝑤, 𝑧) is a function 𝑓(𝑥) of 𝑥:

cosh 𝑓(𝑥) = cosh dH(𝑤, 𝑧)

= 1 + |(𝑢+ 𝑖𝑣) − (𝑥+ 𝑖𝑦)|2
𝑣𝑦

= 1 + (𝑢− 𝑥)2 + (𝑣 − 𝑦)2

𝑣𝑦
.

By the strict monotonicity and strict convexity of cosh function, and the strict convexity and
the existence of the unique minimum of the quadratic polynomial function, we can already
conclude that distance function has a unique minimum when 𝑥 = 𝑢 and is strictly monotonic
on both side of 𝑥 = 𝑢.

Proposition 3.2.1
The function 𝑓(𝑥) has a unique minimum at 𝑥 = 𝑢 and is strictly monotonic on its two sides.

Proof. We compute the first derivative of the length function.

d(cosh 𝑓(𝑥))
d𝑥 = −2(𝑢− 𝑥)

𝑣𝑦
,

d𝑓(𝑥)
d𝑥 = 2(𝑥− 𝑢)

𝑣𝑦 sinh 𝑓(𝑥) .

It is 0 if and only if 𝑥 = 𝑢.
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Corollary 3.2.2
𝑓(𝑥) will tend to infinite when 𝑥 goes to ±∞.

Hence the distance between 𝑤 and 𝐻𝑦 is realized by the point 𝑢+ 𝑖𝑦. i.e.

dH(𝑤,𝐻𝑦) = dH(𝑤, 𝑢+ 𝑖𝑦).

If 𝑤 is not on 𝐻𝑦, the geodesic segment connecting 𝑤 and 𝑢 + 𝑖𝑦 is on the vertical line 𝑉𝑢.
Moreover 𝑢+ 𝑖𝑦 is the only point on 𝐻𝑦 the geodesic connecting which to 𝑤 is orthogonal to
𝐻𝑦.

3.2.2 Along vertical lines 𝑉𝑥

Let 𝑤 = 𝑢+ 𝑖𝑣 and 𝑧 = 𝑥+ 𝑖𝑦. Let 𝑧 move along the vertical line 𝑉𝑥 defined with real coordinate
𝑥.

Figure 3.2.2: Distance to points in a vertical line

Since we fix 𝑤 and move 𝑧 along the horizontal line, the real numbers 𝑢, 𝑣 and 𝑥 are constant,
and the quantity cosh dH(𝑤, 𝑧) is a function of 𝑦:

cosh 𝑓(𝑦) = cosh dH(𝑤, 𝑧)

= 1 + |(𝑢+ 𝑖𝑣) − (𝑥+ 𝑖𝑦)|2
𝑣𝑦

= 1 + (𝑢− 𝑥)2 + (𝑣 − 𝑦)2

𝑣𝑦
.

Proposition 3.2.3
The function 𝑓(𝑦) has a unique minimum.

25



3 Distance formula and its convexity

Proof. The first derivative of 𝑓(𝑦) can be computed as follows:

sinh 𝑓(𝑦) d𝑓(𝑦)
d𝑦 = 1

𝑣

2(𝑦 − 𝑣)𝑦 − ((𝑢− 𝑥)2 + (𝑣 − 𝑦)2)
𝑦2

= 1
𝑣

2𝑦2 − 2𝑣𝑦 − (𝑢− 𝑥)2 − 𝑣2 + 2𝑣𝑦 − 𝑦2

𝑦2

= 1
𝑣

𝑦2 − (𝑢− 𝑥)2 − 𝑣2

𝑦2

= 1
𝑣

(︃
1 − (𝑢− 𝑥)2 + 𝑣2

𝑦2

)︃

Since 𝑦 is positive, we have the derivative of 𝐷(𝑦) is strictly monotonically increasing, and the
minimum of 𝑓(𝑦) is realized by 𝑦 =

√︀
((𝑢− 𝑥)2 + 𝑣2).

Corollary 3.2.4
The function 𝑓(𝑦) will tend to infinite when 𝑦 goes to +∞ and when 𝑦 goes to 0.

Hence the distance between 𝑤 and 𝑉𝑥 is realized by the point 𝑧′ = 𝑥+ 𝑖
√︀

((𝑢− 𝑥)2 + 𝑣2). i.e.

dH(𝑤,𝐻) = dH(𝑤, 𝑧′).

Notice that |𝑤 − 𝑥|2 = ((𝑢− 𝑥)2 + 𝑣2). Hence if 𝑤 is not on 𝑉𝑥, then 𝑧′ is the only point in 𝑉𝑥

the geodesic connecting which to 𝑤 is orthogonal to the vertical geodesic 𝑉𝑥.

3.2.3 Along circular geodesics 𝐶(𝑥, 𝑟)

We consider the circular geodesic 𝐶(𝑥, 𝑟) centered at 𝑥 with Euclidean radius 𝑟. Let 𝑤 = 𝑥+𝑠𝑒𝑖𝜉

and 𝑧 = 𝑥+ 𝑟𝑒𝑖𝜃.

Figure 3.2.3: Distance to points in a circular geodesic
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3 Distance formula and its convexity

The distance between 𝑤 and 𝑧 is then a function 𝑓(𝜃) on 𝜃.

cosh 𝑓(𝜃) = cosh dH(𝑤, 𝑧)

= 1 + |𝑠𝑒𝑖𝜉 − 𝑟𝑒𝑖𝜃|2

𝑠𝑟 sin 𝜉 sin 𝜃

= 1 + (𝑠 cos 𝜉 − 𝑟 cos 𝜃)2 + (𝑠 sin 𝜉 − 𝑟 sin 𝜃)2

𝑠𝑟 sin 𝜉 sin 𝜃

= 1 + 𝑠2 + 𝑟2 − 2𝑠𝑟 cos(𝜃 − 𝜉)
𝑠𝑟 sin 𝜉 sin 𝜃 .

Proposition 3.2.5
The function 𝑓(𝜃) has a unique minimum.

Proof. We compute the first derivative of 𝐷(𝜃):

sinh 𝑓(𝜃) d𝑓(𝜃)
d𝜃

= 1
𝑠𝑟 sin 𝜉

2𝑠𝑟 sin(𝜃 − 𝜉) sin 𝜃 − (𝑠2 + 𝑟2 − 2𝑠𝑟 cos(𝜃 − 𝜉)) cos 𝜃
sin2 𝜃

= 1
𝑠𝑟 sin 𝜉

(𝑠2 + 𝑟2) cos 𝜃 − 2𝑠𝑟 cos 𝜉
sin2 𝜃

.

Hence it is strictly monotonically increasing as 𝜃 goes from 0 to 𝜋. The unique minimum is
given by

cos 𝜃 = 2𝑠𝑟 cos 𝜉
𝑠2 + 𝑟2 .

Corollary 3.2.6
The function 𝑓(𝜃) will tend to infinite when 𝜃 goes to 0 and when 𝜃 goes to 𝜋.

Let 𝑧min denote the point on 𝐶(𝑥, 𝑟) realizing the distance between 𝑤 and 𝐶. We consider the
geodesic passing through 𝑧min and 𝑤, and denote it by 𝐶min(𝑥min, 𝑟min). Using the Euclidean
geometry, we have:

|𝑧min − 𝑥min|2 = |𝑤 − 𝑥min|2 = 𝑟2
min.

Hence we have
𝑥min = |𝑧min|2 − |𝑤|2

2(Re 𝑧min − Re𝑤)

= 2𝑥(𝑟 cos 𝜃 − 𝑠 cos 𝜉) + 𝑟2 − 𝑠2

2(𝑟 cos 𝜃 − 𝑠 cos 𝜉)

= 𝑥+ 𝑟2 − 𝑠2

2(𝑟 cos 𝜃 − 𝑠 (𝑠2+𝑟2)
2𝑠𝑟 cos 𝜃)

= 𝑥+ 𝑟

cos 𝜃 .
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3 Distance formula and its convexity

Hence the circle 𝐶min(𝑥min, 𝑟min) intersects 𝐶(𝑥, 𝑟) orthogonally at 𝑧min and 𝑧min is the only
point in 𝐶(𝑥, 𝑟) ∩ H having this property.

3.3 Applications

Corollary 3.3.1
Given any point 𝑤 outside a geodesic 𝛾, there is a unique geodesic passing 𝑤 which intersects 𝛾
orthogonally. Moreover the geodesic segment between the intersection point and 𝑤 realizes the
distance between 𝑤 and 𝛾.

Definition 3.3.2
In all above cases, the unique point on the horizontal line 𝐻𝑦 (resp. vertical geodesic 𝑉𝑥 and
circular geodesic 𝐶(𝑥, 𝑟)) realizing the minimal distance from 𝑤 is called the (orthogonal)
projection of 𝑤 to 𝐻𝑦 (resp. 𝑉𝑥 and 𝐶(𝑥, 𝑟)).

Recall that the distance between two subsets of H is defined to be the infimum of the distance
between points in them. Let 𝐾 and 𝐾 ′ be two subsets of H. Assume that the distance dH(𝐾,𝐾 ′)
is realized by dH(𝑧𝐾 , 𝑧𝐾′) with 𝑧𝐾 ∈ 𝐾 and 𝑧𝐾′ ∈ 𝐾 ′. Then we have

Proposition 3.3.3

dH(𝐾,𝐾 ′) = dH(𝑧𝐾 ,𝐾
′) = dH(𝐾, 𝑧𝐾′).

Consider 𝐾 = 𝛾 and 𝐾 ′ = 𝜂 are two geodesics, then we have

Corollary 3.3.4
If 𝛾 intersects 𝜂, then dH(𝛾, 𝜂) = 0 is realized by the intersection point 𝑧𝛾 = 𝑧𝜂 is the intersection
point.

Proof. This is due to the fact that the distance is always positive. Hence if there are pair of
points from the two sets having distance 0, then it is the infimum. Moreover this is the only
common point of 𝛾 and 𝜂, hence this pair realizing the distance 0 is unique.

Corollary 3.3.5
The distance between two disjoint geodesics 𝛾 and 𝜂 is realizable (i.e. 𝑧𝛾 and 𝑧𝜂 exist), if and
only if they do not share any end point in ̂︀R. Moreover the pair (𝑧𝛾 , 𝑧𝜂) ∈ 𝛾 × 𝜂, if exists, is
unique.

Proof. We recall the following facts in Euclidean geometry:

(i) For any two circles 𝐶1 and 𝐶2, there is a unique circle 𝐶 intersecting both of them
orthogonally and the centers of the three circles are collinear if and only if 𝐶1 and 𝐶2 are
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3 Distance formula and its convexity

disjoint.

(ii) For any line 𝐿 and any circle 𝐶, there is a unique circle 𝐶 ′ intersecting both of them
orthogonally and the line 𝐿′ passing through centers of the two circles is orthogonal to
the line 𝐿 if and only if 𝐿 and 𝐶 are disjoint.

Hence there is a unique geodesic orthogonal to both 𝛾 and 𝜂 if and only if they are disjoint.
We will use a deformation argument to show that the intersections of this geodesic with 𝛾 and
𝜂 realize the distance between 𝛾 and 𝜂.

Using monotonicity of the distance function, we can find a segment 𝐼𝛾 on 𝛾 and a segment
𝐼𝜂 on 𝜂 such that the distance between 𝐼𝛾 and 𝐼𝜂 is the same as that between 𝛾 and 𝜂. Now
since 𝐼𝛾 × 𝐼𝜂 is compact and the distance function is continuous, there exists a global minimal
of distance function in 𝐼𝛾 × 𝐼𝜂.

For any pair (𝑧, 𝑧′) ∈ 𝛾 × 𝜂, we denote by 𝜎(𝑧, 𝑧′) the geodesic passing through 𝑧 and 𝑧′. If
any intersection angle between 𝜎(𝑧, 𝑧′) and 𝛾 or 𝜂 is not 𝜋/2, there is a way to decrease the
distance by moving either 𝑧 or 𝑧′. On the other hand, if we take 𝜎(𝑧, 𝑧′) to be the common
perpendicular geodesic of 𝛾 and 𝜂, then the intersection angles are both 𝜋/2. Hence locally
deforming the intersection points 𝑧𝛾 and 𝑧𝜂 will increase the distance. Hence 𝑧𝛾 and 𝑧𝜂 realize
a local minimum of the distance function, hence the global minimum. This means they realize
the distance between 𝛾 and 𝜂.

Remark 3.3.6.
When two geodesics share an end point, the distance between them is 0, but is not realizable.
We will see this in more details later when we will talk about boundary at infinity of H.

Let 𝛾 and 𝜂 be two disjoint geodesics with no common end point.

Definition 3.3.7
The unique geodesic intersecting both 𝛾 and 𝜂 orthogonally is called the common perpendicular
geodesic of 𝛾 and 𝜂.

Remark 3.3.8.
Recall that in Euclidean geometry distance between two parallel lines can be realized by
infinitely many pairs of points in them. The above discussion shows that in hyperbolic geometry
this is no longer the case.
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4 Circles in H

4.1 Definitions

Another elementary geometric objects in H are circles. To see how they look like, we may try to
compare them with the Euclidean circles. In fact, we will see that as subsets of H, hyperbolic
circles and Euclidean circles are the same. Let us first define what is a circle in H with respect
to the hyperbolic metric.

Definition 4.1.1
A circle in H of radius 𝑅 centered at 𝑤 is the subset of H consisting of points with distance 𝑅
to 𝑤:

𝐶H(𝑤,𝑅) = {𝑧 ∈ H | dH(𝑧, 𝑤) = 𝑅}.

A open disk in H of radius 𝑅 centered at 𝑤 is the subset of H consisting of points with
distance 𝑅 to 𝑤:

𝐷H(𝑤,𝑅) = {𝑧 ∈ H | dH(𝑧, 𝑤) < 𝑅}.

A closed disk in H of radius 𝑅 centered at 𝑤 is the subset of H consisting of points with
distance 𝑅 to 𝑤:

𝐷H(𝑤,𝑅) = {𝑧 ∈ H | dH(𝑧, 𝑤) ≤ 𝑅}.

4.2 Hyperbolic circles are also Euclidean circles

Let 𝑤 = 𝑢+ 𝑖𝑣. Let 𝐶 = 𝐶H(𝑤,𝑅) be a circle of radius 𝑅 centered at 𝑤. Using the convexity
of the distance function, we can give a description of 𝐶 by a sequence of propositions.

Proposition 4.2.1
The set 𝐶H is non-empty for all 𝑤 and all 𝑅.

Proof. Given any 𝑤 = 𝑢+ 𝑖𝑣 ∈ H, we may consider the vertical line 𝑉𝑢. Then we may find two
points 𝑧+ = 𝑢+ 𝑖𝑒𝑅𝑣 and 𝑧− = 𝑢+ 𝑖𝑒−𝑅𝑣 on 𝑉𝑢 whose distance to 𝑤 is 𝑅. Hence they are in
𝐶.

We consider the intersection between 𝐶 and horizontal lines in H.

Proposition 4.2.2
The circle 𝐶 is contained in the horizontal strip bounded by horizontal lines defined by 𝑦 = 𝑒𝑅𝑣

and 𝑦 = 𝑒−𝑅𝑣 respectively.
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4 Circles in H

Figure 4.2.1: Highest and lowest points

Figure 4.2.2: The strip containing the circle

Proof. This comes from our previous discussion on the convexity of the distance function for
points moving along horizontal line. On any horizontal line 𝐻, the point realizing the minimal
distance to 𝑤 is the intersection 𝐻 ∩ 𝑉𝑢. By the distance formula for points on a same vertical
line, we have the lemma.

Proposition 4.2.3
For 𝑒−𝑅𝑣 < 𝑦 < 𝑒𝑅𝑣, there are exactly two points 𝑧+

𝑦 and 𝑧−
𝑦 having distance 𝑅 to 𝑤. Moreover

we have
Re (𝑧+

𝑦 + 𝑧−
𝑦 )

2 = 𝑢,

i.e. they are symmetric with respect to 𝑢+ 𝑖𝑦 in 𝐻𝑦.

Without loss of generality, we may assume that Re 𝑧−
𝑦 < Re𝑤 < Re 𝑧+

𝑦 .

Proof. This can be verified with the distance formula

cosh dH(𝑤, 𝑧) = 1 + (𝑢− 𝑥)2 + (𝑣 − 𝑦)2

𝑣𝑦
,

and the strict monotonicity of cosh on R≥0.
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Figure 4.2.3: Intersection with a horizontal line in the strip

Since all points in H must be on some horizontal lines, by collecting 𝑧±, and 𝑧±
𝑦 ’s for all

𝑒−𝑅𝑣 < 𝑦 < 𝑒𝑅𝑣, we have all points in 𝐶.
Our next step is to show that the circle in H is also a Euclidean circle. Since it is easier to

compute hyperbolic distance from the Euclidean distance, we will show the following lemma,
instead of a direct proof.

Proposition 4.2.4
All points on the Euclidean circle passing 𝑧± with center on 𝑉𝑢 have hyperbolic distance 𝑅 to 𝑤.

Figure 4.2.4: Parametrization of the Euclidean circle

Proof. Since the segment between 𝑧− and 𝑧+ is the diameter, we have the center of the Euclidean
circle is 𝑧E = 𝑢+ 𝑖𝑣 cosh𝑅 and the radius is 𝑟 = 𝑣 sinh𝑅. Hence the Euclidean circle can be
described by

𝐶(𝑧E, 𝑟) = {𝑢+ 𝑖𝑣 cosh𝑅+ 𝑒𝑖𝜃𝑣 sinh𝑅 ∈ H | 𝜃 ∈ [0, 2𝜋]}.

Since there are two points on this circle having distance 𝑅 to 𝑤, it is enough to show that the
distance to 𝑤 as a function of 𝜃 is constant, which is equivalent to show that

|𝑧E + 𝑟𝑒𝑖𝜃 − 𝑤|
|𝑧E + 𝑟𝑒𝑖𝜃 − 𝑤|

= |𝑢+ 𝑖𝑣 cosh𝑅+ 𝑒𝑖𝜃𝑣 sinh𝑅− 𝑤|
|𝑢+ 𝑖𝑣 cosh𝑅+ 𝑒𝑖𝜃𝑣 sinh𝑅− 𝑤|

,
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is constant. This can be see from the following computation:

|𝑢+ 𝑖𝑣 cosh𝑅+ 𝑒𝑖𝜃𝑣 sinh𝑅− 𝑤|
|𝑢+ 𝑖𝑣 cosh𝑅+ 𝑒𝑖𝜃𝑣 sinh𝑅− 𝑤|

= |𝑢+ 𝑖𝑣 cosh𝑅+ 𝑒𝑖𝜃𝑣 sinh𝑅− (𝑢+ 𝑖𝑣)|
|𝑢+ 𝑖𝑣 cosh𝑅+ 𝑒𝑖𝜃𝑣 sinh𝑅− (𝑢− 𝑖𝑣)|

= |𝑖𝑣(cosh𝑅− 1) + 𝑒𝑖𝜃𝑣 sinh𝑅|
|𝑖𝑣(cosh𝑅+ 1) + 𝑒𝑖𝜃𝑣 sinh𝑅|

=
|2𝑖 sinh2 𝑅

2 + 2𝑒𝑖𝜃 sinh 𝑅
2 cosh 𝑅

2 |
|2𝑖 cosh2 𝑅

2 + 2𝑒𝑖𝜃 sinh 𝑅
2 cosh 𝑅

2 |

=
(︂

tanh 𝑅2

)︂ |𝑖 sinh 𝑅
2 + 𝑒𝑖𝜃 cosh 𝑅

2 |
|𝑖 cosh 𝑅

2 + 𝑒𝑖𝜃 sinh 𝑅
2 |

=
(︂

tanh 𝑅2

)︂ | − 𝑖 sinh 𝑅
2 + 𝑒−𝑖𝜃 cosh 𝑅

2 |
|𝑖 cosh 𝑅

2 + 𝑒𝑖𝜃 sinh 𝑅
2 |

=
(︂

tanh 𝑅2

)︂ |𝑒𝑖𝜃 sinh 𝑅
2 + 𝑖 cosh 𝑅

2 |
|𝑖 cosh 𝑅

2 + 𝑒𝑖𝜃 sinh 𝑅
2 |

= tanh 𝑅2 .

Hence the lemma.

Since the intersection between the Euclidean circle and each horizontal line has also two
points, we have the following proposition:

Proposition 4.2.5
As subsets of H, we have 𝐶H(𝑤,𝑅) = 𝐶(𝑧E, 𝑟) where{︃

𝑧E = 𝑤 cosh𝑅,
𝑟 = 𝑤 sinh𝑅.

Corollary 4.2.6
The topology induced by Euclidean distance and that induced by hyperbolic metric is the same.

Corollary 4.2.7
As subsets of H, we have 𝐷H(𝑤,𝑅) = 𝐷(𝑧E, 𝑟) where{︃

𝑧E = 𝑤 cosh𝑅,
𝑟 = 𝑤 sinh𝑅.

4.3 Circles and hyperbolic radius

Let 𝐶 and 𝐶 ′ be two hyperbolic circles of radius 𝑅 an 𝑅′ with a same center 𝑧H = 𝑥 + 𝑖𝑦.
Without loss of generality, we assume that 𝑅 < 𝑅′. Let 𝑤 be a point on 𝐶, and 𝛾 be the
geodesic passing 𝑧H and 𝑤. Denote by 𝑤′ the intersection 𝛾 ∩ 𝐶 ′.
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Proposition 4.3.1

dH(𝑤,𝐶 ′) = dH(𝑤,𝑤′).

Proof. Since the distance function is continuous and a circle is compact, the distance between
𝑤 and 𝐶 ′ is realized by some point 𝑤′′ ∈ 𝐶 ′.

We prove by contradiction. Assume that 𝑤′′ ̸= 𝑤′. We consider the geodesic segment 𝜂
connecting 𝑧H and 𝑤′′. Then 𝑤 /∈ 𝜂. We can build a path connecting 𝑧H and 𝑤′ by combining
the geodesic segment 𝑧H𝑤 and the geodesic segment 𝑤𝑤′′.

On one hand, we know that

dH(𝑧H, 𝑤) + dH(𝑤,𝑤′) = 𝑅′ = dH(𝑧H, 𝑤′′).

On the other hand, by our assumption, we have dH(𝑤,𝑤′) > dH(𝑤,𝑤′′). By the definition of
distance or the triangular inequality, we know that

𝑅 = dH(𝑧H, 𝑤′′) ≤ dH(𝑧H, 𝑤) + dH(𝑤,𝑤′′) < dH(𝑧H, 𝑤) + dH(𝑤,𝑤′) = 𝑅,

which is a contradiction. Hence the lemma.

Corollary 4.3.2
Let 𝐶 be a circle and 𝑤 ∈ H. The distance between 𝑤 and 𝐶 can be realized by a unique point
on 𝐶 which is the intersection between 𝐶 and the geodesic determined by the center of 𝐶 and 𝑤.

Proof. Let 𝑧H be the hyperbolic center of 𝐶. Then 𝑤 is on the circle with the same center of
radius dH(𝑧H, 𝑤). By using the lemma, we have the corollary.

Proposition 4.3.3
The geodesic segment 𝑧H𝑤 is orthogonal to 𝐶 at 𝑤.

Proof. Let 𝐶 be a circle with hyperbolic center 𝑧H and 𝛾 to be the unique geodesic tangent to
𝐶 at 𝑤. It can be obtained in the following way. Let 𝑧E be the Euclidean center of 𝐶. Then we
consider the Euclidean line passing through 𝑧E and 𝑤. Let 𝑥𝛾 denote its intersection with the
real axis. Then the geodesic 𝛾 is the half circle centered at 𝑥𝛾 passing 𝑤.

Using Euclidean geometry, we know that 𝛾 only intersect the disk 𝐷(𝑧H, 𝑅) at the point
𝑤. Hence 𝑤 realizing the minimal distance from 𝑧H to 𝛾. Hence the geodesic segment 𝑧H𝑤 is
orthogonal to 𝛾, hence to 𝐶 as well.

We use the same notation as above. The parametrization of 𝐶 is given by 𝑖𝑣 cosh𝑅 +
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𝑒𝑖𝜃𝑣 sinh𝑅. The length of 𝐶 can be expressed as the following integral

𝑙H(𝐶) =
∫︁ 2𝜋

0

√︀
𝑥̇(𝜃)2 + 𝑦̇(𝜃)2

𝑦(𝜃) d𝜃

=
∫︁ 2𝜋

0

sinh𝑅
cosh𝑅+ sinh𝑅 sin 𝜃 d𝜃

=
∫︁ 𝜋

0

sinh𝑅
cosh𝑅+ sinh𝑅 sin 𝜃 d𝜃 +

∫︁ 2𝜋

𝜋

sinh𝑅
cosh𝑅+ sinh𝑅 sin 𝜃 d𝜃

=
∫︁ ∞

−∞

sinh𝑅
cosh𝑅+ sinh𝑅 2𝑡

𝑡2+1

2
𝑡2 + 1 d𝑡

= sinh𝑅
∫︁ ∞

−∞

2
(1 + 𝑡2) cosh𝑅+ 2𝑡 sinh𝑅 d𝑡

= sinh𝑅
∫︁ ∞

−∞

2
cosh𝑅+ cosh𝑅(𝑡+ tanh𝑅)2 − tanh2𝑅 cosh𝑅

d𝑡

= sinh𝑅
∫︁ ∞

−∞

2 cosh𝑅
(𝑡 cosh𝑅+ sinh𝑅)2 + 1 d𝑡

= sinh𝑅
∫︁ ∞

−∞

2
𝑢2 + 1 d𝑢

= 2𝜋 sinh𝑅.

Notice that given any point 𝑧 ∈ H and any circle 𝐶 with hyperbolic center 𝑧, any geodesic 𝛾
passing 𝑧 will intersect 𝐶 orthogonally. Given a disk of hyperbolic radius 𝑅, we consider it
is foliated by circle of radius between 0 and 𝑅. Then the area of the disk of radius 𝑅 can be
computed as follows:

𝐴H(𝐶) =
∫︁ 𝑅

0
2𝜋 sinh 𝑡 d𝑡

= 2𝜋(cosh𝑅− 1).
Notice that when 𝑅 goes to infinity, the perimeter of a disk and the area of a disk are comparable
to each other.

Remark 4.3.4.
Later when we study the isometry group of H, we will see that the rotations of 𝐶H(𝑤,𝑅) with
respect to 𝑤 are isometries of H. Hence the length is equidistribute on the circle with respect
to the hyperbolic central angle, i.e. for any 𝜃 ∈ [0, 2𝜋], the arc on 𝐶H(𝑤,𝑅) with hyperbolic
central angle 𝜃 has length 𝜃 sinh𝑅.

35



5 Horocycle and hypercycles

5.1 Circle revisit

Although circles in hyperbolic plane are the same as circles in Euclidean plane as subsets, there
are still some difference between their geometric properties.

Let 𝐶 be a circle in H, which is symmetric with respect to a unique vertical line 𝑉𝑥 with real
coordinate 𝑥. Let 𝑧H = 𝑥+ 𝑖𝑦H and 𝑧E = 𝑥+ 𝑖𝑦E denote its hyperbolic and Euclidean center
respectively. Let 𝑅 and 𝑟 denote its hyperbolic and Euclidean radius respectively.

With the hyperbolic data, we know that the diameter of 𝐶 along 𝑉𝐶 is the segment between
𝑧+ = 𝑥 + 𝑖𝑒𝑅𝑦H and 𝑧− = 𝑥 + 𝑖𝑒−𝑅𝑦H. As the computation that we did above, we have the
following relations:

𝑦E = 𝑒𝑅𝑦H + 𝑒−𝑅𝑦H
2 = 𝑦H cosh𝑅,

𝑟 = 𝑒𝑅𝑦H − 𝑒−𝑅𝑦H
2 = 𝑦H sinh𝑅.

Using the relation between sinh and cosh functions, we have 𝑦H =
√︁
𝑦2
E − 𝑟2. On the other

hand, Hence the lower end of the vertical diameter has the coordinate

𝑦H𝑒
−𝑅 = 𝑦E − 𝑟.

We consider the ratio between 𝑦H and 𝑦H𝑒
−𝑅:

𝑒𝑅 =
√︃
𝑦E + 𝑟

𝑦E − 𝑟

5.2 Horocycles

We would like to move the Euclidean circle along the vertical direction by Euclidean motions.
In particular, we would like to decrease the 𝑦 coordinate of points on the circle. From the above
formula, we can see that both 𝑦H and 𝑦H𝑒

−𝑅 go to 0, but 𝑦H𝑒−𝑅 goes to 0 much faster than
𝑦H. When 𝑦E = 𝑟, we have 𝑧H = 𝑥 = 𝑧− and 𝑧+ = 𝑥+ 2𝑖𝑟. Moreover, the hyperbolic radius is
infinite.

Definition 5.2.1
Such a circle in hyperbolic space is called a horocycle centered at 𝑥 passing through 𝑧+.

In Euclidean geometry, the hyperbolic horocycle is a cycle tangent to the real axis and
contained in H.
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5 Horocycle and hypercycles

Figure 5.2.1: Drop a Euclidean ball

Remark 5.2.2.
Since the radius is infinite, we usually describe a horocycle by its center and the point it passes,
as what we do for the Euclidean center. From the above point of view, a horocycle centered
at 𝑥 may be consider as a set of points which have the same "distance" to 𝑥, although the
"distance" here is infinite.

Consider two concentric hyperbolic circles 𝐶 and 𝐶 ′ with hyperbolic center 𝑧 of hyperbolic
radius 𝑅 and 𝑅′ respectively. Given any geodesic passing through 𝑧, the part between the two
circles has its length equals the difference between the two radius |𝑅−𝑅′|. Hence this quantity
does not depend on the choice of the geodesic passing through 𝑧.

If we move 𝐶 and 𝐶 ′ simultaneously and keep them being concentric, then the above is still
true. In the limit, we denote by 𝐻 and 𝐻 ′ the two horocycles. They share the same center 𝑥.
Moreover all radius are issued from the center 𝑥 on real axis. Although each radius is infinite,
all geodesics issed from 𝑥, when restricted between 𝐻 and 𝐻 ′, will have the same length.

Figure 5.2.2: Drop 2 Euclidean ball at the same time
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5 Horocycle and hypercycles

5.3 Hypercircles

One may ask after we get horocycle, what curve will we get if we move the Euclidean circle even
lower. To start the discussion, we would like to check what happens when we move concentric
circles downwards, especially the relation between their displacements.

Recall the relation between the hyperbolic data and Euclidean data that we computed in the
beginning of this part:

𝑦E = 𝑒𝑅𝑦H + 𝑒−𝑅𝑦H
2 = 𝑦H cosh𝑅,

𝑟 = 𝑒𝑅𝑦H − 𝑒−𝑅𝑦H
2 = 𝑦H sinh𝑅.

Hence we have 𝑦H =
√︁
𝑦2
E − 𝑟2. Now we consider two concentric hyperbolic circles. Let us

denote by 𝑦E and 𝑦′
E their Euclidean center respectively, and by 𝑟 and 𝑟′ their Euclidean radius

respectively. The concentric condition gives us a relation:

𝑦2
E − 𝑟2 = 𝑦′2

E − 𝑟′2.

It holds while we are moving them to a lower position until they meet real axis. Since they are
Euclidean circles and we consider the whole plane, there is still room to move them vertically
lower. Both circles are no longer contained in H entirely. They intersect the real axis with two
points. The above relation guarantees that the intersection points for different circles coincide.

Figure 5.3.1: Drop under the horizon

Since there are two intersection points with the real axis, we have a unique complete geodesic
𝛾 associated to the two circles 𝐶 and 𝐶 ′.

We first consider the circle 𝐶 and 𝛾. Let 𝛾 be the half circle given by 𝑧 = 𝑥+ 𝑠𝑒𝑖𝜃. Let 𝑤
be a point on 𝐶 ∩ H. Its distance to 𝛾 is realized by a unique point 𝑧0 on 𝛾. We consider the
geodesic 𝛾𝑤 passing 𝑤 and 𝑧0 given by 𝑥𝑤 + 𝑡𝑒𝑖𝜉. In order to compute the distance between 𝑤

and 𝑧0, we should have the angles 𝛼 = ∠𝑤𝑥𝑤𝑥 and 𝛽 = ∠𝑧0𝑥𝑤𝑥. Our next step is to compute
them.

Recall that the center of 𝐶 is 𝑧E and its Euclidean radius is 𝑟. We denote by 𝑦 the imaginary
art of 𝑧E. Using the relative position between 𝐶 and 𝛾, we have the relation 𝑠2 + 𝑦2 = 𝑟2.
Hence the Euclidean distance between 𝑧E and 𝑤 is also 𝑠 =

√︀
𝑟2 − 𝑦2. On the other hand, the

geodesics 𝛾 and 𝛾𝑤 are orthogonal to each other, hence we have (𝑥𝑤 − 𝑥)2 = 𝑠2 + 𝑡2. Hence the
Euclidean distance between 𝑤 and 𝑥𝑤 is also 𝑡 =

√︀
(𝑥𝑤 − 𝑥)2 − 𝑠2.
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5 Horocycle and hypercycles

Figure 5.3.2: Geodesic associated to the two circles

Figure 5.3.3: Distance from a point of 𝐶 to 𝛾

Now we consider the Euclidean triangle Δ𝑧E𝑥𝑤𝑤. Notice that the three side satisfying the
Pythagorean equation:

|𝑧E𝑤|2E − 𝑟2 − 𝑡2 = 𝑦2 + (𝑥𝑤 − 𝑥)2 − (𝑠2 + 𝑦2) − ((𝑥𝑤 − 𝑥)2 − 𝑠2) = 0

Hence the geodesic 𝛾𝑤 and 𝐶 are orthogonal to each other.

Figure 5.3.4: Quantities used in the computation

Now we would like to express sin𝛼, cos𝛼, sin 𝛽 and cos𝛽 in term of 𝑦, 𝑠, 𝑟 and 𝑥𝑤. The goal

39



5 Horocycle and hypercycles

is to show that the distance between 𝑤 and 𝑧0 is independent of 𝑥𝑤. Hence all points on 𝐶

have the same distance to 𝛾. Using Euclidean geometry, we have the following formulas:

sin 𝛽 = 𝑠√︀
(𝑥𝑤 − 𝑥)2

cos𝛽 =
√︀

(𝑥𝑤 − 𝑥)2 − 𝑠2√︀
(𝑥𝑤 − 𝑥)2

sin𝛼 = sin(𝛼1 + 𝛼2) = 𝑟(𝑥𝑤 − 𝑥)
𝑦2 + (𝑥𝑤 − 𝑥)2 + 𝑦

√︀
(𝑥𝑤 − 𝑥)2 − 𝑠2

𝑦2 + (𝑥𝑤 − 𝑥)2

cos𝛼 = cos(𝛼1 + 𝛼2) =
√︀

(𝑥𝑤 − 𝑥)2 − 𝑠2(𝑥𝑤 − 𝑥)
𝑦2 + (𝑥𝑤 − 𝑥)2 − 𝑦𝑟

𝑦2 + (𝑥𝑤 − 𝑥)2

Hence the distance can be given by

sin𝛼
cos𝛼+ 1 = 𝑟(𝑥𝑤 − 𝑥) + 𝑦

√︀
(𝑥𝑤 − 𝑥)2 − (𝑟2 − 𝑦2)

((𝑥𝑤 − 𝑥) +
√︀

(𝑥𝑤 − 𝑥)2 − (𝑟2 − 𝑦2))(𝑥𝑤 − 𝑥) − 𝑦(𝑟 − 𝑦)
sin 𝛽

cos𝛽 + 1 =
√︀
𝑟2 − 𝑦2√︀

(𝑥𝑤 − 𝑥)2 − (𝑟2 − 𝑦2) + 𝑥𝑤 − 𝑥

A direct computation shows
sin𝛼

cos𝛼+ 1
cos𝛽 + 1

sin 𝛽 = 𝑦 + 𝑟√︀
𝑟2 − 𝑦2 ,

hence is independent of 𝑥𝑤. Since 𝑥𝑤 and 𝑤 determine each other, this distance function is
independent of the choice of 𝑤. Hence all points in 𝐶 ∩ H have the same distance to 𝛾 which is

log 𝑦 + 𝑟√︀
𝑟2 − 𝑦2 = 1

2 log 𝑟 + 𝑦

𝑟 − 𝑦
.

Definition 5.3.1
A curve in H is called a hypercircle if it is obtained by the intersection between H and a
Euclidean circle 𝐶 which is not entirely contained in H. The geodesic connecting the two points
in the intersection between 𝐶 and the real axis is called the center of this hypercircle.

Informally speaking, we may think that as the Euclidean circle moving towards the real
axis and intersecting it, the hyperbolic center moves first from the interior of the disk
bounded by the circle to the circle then moves out of it, in particular out of H.

In fact this can be understood by considering the hyperbolic plane is part of the
2-dimensional projective space RP2. There is a natural duality between the hyperbolic
space and the complement of its closure in RP2 coming from the 2 + 1 Minkowski space.
In particular, a point in the complement of H is dual to a geodesic in H.

5.4 Horocycles and hypercircles with centers involving ∞

Instead of circle falling, we may consider circle raising. Let 𝐶 be a circle with center on 𝑉𝑥.
Let 𝑧− denote the lower intersection between 𝐶 and 𝑉𝑥. We would like to rise 𝐶 while keeping
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5 Horocycle and hypercycles

the center on 𝑉𝑥 and 𝑧− constant. let us see how two centers and two radius changes during
this process.

Recall the relations between the Euclidean data and the hyperbolic data:

𝑦E = 𝑒𝑅𝑦H + 𝑒−𝑅𝑦H
2 = 𝑦H cosh𝑅,

𝑟 = 𝑒𝑅𝑦H − 𝑒−𝑅𝑦H
2 = 𝑦H sinh𝑅.

𝑧+ = 𝑥+ 𝑖𝑒𝑅𝑦H

𝑧− = 𝑥+ 𝑖𝑒−𝑅𝑦H

where the hyperbolic center and the hyperbolic radius are 𝑧H = 𝑥+ 𝑖𝑦 and 𝑅 respectively, and
the Euclidean center and the Euclidean radius are 𝑧E = 𝑥+ 𝑖𝑦E and 𝑟 respectively. The points
𝑧+ and 𝑧− are the intersection points between the circle and the vertical line 𝑉𝑥.

Since we would like 𝑧− to be constant. We have 𝑒−𝑅𝑦H = 𝑐 for some constant 𝑐 > 0. Hence
we have

𝑦H = 𝑐𝑒𝑅,

which in turn induces
𝑦E = 𝑐(𝑒2𝑅 + 1)

2 ,

𝑟 = 𝑐(𝑒2𝑅 − 1)
2 .

When we increase 𝑦E to infinity, the Euclidean radius is getting bigger and bigger. In the limit,
the circle converges to horizontal line. More precisely, if we consider an arc of a fixed length
in the circle, during this process, this arc will converges to a segment on the horizontal line
passing 𝑧− in the Hausdorff distance for compact sets in E.

At the same time, the hyperbolic center also goes to ∞. Hence by the similar argument, we
can see that the horocycle centered at ∞ are horizontal lines. Moreover, the radius geodesics are
vertical geodesics. Notice that the segments of vertical geodesics between two fixed horizontal
lines have the same length, which we already saw this in the beginning when we computed the
length of the vertical segments.

Now we consider hypercycles. We use a similar method to consider the vertical geodesic 𝑉𝑥

as a limit of circular geodesics with one end fixed to be 𝑥 while the other end tends to the
positive infinity. More precisely, let 𝛾 be a circular geodesic with end point 𝑥 and 𝑡 with 𝑥 < 𝑡.
We would like to see how hypercycles changes when we move 𝑡 to ∞ from the positive side.

Recall that as Euclidean circles, all hypercircles have angles with the geodesics at the end
points. We would like to fix this intersection angle 𝜃 and see how the corresponding hypercircle
changes when 𝑡 goes to ∞. In fact the whole picture can be considered as applying rescaling the
Euclidean plane with center at 𝑥. More precisely, since we fix the intersection angle between the
hypercycle and the geodesic at 𝑥, the Euclidean center of the hypercircle will be on a Euclidean
ray issued from 𝑥 with angle 𝜃 to the positive direction of the real axis. As 𝑡 goes to ∞, the
Euclidean center of the hypercircle also moves to ∞ along the Euclidean ray.

We consider the convergence of subsets of the Euclidean plane, the hypercycle converges to
the Euclidean ray issued from 𝑥 with angle (𝜋/2) + 𝜃. Hence the hypercircle centered at a
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5 Horocycle and hypercycles

vertical geodesic 𝑉𝑥 is a ray issued from 𝑥. We have seen that the points on such a ray have a
same distance to 𝑉𝑥 in the beginning when we compute the length of a circular arc.
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6 Boundary at infinity (Ideal boundary) of H

We use ̂︀R a lot in our previous discussion. In this part, we would like to show that ̂︀R is indeed
certain boundary of the hyperbolic space.

Consider a complete geodesic 𝛾. For any point 𝑧 ∈ 𝛾, the complement of 𝑧 consists of two
connected components, each of which together with 𝑧 is called a geodesic ray issued from 𝑧. Let
𝛾+ be a geodesic ray in 𝛾. We will always consider the parametrization of 𝛾+ by the isometry
between [0,+∞) and 𝛾+ (the arc length parametrization). Then for any pair of parameters 𝑡
and 𝑡′ in [0,+∞), we have

dH(𝛾+(𝑡), 𝛾+(𝑡′)) = |𝑡− 𝑡′|.

Figure 6.0.1: Geodesic rays with arc length parametrization

Definition 6.0.1
Two geodesic rays 𝛾+ and 𝜂+ are said to be equivalent to each other if they stay in the bounded
distance when going to infinite, i.e. there exists a constant 𝑐 > 0, such that for any 𝑡 ∈ [0,+∞),
we have

dH(𝛾+(𝑡), 𝜂+(𝑡)) ≤ 𝑐.

Remark 6.0.2.
The key point is the existence of the constant 𝑐, instead of the actual value of 𝑐.

By triangular inequality of distance function, we can see that this definition is independent
of the choice of the starting points of the geodesic rays on the complete geodesics.

Proposition 6.0.3
This define an equivalent relation among all geodesic rays.
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6 Boundary at infinity (Ideal boundary) of H

Figure 6.0.2: Equivalent geodesic rays

Proof. By triangular inequality of the distance function, we have this lemma.

Definition 6.0.4
The boundary at infinity (ideal boundary) of H is defined to be the space of equivalence classes
of all geodesic rays. We denote it by 𝜕H. A point in 𝜕H is called an ideal point.

The following lemme shows that the ideal boundary of H can be identified with ̂︀R.

Proposition 6.0.5
Two rays are equivalent if and only if they end at a same point on the real axis or infinity.

Proof. We first consider 𝑥 a point on the real axis, and show that all geodesics ending at 𝑥 are
equivalent to each other.

By our previous discussion on horocycles, all geodesics ending at 𝑥 are the radius geodesics
of horocycles centered at 𝑥. Their intersection with horocycles induce a natural identification
between their parametrizations. Without loss of generality, we may assume that all rays ending
at 𝑥 are issued from points on a same horocycle. It is enough to show that all such rays are
equivalent to the one in contained in the vertical geodesic 𝑉𝑥.

Let 𝛾 be any geodesic ending at 𝑥 defined by 𝑥+ 𝑟 + 𝑟𝑒𝑖𝜃. Let 𝐻 be a horocycle centered
at 𝑥 given by 𝑥 + 𝑖𝑟′ + 𝑟′𝑒𝑖𝜃. Therefore, the intersection 𝐻 ∩ 𝑉𝑥 is 𝑧 = 𝑥 + 2𝑖𝑟′. To see the
intersection 𝑤 between 𝛾 and 𝐻, we use the fact in Euclidean geometry that the segment
between the intersections points of two circles is orthogonal to the segment between two centers

((𝑥+ 𝑟) − (𝑥+ 𝑖𝑟′)) · (𝑥+ 𝑟 + 𝑟𝑒𝑖𝜃 − 𝑥) = 0.

We compute the left hand side

((𝑥+ 𝑟) − (𝑥+ 𝑖𝑟′)) · (𝑥+ 𝑟 + 𝑟𝑒𝑖𝜃 − 𝑥)
=(𝑟 − 𝑖𝑟′) · (𝑟 + 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃)
=𝑟2(1 + cos 𝜃) − 𝑟𝑟′ sin 𝜃
=𝑟(𝑟(1 + cos 𝜃) − 𝑟′ sin 𝜃)
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6 Boundary at infinity (Ideal boundary) of H

Figure 6.0.3: Equivalence rays ending at 𝑥

which yields
tan 𝜃2 = 𝑟

𝑟′ ,

cos 𝜃 = −𝑟2 − 𝑟′2

𝑟2 + 𝑟′2 ,

sin 𝜃 = 2𝑟𝑟′

𝑟2 + 𝑟′2 .

Hence the intersection 𝑤 can be written as

𝑤 = 𝑥+ 𝑟 + 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃 = 𝑥+ 𝑟′ sin 𝜃 + 𝑖𝑟 sin 𝜃,

with tan(𝜃/2) = 𝑟/𝑟′.
Let 𝑧𝑤 denote the projection of 𝑤 to 𝑉𝑥. It is given by

𝑧𝑤 = 𝑥+ 𝑖
√︁

(𝑢− 𝑥)2 + 𝑣2 = 𝑥+ 𝑖
√︀
𝑟′2 + 𝑟2 sin 𝜃 = 𝑥+ 𝑖

2𝑟𝑟′
√
𝑟2 + 𝑟′2

.

By triangular inequality, we have

dH(𝑧, 𝑤) ≤ dH(𝑧, 𝑧𝑤) + dH(𝑧𝑤, 𝑤).

The distance between 𝑧𝑤 and 𝑧 is given by

log
2𝑟𝑟′

√
𝑟2+𝑟′2

2𝑟′ = log 𝑟√
𝑟2 + 𝑟′2

,

which converges to 0 as 𝑟′ goes to 0. The second term also converges to 0. This is because the
angle ∠𝑧𝑤𝑥𝑤 converges to 0. Recall the distance formula

dH(𝑧𝑤, 𝑤) = log cos∠𝑧𝑤𝑥𝑤

sin∠𝑧𝑤𝑥𝑤 + 1 ,

which will converges to 0. Hence the two rays are equivalent, and so are all rays ending at 𝑥.
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6 Boundary at infinity (Ideal boundary) of H

Now we consider all vertical geodesics. This case is easier than the previous case. Let 𝑉𝑥 and
𝑉𝑥′ be two vertical geodesics, we consider their intersections with horizontal lines. Notice that
for each such segment, the Euclidean distance is constant. Since they have to be renormalized
by the inverse of the 𝑦 coordinate, it will converges to 0. Hence the distance between them will
converges to 0.

Now we have to show that if we have two rays 𝛾 and 𝛾′ ending at different points 𝑥 and 𝑥′

respectively, they are not equivalent. We consider the point 𝑥 and all circular geodesics 𝛾𝑟 with
Euclidean center 𝑥 and Euclidean radius 𝑟. As 𝑟 getting smaller and smaller, the ray ending 𝑥′

will eventually stay on a different side of the geodesic 𝛾𝑟 from 𝑥. Recall the formula

cosh dH(𝑤, 𝑧) = 1 + |𝑤 − 𝑧|2

Im𝑤Im 𝑧
.

If 𝑥 is on the real axis, then by the above formula, the points on 𝛾𝑟 will have their imaginary
parts converges to 0 uniformly. Notice that the geodesic arc connecting corresponding points
on 𝛾 and 𝛾′ will intersecting 𝛾𝑟 will eventually intersecting all 𝛾𝑟, hence its length will be bigger
than the distance dH(𝛾′, 𝛾𝑟) which tends to infinity. Hence these two rays are not equivalent.

Corollary 6.0.6
The boundary at infinity 𝜕H is ̂︀R.

Next we would like to show that 𝜕H can be "attached to H nicely". We show the following
two facts:

(i) The topology of R can be naturally extended to a topology on ̂︀R which makes it homeo-
morphic to a circle.

(ii) We may extend the topology of H to a topology on H = H ∪ 𝜕H, such that the induced
topology on ̂︀R is the same as the one as above.

The basis of the topology on ̂︀R is given by the following two kinds of sets:

(i) open interval (𝑥, 𝑥′) with 𝑥 < 𝑥′;

(ii) (𝑥,′ ∞) ∪ {∞} ∪ (∞, 𝑥) with 𝑥 < 𝑥′.

The sets of the first kind for a basis for the usual topology on R. The sets of the second kind
form a basis for the neighborhood of ∞.

To extend the topology of H to H, we consider half planes. The base of the topology of H
consists of two types subset:

(i) open disk in H;

(ii) open half plane 𝐾 determined by the geodesic with end points 𝑥 and 𝑥′ union with the
open interval in the ideal boundary of 𝐾 with end point 𝑥 and 𝑥′.
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7.1 Definition

To move objects in H without changing its geometric properties, we use isometris which are
defined as follows:

Definition 7.1.1
A map 𝑓 from H to itself is called an isometry if for any pair of points 𝑧 and 𝑤, we have

dH(𝑓(𝑧), 𝑓(𝑤)) = dH(𝑧, 𝑤).

We denote by Isom(H) the set of all isometries. It is non-empty since the identity map is an
isometry. There are some properties that we can get immediately from the definition.

Proposition 7.1.2
An isometry is continuous.

Using the continuity and triangular inequality, we have moreover:

Proposition 7.1.3
An isometry sends

• geodesics to geodesics;

• circles to circles with the same radius.

By the previous discussion, we then have:

Proposition 7.1.4
An isometry sends

• horocycles to horocycles, preserving the distance among horocycles with the same center;

• hypercycles to hypercycles, preserving their distance to their center geodesic.

Given any point 𝑤 in H, any point 𝑧 in H is on a circle centered at 𝑤 of the radius dH(𝑤, 𝑧).
Therefore, we have
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7 Isometries of H

Proposition 7.1.5
An isometry is bijective, and its inverse is also an isometry.

Proposition 7.1.6
The composition of two isometries is also an isometry.

Corollary 7.1.7
The set Isom(H) has a group structure.

We usually call it the isometry group of H.
Let 𝑓 be an isometry. Let 𝐾 and 𝐾 ′ be two non-empty subsets of H, then an immediate

consequence of the definition of an isometry is

Proposition 7.1.8

dH(𝑓(𝐾), 𝑓(𝐾 ′)) = dH(𝐾,𝐾 ′).

In the following we will study some maps which can be easily verified to be isometries, then
show that using them, we can get all isometries of H.

7.2 First examples of isometries

We first study two elementary maps on H:

𝑇𝑡(𝑧) = 𝑧 + 𝑡

𝜑𝜆(𝑧) = 𝜆𝑧

where 𝑡 ∈ R and 𝜆 > 0 are both constant. The first is a Euclidean translation along the
horizontal direction by a Euclidean distance 𝑡. The second is the Euclidean rescaling by a factor
𝜆. The first thing that we would like to check is:

Proposition 7.2.1
These two maps act on H.

Proof. It is enough to check the fact that they both preserve the property of the points in H
that the imaginary part is positive.

Then we would like to know if they preserve the distance.

Proposition 7.2.2
Both maps preserve distances between points on H.
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Proof. It is enough to check the following identity:⃒⃒⃒⃒
𝑧 − 𝑤

𝑧 − 𝑤

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑓(𝑧) − 𝑓(𝑤)
𝑓(𝑧) − 𝑓(𝑤)

⃒⃒⃒⃒
.

Notice that both the above map 𝑇𝑡 and 𝜑𝜆 are well defined on C, hence the above identity is
well defined for both of them. Let 𝑓 = 𝑇𝑡, we have⃒⃒⃒⃒

𝑇𝑡(𝑧) − 𝑇𝑡(𝑤)
𝑇𝑡(𝑧) − 𝑇𝑡(𝑤)

⃒⃒⃒⃒
=
⃒⃒⃒⃒(𝑧 + 𝑡) − (𝑤 + 𝑡)
(𝑧 + 𝑡) − (𝑤 + 𝑡)

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑧 − 𝑤

𝑧 − 𝑤

⃒⃒⃒⃒
.

Let 𝑓 = 𝜑𝜆, we have ⃒⃒⃒⃒
𝜑𝜆(𝑧) − 𝜑𝜆(𝑤)
𝜑𝜆(𝑧) − 𝜑𝜆(𝑤)

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝜆𝑧 − 𝜆𝑤)
𝜆𝑧 − 𝜆𝑤

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑧 − 𝑤

𝑧 − 𝑤

⃒⃒⃒⃒
.

Another way to see these two maps are isometries on H is by comparing the path lengths
before and after it acts. Let 𝑓 be a map of class 𝐶1 (map on R2) preserving H, its derivative
sends a tangent vector 𝑣 based at 𝑧 to a tangent vector d𝑓(𝑣) based at 𝑓(𝑧). For any pair of
points 𝑧 and 𝑤, the map 𝑓 also sends paths connecting 𝑧 and 𝑤 to paths connecting 𝑓(𝑧) and
𝑓(𝑤). Hence if 𝑓 -image of a regular path has the same length as that of the path itself, then it
preserve the distance by the definition of the distance.

Let 𝛾(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) with 𝑆 ∈ [𝑎, 𝑏] be a regular path connecting 𝑧 and 𝑤 two points in
H. Let 𝜂(𝑡) = 𝑓 ∘ 𝛾(𝑠) with 𝑠 ∈ [𝑎, 𝑏] be the image path of 𝛾 under 𝑓 . If 𝑓 = 𝑇𝑠, we have
𝜂(𝑠) = (𝑥(𝑠) + 𝑡, 𝑦(𝑠)). Hence

|𝜂̇(𝑠)|H =
√︀
𝑥̇(𝑠)2 + 𝑦̇(𝑠)2

𝑦(𝑠) = |𝛾(𝑠)|H.

If 𝑓 = 𝜑𝜆, we have 𝜂(𝑠) = (𝜆𝑥(𝑠), 𝜆𝑦(𝑠)). Hence

|𝜂̇(𝑠)|H = 𝜆
√︀
𝑥̇(𝑠)2 + 𝑦̇(𝑠)2

𝜆𝑦(𝑠) = |𝛾(𝑠)|H.

Hence in both cases we have 𝑙H(𝜂) = 𝑙H(𝛾).

Informally speaking, the map 𝑇𝑡 translate objects along the horizontal direction without
changing the size, and the hyperbolic metric has no change along the horizontal direction.
Hence it is not hard to guess that 𝑇𝑡 is an isometry. Let 𝜆 > 1, then the map 𝜑𝜆 moves
objects to a higher position. It rescales them into a big one, but the metric scales down
by a same factor. These factors cancel out, hence it is also an isometry.
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7.3 Reflections along geodesics in H

We first consider the Euclidean reflection along the imaginary axis. The map is given by
𝜄0(𝑧) = −𝑧 which preserve H.

Proposition 7.3.1
The map 𝜄0 is an isometry.

Proof. We verify this fact as follows: ⃒⃒⃒⃒
𝜄0(𝑧) − 𝜄0(𝑤)
𝜄0(𝑧) − 𝜄0(𝑤)

⃒⃒⃒⃒
=
⃒⃒⃒⃒(−𝑧) − (−𝑤)
(−𝑧) − (−𝑤)

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑧 − 𝑤

𝑧 − 𝑤

⃒⃒⃒⃒
.

Similar to the previous cases, the map 𝜄0 is also of class 𝐶1. It sends (𝑥, 𝑦) to (−𝑥, 𝑦). Hence
if we consider a regular path 𝛾(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) and its image 𝜄0 ∘ 𝛾(𝑠) = (−𝑥(𝑠), 𝑦(𝑠)). Then
one may check that they have the same length.

One may wondering if we can also reflect H along a circular geodesic. We first consider the
question: if there is a such an isometry, how should it looks like.

Let 𝛾 be the circular geodesic with center 0 passing 𝑖 with the standard parametrization
𝛾(𝜃) = 𝑒𝑖𝜃 with 𝜃 ∈ (0, 𝜋). We denote by 𝜄𝛾 the reflection along 𝛾 that we are looking for. First
since it is a reflection, we should have

Observation 7.3.2

𝜄𝛾(𝑒𝑖𝜃) = 𝑒𝑖𝜃.

Secondly, notice that if a map preserve the distance between points, it also preserves the
distance between subsets of H. In particular, we have

Observation 7.3.3
For any point 𝑧 ∈ H, we have

dH(𝑧, 𝛾) = dH(𝜄𝛾(𝑧), 𝛾).

Moreover, the point 𝑧 and its image 𝜄𝛾(𝑧) have the same projection on 𝛾.

Proof. The first part is because 𝜄𝛾 is an isometry and preserves 𝛾 setwise. The second part is
because 𝜄𝛾 is an isometry and in fact fixes 𝛾 pointwise.
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Corollary 7.3.4
For any point 𝑧 /∈ 𝛾, the geodesic passing 𝑧 and 𝜄𝛾(𝑧) is orthogonal to 𝛾.

Proof. The geodesic 𝜂 passing a point and its projection to a geodesic 𝛾 is orthogonal to 𝛾.
Since the projections of 𝑧 and 𝜄𝛾(𝑧) on 𝛾 are a same point, we have the corollary.

Corollary 7.3.5
The map 𝜄𝛾 preserves the imaginary axis.

Corollary 7.3.6
For any 𝑧, we have

dH(𝑧, 𝑉0) = dH(𝜄𝛾(𝑧), 𝑉0).

Remark 7.3.7.
In other words, the mao 𝜄𝛾 preserves hypercycles centered at 𝑉0.

For any point 𝑧, its distance to 𝑉0 is realized by a circular arc with center at 0. Hence we
have

Corollary 7.3.8
Any point 𝑧 and its image 𝜄𝛾(𝑧) are on a same Euclidean ray issued from 0. Moreover there
exists a positive number 𝜆, such that the projection of 𝑧 to 𝑉0 is 𝑖𝜆, while that of 𝜄𝛾(𝑧) is 𝑖𝜆−1.

The above necessary conditions for such an isometry existing suggest that this map should
be the following one:

𝜄𝛾(𝑧) = 1
𝑧
.

Proposition 7.3.9
The map 𝜄𝛾 given by the above formula is an isometry.

Proof. We use the same idea as before. ⃒⃒⃒⃒
⃒ 𝜄𝛾(𝑧) − 𝜄𝛾(𝑤)
𝜄𝛾(𝑧) − 𝜄𝛾(𝑤)

⃒⃒⃒⃒
⃒

=
⃒⃒⃒⃒
⃒𝑧−1 − 𝑤−1

𝑧
−1 − 𝑤−1

⃒⃒⃒⃒
⃒

=
⃒⃒⃒⃒
𝑧 − 𝑤

𝑧 − 𝑤

⃒⃒⃒⃒
.
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The next important property of the reflection 𝜄𝛾 is about the intersection angle between 𝛾

and other geodesics which intersects it. Let 𝜂 be a geodesic different from 𝛾 which intersects
𝛾 at 𝑧 = 𝑒𝑖𝜃. Let 𝑥 denote the end point of 𝜂 between −1 and 1. Without loss of generality,
we may assume that 𝜂 is a circular geodesic. We will consider the case where 𝜂 is a vertical
geodesic as a limit case of the discussion.

Now we consider its image under the map 𝜄𝛾 . Notice that it is well defined on C ∖ {0}. We
may formally define the image of 0 to be ∞. Hence the image of 𝜄𝛾(𝜂) has one end point 1/𝑥.
Without loss of generality, we may assume that 𝑥 > 0. Let 𝜂+ and 𝛾+ denote the geodesic rays
issued from 𝑧 to 𝑥 and 1 respectively. Let 𝛼 denote the angle between 𝜂+ and 𝛾+, and let 𝛽
denote the angle between 𝜄𝛾(𝜂+) and 𝛾+.

Proposition 7.3.10

𝛼 = 𝛽.

Proof. Consider the vertical geodesic 𝑉 passing 𝑧. We consider the geodesic ray 𝑉 + issued
from 𝑧 and ending at cos 𝜃. Let 𝜉1 denote the angle between 𝑉 + and 𝜂+. We consider the circle
containing 𝜂, and have the relation

tan 𝜉1
2 = 𝑥− cos 𝜃

sin 𝜃

Let 𝜉2 denote the angle between 𝑉 + and 𝜄𝛾(𝜂+). We consider the circle containing 𝜂, and
have the relation

tan 𝜉1
2 =

1
𝑥 − cos 𝜃

sin 𝜃
Notice that the angle between 𝑉 + and 𝛾+ is 𝜃. Hence to show 𝛼 = 𝛽, it is enough to show

𝜉1 + 𝜉2 = 2𝜃. Since all angles are between 0 and 𝜋, it is enough to check

tan 𝜉1 + 𝜉2
2 = tan 𝜃.

For this, we use the formula for computing tangent of a sum of two angles, and the left hand
side is:

tan 𝜉1 + 𝜉2
2

=
tan 𝜉1

2 + tan 𝜉2
2

1 − tan 𝜉1
2 tan 𝜉2

2

=
𝑥−cos 𝜃

sin 𝜃 +
1
𝑥

−cos 𝜃

sin 𝜃

1 − 𝑥−cos 𝜃
sin 𝜃

1
𝑥

−cos 𝜃

sin 𝜃

= (𝑥+ 𝑥−1) sin 𝜃 − 2 sin 𝜃 cos 𝜃
sin2 𝜃 − (1 − cos 𝜃(𝑥+ 𝑥−1) + cos2 𝜃)

= tan 𝜃.
Notice that this also works for the case when 𝜂 is a vertical geodesic.
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Now we may consider to reflect H with respect to a different geodesic. We will consider
to take conjugacy of 𝜄𝛾 by 𝑇𝑡 and 𝜑𝜆 for some constant 𝑡 and 𝜆. We start by shows that by
choosing 𝑡 and 𝜆, we can send 𝛾 to any circular geodesic in H.

Proposition 7.3.11
Let 𝜂 be a geodesic with center at 𝑥 with Euclidean radius 𝑟. Then the isometry 𝑓𝜂 = 𝑇𝑥 ∘ 𝜑𝑟

sends 𝛾 to 𝜂.

Proposition 7.3.12
The reflection of H along 𝜂 can be expressed as follows:

𝜄𝜂 = 𝑓𝜂 ∘ 𝜄𝛾 ∘ 𝑓−1
𝜂 .

If the map in the middle is identity map, then 𝑓𝜂 ∘ 𝑓−1
𝜂 is identity map. Informally

speaking points are sent to some place then sent back following the same path but
reversely, hence nothing is changed.

If the map in the middle is a non identity map, then informally speaking points are
sent from 𝐴 to some place 𝐵, after moved in a non trivial way, sent back to 𝐴. The total
effect of this process is the same as doing the middle part directly in the place 𝐴.

By the above proposition, the formula for the reflection at 𝜂 (center at 𝑥 with Euclidean
radius 𝑟) is as follows:

𝜄𝜂 = 𝑟2

𝑧 − 𝑥
+ 𝑥 = 𝑥𝑧 − 𝑥2 + 𝑟2

𝑧 − 𝑥
.

If we fixes the left end point of 𝜂 and move the right one to infinity, then we have 𝑥− 𝑟 = 𝑐 a
constant and

lim
𝑥→∞

𝑟 + 𝑥

𝑥
= 2.

Hence for each 𝑧, in the limit we have 𝜄𝜂(𝑧) = −𝑧 + 2𝑐. This is a reflection along the vertical
geodesic 𝑉𝑐.

Proposition 7.3.13
For any geodesic 𝜂, the reflection 𝜄𝜂 : H → H can be extend to a continuous map from H to H.

7.4 Composition of two reflections

We consider 𝜂1 and 𝜂2 two geodesics intersecting each other at 𝑧. Let 𝜂+
1 be a geodesic ray

issued from 𝑧, and 𝜂+
2 be a geodesic ray issued from 𝑧 which is the one of the two geodesic

rays from 𝑧 that we meet first if we rotate 𝜂+
1 in the positive direction. Let 𝜃 be the rotation

angle from 𝜂+
1 to 𝜂+

2 along the positive direction. Let 𝜄1 be the reflection along 𝜂1 and 𝜄2 be
the reflection along 𝜂2.
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Proposition 7.4.1
The isometry 𝜄2 ∘ 𝜄1 is a rotation of H by an angle 2𝜃 to the positive direction around 𝑧.

Proof. A reflection along 𝜂 will fixes all points on 𝜂, hence we have 𝜄2∘𝜄1(𝑧) = 𝑧, since 𝑧 ∈ 𝜂1∩𝜂2.
Since 𝜄2 ∘ 𝜄1 is an isometry, it preserves all circles centered at 𝑧.

Recall that a reflection along 𝜂 preserves the intersection angles of geodesics with 𝜂. Hence
all radius rays will be rotated to the positive direction by an angle 2𝜃.

If 𝜂1 and 𝜂2 share one end point 𝑥, then the composition 𝜄2 ∘ 𝜄1 preserves 𝑥 and all horocycle
centered at 𝑥. Let 𝐻 be a horocycle. We consider the positive direction is induced by the
positive orientation in C. If the horocycle arc between 𝜂1 and 𝜂2 has the direct length 𝑡 from 𝜂1
to 𝜂2, then 𝜄2 ∘ 𝜄1 moves all points on 𝐻 by a direct distance 2𝑡.

Example 7.4.2.
We will consider the case where {𝑖} = 𝜂1 ∩ 𝜂2. Let 𝜂1 be the circular geodesic centered at 0,
and 𝜂2 be the geodesic centered at 𝑥 ∈ ̂︀R. We first consider the case when 𝑥 ∈ R, then the case
when 𝑥 = ∞ can be considered as a limit case.

With the above assumption, the Euclidean radius of 𝜂2 is
√
𝑥2 + 1. Let 𝜃 ∈ [0, 𝜋) denote the

angle from 𝜂1 to 𝜂2. When 𝜃 ∈ [0, 𝜋/2], we have

cos 𝜃 = 1√
𝑥2 + 1

,

sin 𝜃 = 𝑥√
𝑥2 + 1

.

When 𝜃 ∈ [𝜋/2, 𝜋), we have
cos 𝜃 = −1√

𝑥2 + 1
,

sin 𝜃 = −𝑥√
𝑥2 + 1

.

Hence we have the formula for the composition:

𝜌𝜃(𝑧)
=(𝜄2 ∘ 𝜄1)(𝑧)

=𝑥(𝑧−1) − 𝑥2 + 𝑟2

(𝑧−1) − 𝑥

=𝑥𝑧−1 + 1
𝑧−1 − 𝑥

= 𝑧 + 𝑥

−𝑥𝑧 + 1

If we divided the denominator and numerator by
√
𝑥2 + 1 at the same time, we have

𝜌𝜃(𝑧) = cos 𝜃𝑧 + sin 𝜃
− sin 𝜃𝑧 + cos 𝜃 ,

with 𝜃 ∈ [0, 𝜋). This is the isometry rotating H by an angle 2𝜃 around 𝑖.
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We consider the case where 𝜂1 and 𝜂2 are disjoint. Since for any 𝜂, geodesics orthogonal
to 𝜂 are preserved by the reflection 𝜄𝜂, the common perpendicular geodesic 𝜎 of 𝜂1 and 𝜂2 is
preserved by 𝑓 = 𝜄2 ∘ 𝜄1, and the end points of 𝜎 are also preserved. Since the isometry acts non
trivially and isometrically on 𝜎, its restriction 𝜎 is a translation 𝜑. The translation distance is
twice of dH(𝜂1, 𝜂2). The direction is the same as from 𝜂1 to 𝜂2. Moreover, since it preserves 𝜎,
it also preserved all hypercycles centered at 𝜎. The points on a hypercycle are moved in a way
that their projections to 𝜎 are moved by the translation 𝜑.

Example 7.4.3.
Let 𝜂1 and 𝜂2 be two circular geodesics centered 0 with Euclidean radius 1 and 2 respectively.
Their common perpendicular geodesic is the imaginary axis. The distance between them is
log 2. The reflection along 𝜂1 and 𝜂2 are given by the following formulas:

𝜄1(𝑧) = 1
𝑧

𝜄2(𝑧) = 4
𝑧

Hence the composition 𝑓(𝑧) = (𝜄2 ∘ 𝜄1)(𝑧) = 4𝑧 which is a rescaling. Notice that the only
geodesic preserved by 𝑓 is 𝑉0 the imaginary axis. The action on it is translation following the
direction from 0 to ∞ by distance log 4 = 2 log 2 = 2dH(𝜂1, 𝜂2).

Now we consider the last case when 𝜂1 and 𝜂2 share one end point 𝑥. Then the isometry
𝜄2 ∘ 𝜄1 preserves 𝑥, hence all horocycles centered at 𝑥. Let 𝐻 be a horocycle centered at 𝑥. Let
the length of the arc of 𝐻 between 𝜂1 and 𝜂2 is 𝑡. Then all points on 𝐻 are moved by 𝜄2 ∘ 𝜄1
following the direction from 𝜂1 to 𝜂2 for a distance 2𝑡 along 𝐻 (the length of the arc in 𝐻

between a point and its image is 2𝑡).

Example 7.4.4.
Let 𝜂1 = 𝑉0 and 𝜂2 = 𝑉1 be two vertical geodesics. They share a common end point ∞. Recall
that horocycles centered at ∞ are horizontal lines. The reflections along 𝜂1 and 𝜂2 are given by

𝜄1(𝑧) = −𝑧
𝜄2(𝑧) = −𝑧 + 2

Hence the composition 𝑓(𝑧) = (𝜄2 ∘ 𝜄1)(𝑧) = 𝑧 + 2. We consider the horocycle 𝐻1. The segment
between 𝜂1 and 𝜂2 has length 1. Since we translate all point horizontally to the right by 2,
hence for any point 𝑧 ∈ 𝐻1, the segment on 𝐻1 between 𝑧 and 𝑓(𝑧) has length 2.

For our convenience, we give names to the above three types of isometries obtained by
composition of two reflections:

Definition 7.4.5 (i) When 𝜂1 and 𝜂2 intersects each other, we call 𝜄2 ∘ 𝜄1 an isometry of
elliptic type;

(ii) When 𝜂1 and 𝜂2 are disjoint, we call 𝜄2 ∘ 𝜄1 an isometry of hyperbolic type;
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7 Isometries of H

(iii) When 𝜂1 and 𝜂2 are parallel, we call 𝜄2 ∘ 𝜄1 an isometry of parabolic type.

Remark 7.4.6.
In particular, the isometries 𝑇𝑡’s are of parabolic type, the isometries 𝜑𝜆’s are of hyperbolic
type, and the isometries 𝜌𝜃’s are of elliptic type.

7.5 All isometries can be expressed as compositions of reflections

In this part, we would like to show that using reflections is enough to produce all isometries of
H. More precisely, let 𝜂 be a geodesic with end points 𝑥1 and 𝑥2 and 𝑧0 ∈ 𝜂, we would like to
show that an isometry 𝑓 of H can be determined by the following data:

(i) the image 𝑓(𝑥1) and 𝑓(𝑥2),

(ii) the image 𝑓(𝑧0),

(iii) the orientation of 𝑓(H).

The following discussion including two steps. We will show first that there are two isometries
sending (𝑥1, 𝑥2, 𝑧0) to (𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑧0)). Then the last condition on orientation tells the two
candidates apart from each other.

For the first step, it is enough to show that there are exactly two isometries sending (𝑥1, 𝑥2, 𝑧0)
to (0,∞, 𝑖). Recall that 𝑉0 is the vertical geodesic with end point 0 and ∞. Let 𝑧0 = 𝑥+ 𝑖𝑦 ∈ 𝜂.
We will follow the following three steps:

Step 1: Use the horizontal translation 𝑇−𝑥 to send 𝑉𝑥 to 𝑉0. The intersection between 𝑉0 and
the image 𝑇−𝑥(𝜂) is 𝑖𝑦.
Step 2: Use the rescaling of the Euclidean plane 𝜑𝑦−1 to send 𝑖𝑦 to 𝑖.
Step 3: Let 𝜃 denote the angle between the ray issued from 𝑖 ending at 0 and that ending at
𝑥′

1 = (𝜑𝑦−1 ∘ 𝑇−𝑥)(𝑥1) along the positive direction. Use rotation 𝜌− 𝜃
2

around 𝑖 to send the ray
ending at 𝑥′

1 to the ray ending at 1.

By taking the composition, we have the isometry 𝑓 = 𝜌− 𝜃
2

∘ 𝜑𝑦−1 ∘ 𝑇−𝑥.

Proposition 7.5.1
For any geodesic 𝜂 with end points 𝑥1 and 𝑥2, and any point 𝑧0 ∈ 𝜂, there exist exactly two
isometries 𝑓𝜂 and ̃︀𝑓𝜂, such that:

• 𝑥1 and 𝑥2 are sent to 0 and ∞ respectively;

• 𝑧0 is sent to 𝑖.

Proof. Let 𝑓1 and 𝑓2 be two isometries satisfying the above two conditions. Then the composition
𝑓 = 𝑓2 ∘ 𝑓−1

1 is an isometry of H such that it fixes all points in 𝑉0. This is because it preserves
𝑉0, and fixes one point 𝑖. Hence its action on 𝑉0 is either identity or reflection at 𝑖. Since the
end points 0 and ∞ are also fixed, the restriction of the map 𝑓 on 𝛾 is identity.
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We consider 𝑖 and 2𝑖 on 𝛾. Then each point 𝑤 ∈ H is on the hyperbolic circle centered
at 𝑖 of hyperbolic radius dH(𝑤, 𝑖) and on the hyperbolic circle centered at 2𝑖 of hyperbolic
radius dH(𝑤, 2𝑖). Since these circles are distinct Euclidean circles with Euclidean centers on
𝑉0, the number of their intersection points is either 1 or 2. Moreover, if it is 1, then the two
circles tangent to each other, hence the point 𝑤 ∈ 𝑉0. For any point 𝑤 outside of 𝑉0, the other
intersection point is −𝑤.

Since an isometry is continuous, then 𝑓(𝑤) = 𝑤 for all 𝑤 ∈ H or 𝑓(𝑤) = −𝑤 for all 𝑤 ∈ H.
If 𝑓 = 𝑖𝑑, then 𝑓1 = 𝑓2. If 𝑓 = 𝜄0 the reflection along 𝑉0, then 𝑓2 = 𝜄0 ∘ 𝑓1. We denote by 𝑓𝜂

the former and ̃︀𝑓𝜂 the latter.

Now back to the three conditions listed in the beginning. Let 𝑓 be any isometry of H. If we
know 𝑓(0), 𝑓(∞) and 𝑓(𝑖), then we have 𝑓 = 𝑓−1

𝜂 or 𝑓 = ̃︀𝑓−1
𝜂 where 𝜂 is the geodesics with

end points 𝑓(0) and 𝑓(∞) with orientation from 0 to ∞. The third condition about orientation
will tell us which one of the two we should have.

Moreover, the above discussion also shows that all isometries can be obtained using composi-
tions of 𝜄0, 𝑇𝑡’s, 𝜑𝜆’s, 𝜌𝜃’s. The isometries of the these three types can also be expressed as
compositions of reflections. Hence

Corollary 7.5.2
All isometries can be expressed as a composition of some reflections of H.

Corollary 7.5.3
All isometries preserve angles.

Proof. A reflection preserves angles.

Remark 7.5.4.
For any one familiar with Lie groups, the algorithm describes the KAN decomposition of the
Lie group SL(2,R). The KAK decomposition of SL(2,R) can bedescribed in a similar matter.
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8 2 × 2 Matrices associated to isometries of H

8.1 Matrices associated to reflections

From the discussion in last part, we can see that all isometries can be expressed as compositions
of reflections. We recall that a reflection along a geodesic 𝜂 of Euclidean radius 𝑟 with center 𝑥
can be expressed as:

𝜄𝜂(𝑧) = 𝑥𝑧 + 𝑟2 − 𝑥2

𝑧 − 𝑥
.

To such a reflection, we may associate a 2 × 2 matrix 𝐴𝜂 as follows

𝐴𝜂 =
[︃
𝑥 𝑟2 − 𝑥2

1 −𝑥

]︃
.

When 𝜂 = 𝑉𝑐 is a vertical geodesic, we then associate to 𝜄𝜂 the matrix

𝐴𝜂 =
[︃
1 2𝑐
0 −1

]︃
.

Let 𝜂1 and 𝜂2 be two geodesics. We denote their corresponding reflections by 𝜄1 and 𝜄2
respectively, and the matrices associated to these reflections by

𝐴1 =
[︃
𝑎1 𝑏1
𝑐1 𝑑1

]︃

and
𝐴2 =

[︃
𝑎2 𝑏2
𝑐2 𝑑2

]︃
respectively. We denote by 𝐴 = 𝐴2𝐴1 their product and let

𝐴 =
[︃
𝑎 𝑏

𝑐 𝑑

]︃
=
[︃
𝑎2𝑎1 + 𝑏2𝑐1 𝑎2𝑏1 + 𝑏2𝑑1
𝑐2𝑎1 + 𝑑2𝑐1 𝑐2𝑏1 + 𝑑2𝑑1

]︃

Proposition 8.1.1
The isometry 𝑓 = 𝜄2 ∘ 𝜄1 is given by the following formula:

𝑓(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.
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8 2 × 2 Matrices associated to isometries of H

Proof. We compute the expression of 𝑓 directly.

𝑓(𝑧) = (𝜄2 ∘ 𝜄1)(𝑧)
= 𝜄2(𝜄1(𝑧))

= 𝜄2

(︂
𝑎1𝑧 + 𝑏1
𝑐1𝑧 + 𝑑1

)︂

=
𝑎2

𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

+ 𝑏2

𝑐2
𝑎1𝑧+𝑏1
𝑐1𝑧+𝑑1

+ 𝑑2

= 𝑎2𝑎1𝑧 + 𝑎2𝑏1 + 𝑏2𝑐1𝑧 + 𝑏2𝑑1
𝑐2𝑎1𝑧 + 𝑐2𝑏1 + 𝑑2𝑐1 + 𝑑2𝑑1

= 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

More generally, let 𝜄1, ..., 𝜄𝑛 be the reflections with respect to 𝜂1, ..., 𝜂𝑛 respectively. Let
𝜓 : C → C be the complex conjugate map. Let 𝐴1, ..., 𝐴𝑛 denote the matrices associated to
𝜄1, ..., 𝜄𝑛 respectively. Let

𝐴 = 𝐴𝑛 · · ·𝐴1 =
[︃
𝑎 𝑏

𝑐 𝑑

]︃
.

Then we have

Proposition 8.1.2
The isometry 𝑓 = 𝜄𝑛 ∘ · · · ∘ 𝜄1 is given by the following formula:

𝑓(𝑧) = 𝜓𝑛
(︂
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

)︂
.

Proof. Let

𝐴𝜂 =
[︃
𝑠 𝑡

𝑝 𝑞

]︃
be the matrix associated to the reflection along 𝜂. Then the reflection 𝜄𝜂 can be written as the
following composition:

𝜄𝜂(𝑧) = (𝜓 ∘ ℎ𝜂)(𝑧) = 𝜓

(︂
𝑠𝑧 + 𝑡

𝑝𝑧 + 𝑞

)︂
.

where ℎ𝜂(𝑧) = (𝑠𝑧 + 𝑡)/(𝑝𝑧 + 𝑞). Moreover since all coefficient 𝑠, 𝑡, 𝑝 and 𝑞 are real numbers,
we have 𝜓 and ℎ𝜂 commute with each other.

Now we rewrite all reflections 𝜄1, ..., 𝜄𝑛 as compositions 𝜓 ∘ ℎ1, ..., 𝜓 ∘ ℎ𝑛. Then we have the
following computation:

𝑓 = 𝜄𝑛 ∘ · · · ∘ 𝜄1
= (𝜓 ∘ ℎ𝑛) ∘ · · · ∘ (𝜓 ∘ ℎ1).

Since 𝜓 commutes with all 𝑓1, ..., 𝑓𝑛, we can rewrite the above formula as follows

𝑓 = 𝜓𝑛 ∘ (𝑓𝑛 ∘ · · · ∘ 𝑓1).
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8 2 × 2 Matrices associated to isometries of H

Using a similar computation as in the proof of Proposition 8.1.1 and induction, we can show
that

ℎ𝑛 ∘ · · · ∘ ℎ1(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

Hence we have the lemma.

Another observation is about the sign of the determinant of matrix 𝐴

Proposition 8.1.3
The determinant of 𝐴 is non-zero, and it is positive if 𝑛 is even and negative if 𝑛 is odd.

Proof. Let 𝐴𝜂 is the matrix associated to the reflection along 𝜂. If 𝜂 is a circular geodesic, then
the determinant of 𝐴𝜂 is −𝑟2 where 𝑟 is the Euclidean radius of the geodesic 𝜂 which is non-zero.
If 𝜂 is a vertical geodesic, the determinant of 𝐴 is −1. By the property of determinant, since
𝐴 is the product of 𝑛 matrices with strictly negative determinants, the determinant of 𝐴 is
non-zero and the sign depending on the number 𝑛: positive if 𝑛 is even and negative if 𝑛 is
odd.

Recall that the general linear group GL(2,R) consists of all 2 × 2 invertible matrices. The
above lemma has the following immediate corollary.

Corollary 8.1.4
The matrix 𝐴 belongs to GL(2,R).

8.2 Isometric action of GL(2,R) on H

Reciprocally, given a matrix of GL(2,R), we may consider to define a map on C ∖R in a similar
fashion. In the following part, we would like to show that in fact each such map when restricted
to H is an isometry of H.

More precisely, let

𝐴 =
[︃
𝑎 𝑏

𝑐 𝑑

]︃
.

We define ℎ𝐴 : C ∖ R → C ∖ R by
ℎ𝐴(𝑧) = 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
.

Notice that there are two connected components of C ∖ R: the upper half plane H and the
lower half plane L.

Proposition 8.2.1
If det𝐴 > 0, then ℎ𝐴 preserves H and L respectively. If det𝐴 < 0, then ℎ𝐴 sends points in H
(resp. L) to L (reps. H).
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Proof. Notice that the difference between points in H and points in L is the sign of their
imaginary part. Hence we consider the quantity ℎ𝐴(𝑧) − ℎ𝐴(𝑧) for each 𝑧 ∈ C ∖ R.

ℎ𝐴(𝑧) − ℎ𝐴(𝑧)

=𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
− 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

=(𝑎𝑐|𝑧|2 + 𝑎𝑑𝑧 + 𝑏𝑐𝑧 + 𝑏𝑑) − (𝑎𝑐|𝑧|2 + 𝑎𝑑𝑧 + 𝑏𝑐𝑧 + 𝑏𝑑)
|𝑐𝑧 + 𝑑|2

=(𝑎𝑑− 𝑏𝑐)(𝑧 − 𝑧)
|𝑐𝑧 + 𝑑|2

= det𝐴 Im 𝑧

|𝑐𝑧 + 𝑑|2

Hence if det𝐴 > 0, then ℎ𝐴(𝑧) and 𝑧 have the same sign of the imaginary part. If det𝐴 < 0,
then ℎ𝐴(𝑧) and 𝑧 have different signs of the imaginary part.

Notice that the complex conjugate exchanges H and L. In order to define a map from H to
itself when det𝐴 is negative, we take the composition of ℎ𝐴 with the complex conjugate map 𝜓.
Moreover, since all coefficients in 𝐴 are real, the map ℎ𝐴 and 𝜓 commute with each other. We
denote by 𝑓𝐴 = ℎ𝐴 if det𝐴 > 0 and 𝑓𝐴 = ℎ𝐴 ∘ 𝜓 if det𝐴 < 0. The above lemma shows that
the restriction of 𝑓𝐴 to H is well defined. We will denote this restriction also by 𝑓𝐴.

Proposition 8.2.2
For any 𝐴 ∈ GL(2,R), the map 𝑓𝐴 is an isometry of H.

Proof. It is enough to check for any 𝐴 ∈ GL(2,R), for any pair of points 𝑤 and 𝑧 in H, we
have: ⃒⃒⃒⃒

𝑓𝐴(𝑤) − 𝑓𝐴(𝑧)
𝑓𝐴(𝑤) − 𝑓𝐴(𝑧)

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑤 − 𝑧

𝑤 − 𝑧

⃒⃒⃒⃒
.

Since the complex conjugacy map 𝜓 is complex linear, it is enough to check the following
equality: ⃒⃒⃒⃒

ℎ𝐴(𝑤) − ℎ𝐴(𝑧)
ℎ𝐴(𝑤) − ℎ𝐴(𝑧)

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑤 − 𝑧

𝑤 − 𝑧

⃒⃒⃒⃒
.

The left hand side can be computed as follows:⃒⃒⃒⃒
ℎ𝐴(𝑤) − ℎ𝐴(𝑧)
ℎ𝐴(𝑤) − ℎ𝐴(𝑧)

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑎𝑤 + 𝑏

𝑐𝑤 + 𝑑
− 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

⃒⃒⃒⃒
/

⃒⃒⃒⃒
𝑎𝑤 + 𝑏

𝑐𝑤 + 𝑑
− 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

⃒⃒⃒⃒
=
⃒⃒⃒⃒(𝑎𝑐𝑤𝑧 + 𝑎𝑑𝑤 + 𝑏𝑐𝑧 + 𝑏𝑑) − (𝑎𝑐𝑤𝑧 + 𝑎𝑑𝑤 + 𝑏𝑐𝑧 + 𝑏𝑑)
(𝑎𝑐𝑤𝑧 + 𝑎𝑑𝑤 + 𝑏𝑐𝑧 + 𝑏𝑑) − (𝑎𝑐𝑤𝑧 + 𝑎𝑑𝑤 + 𝑏𝑐𝑧 + 𝑏𝑑)

⃒⃒⃒⃒
=
⃒⃒⃒⃒(𝑎𝑑− 𝑏𝑐)(𝑤 − 𝑧)
(𝑎𝑑− 𝑏𝑐)(𝑤 − 𝑧)

⃒⃒⃒⃒
=
⃒⃒⃒⃒
𝑤 − 𝑧

𝑤 − 𝑧

⃒⃒⃒⃒
.
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Hence 𝑓𝐴 is an isometry, for any 𝐴 ∈ GL(2,R).

Proposition 8.2.3
For any matrices 𝐴 and 𝐵 in GL(2,R), we have 𝑓𝐵𝐴 = 𝑓𝐵 ∘ 𝑓𝐴.

Proof. Since the complex conjugate map 𝜓 commutes with ℎ𝐴 for any 𝐴 ∈ GL(2,R), it is
enough to check that for any 𝐴 and 𝐵 in GL(2,R), we have ℎ𝐵𝐴 = ℎ𝐵 ∘ℎ𝐴. This can be shown
by a computation similar to the one in the proof of Proposition 8.1.1.

Proposition 8.2.4
By sending 𝐴 ∈ GL(2,R) to 𝑓𝐴 ∈ Isom(H), we define a group homomorphism from GL(2,R) to
Isom(H). It is surjective and the kernel is given by the subgroup of scalar matrices in GL(2,R).

Proof. Notice that the identity matrix I2 ∈ GL(2,R) is sent to identity map of H by definition.
The previous lemma helps us check that the map sending 𝐴 to 𝑓𝐴 preserves the group structure.
Hence this map is a group homomorphism.

The discussion in the previous section shows that any isometry 𝑓 of H can be associated a
matrix 𝐴𝑓 . And the isometry 𝑓 is the image of 𝐴𝑓 under the group homomorphism. Hence
this homomorphism is surjective.

We may check immediately that the subgroup of GL(2,R) consisting of scalar matrices is
contained in the kernel.

𝑓𝜆I2(𝑧) = 𝜆𝑧

𝜆
= 𝑧.

To see it is all, we may consider the extension of the isometry 𝑓𝐴 on H to a map on H. We will
still denote it by 𝑓𝐴. In particular, we consider the 𝑓𝐴-image of 0 and ∞ and 1.

Let
𝐴 =

[︃
𝑎 𝑏

𝑐 𝑑

]︃
.

Then 𝑓𝐴(0) = 𝑏/𝑑, 𝑓𝐴(∞) = 𝑎/𝑐, and 𝑓𝐴(1) = (𝑎 + 𝑏)/(𝑐 + 𝑑). Hence if 𝐴 and 𝐵 are not
different by a scalar multiplication, then one of the ratio will be different. Hence one of the
three geodesics connecting pairs of the three points 0, 1 and ∞ will sent to different places,
which means that𝑓𝐴 ≠ 𝑓𝐵 as maps in H. Hence the kernel is the subgroup of scalar matrices in
GL(2,R).

We denote by PGL(2,R) the quotient group:

GL(2,R)/{𝜆I2 | 𝜆 ∈ R ∖ {0}}.

i.e. two matrices 𝐴 and 𝐵 are equivalent to each other if and only if there exists a non-zero
real number 𝜆 such that 𝐴 = 𝜆𝐵. This is not surprise, since we have

𝑓𝐵(𝑧) = 𝑓𝜆𝐴(𝑧) = 𝜆𝑎𝑧 + 𝜆𝑏

𝜆𝑐𝑧 + 𝜆𝑑
= 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
= 𝑓𝐴(𝑧).

Another way to define the group PGL(2,R) is as follows:

PGL(2,R) := {𝐴 ∈ GL(2,R) | | det𝐴| = 1}/{±I2}.
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It is called the projective general linear group.

Corollary 8.2.5
The isometry group Isom(H) of H is isomorphic to PGL(2,R).

Notice that the elements in PGL(2,R) can be classified into two types according to their
determinant to be 1 or −1. In particular, those with determinant 1 form a subgroup of
PGL(2,R), which is called the projective special linear group:

PSL(2,R) := {𝐴 ∈ GL(2,R) | det𝐴 = 1}/{±I2}.

Recall that all matrices with determinant 1 for a subgroup of GL(2,R), which is called the
special linear group:

SL(2,R) := {𝐴 ∈ GL(2,R) | det𝐴 = 1}.

Hence we have PSL(2,R) = SL(2,R)/{±I2}. By the discussion in the previous sections, we
have

Corollary 8.2.6
The orientation preserving isometry group Isom+(H) of H is isomorphic to PSL(2,R).

Definition 8.2.7
A Möbius transformation 𝑓 on H is a map of the following form:

𝑓 : H → H

𝑧 ↦→ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

where 𝑎, 𝑏, 𝑐 and 𝑑 are real numbers such that 𝑎𝑑− 𝑏𝑐 > 0.

Alternatively, we may call the orientation preserving isometries of H the Möbius transforma-
tions on H.

Remark 8.2.8.
Originally, a Möbius transformation is a conformal map from ̂︀C = C ∪ {∞} (Riemann sphere)
to itself. The general form of a Möbius transformation is as follows:

𝑓 : ̂︀C → ̂︀C
𝑧 ↦→ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑

where 𝑎, 𝑏, 𝑐 and 𝑑 are complex numbers such that 𝑎𝑑− 𝑏𝑐 ̸= 0.
The orientation preserving isometries considered here are precisely the restriction of those

Möbius transformations on ̂︀C preserving the upper half plane. Here we abuse the name and
call them the Möbius transformations on H.
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Proposition 8.2.9
A Möbius transformation can be determined by the image of either one of the following three
sets:

(i) two distinct points in H;

(ii) one point in H, and one point in 𝜕H.

(iii) three distinct points in 𝜕H.

Proof. Roughly speaking, the proof is given by a dimension counting.
Let 𝐴 ∈ SL(2,R) be given by [︃

𝑎 𝑏

𝑐 𝑑

]︃
.

The Möbius transformation 𝑓𝐴 is determined by the coefficients 𝑎, 𝑏, 𝑐 and 𝑑. Given any point
𝑧 ∈ H and its 𝑓𝐴-image 𝑤 ∈ H, we have the following equality

𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
= 𝑤,

which can be rewritten as
𝑎𝑧 + 𝑏 = 𝑐𝑤𝑧 + 𝑑𝑤,

which is either a linear equation of 𝑎, 𝑏, 𝑐 and 𝑑 if 𝑧 ∈ 𝜕H, or two linear equations of 𝑎, 𝑏, 𝑐
and 𝑑 if 𝑧 ∈ H, by considering the real part and the imaginary part.

Notice that by choosing different 𝑧, we have non-equivalent linear equations for 𝑎, 𝑏, 𝑐 and 𝑑.
More precisely, let 𝑓𝐴(𝑧) = 𝑤 and 𝑓𝐴(𝑧′) = 𝑤′. Then 𝑧 : 1 : 𝑧𝑤 : 𝑤 = 𝑧′ : 1 : 𝑧′𝑤′ : 𝑤′ if and
only if 𝑧 = 𝑧′ and 𝑤 = 𝑤′.

Since we have an extra equation 𝑎𝑑− 𝑏𝑐 = 1, we only need three more equations, hence the
lemma.

Remark 8.2.10.
Another proof is given in the previous sections when we tried to show that all isometries can
be obtained by composition of reflections. The rough idea is that if we know the image of two
distinct points in H, we know the images of points on the geodesic passing through this two
points. Then each point out side of this geodesic can be determined by its distance to this
geodesic and its projection to this geodesic. Hence the images of two points are enough to
determine the Möbius transformation.

Similarly, the images of two distinct ideal points can determine the image of the geodesic
connecting them up to a translation along the geodesic. By knowing image of one more point
in H different from these two ideal points, we know the image of its projection to this geodesic,
hence the images of all points on this geodesic. Then we repeat the above discussion and
obtained the image of all points in H, hence the Möbius transformation.
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8.3 Classification of Möbius transformations

One advantage of considering matrices associated to isometries is that we can use the classifica-
tion of matrices to describe the classification of Möbius transformations.

Previously, we have discussed all types of Möbius transformations which can be obtained
by taking a compositions of two reflections. In fact, this is the classification of all Möbius
transformation. We can see this using the Jordan form of a matrix. Recall that up to a
multiplication with −I2, any matrix in SL(2,R) is conjugate to one of the following three forms:[︃

𝜆 0
0 𝜆−1

]︃
,

[︃
1 1
0 1

]︃
,

[︃
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

]︃
.

Hence any Möbius transformation can be conjugated to one which can be written as a composi-
tion of two reflections. Hence every non identity Möbius transformation is of one of the three
types: hyperbolic, elliptic, parabolic.

Remark 8.3.1.
Since we consider 2 × 2 matrices, for any diagonal matrix, it can be conjugated to its inverse by[︃

0 1
−1 0

]︃
.

Hence without loss of generality, we may always assume that 𝜆 ≥ 1.

In the following we would like to see this in a different but related point of view. Notice that
all Möbius transformations can be extended to a continuous map on H. By Brouwer fixed point
theorem, each Möbius transformation has some fixed points in H.

Let
𝐴 =

[︃
𝑎 𝑏

𝑐 𝑑

]︃
̸= ±I2

be a matrix in SL(2,R) and 𝑓𝐴 be the associated Möbius transformation. We consider the
following equation of 𝑧:

𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
= 𝑧,

which can be rewritten as follows:

𝑐𝑧2 + (𝑑− 𝑎)𝑧 + 𝑏 = 0.

• If 𝑐 = 0, then ∞ is one fixed point,
– if 𝑑 − 𝑎 ≠ 0, the point 𝑧 = −𝑏/(𝑑 − 𝑎) is also a solution, hence we have two fixed

points on 𝜕H;
– if 𝑑− 𝑎 = 0, then there is no solution for the equation (𝑑− 𝑎)𝑧 + 𝑏 = 0, and ∞ is

the only fixed point;

• If 𝑐 ̸= 0, then we have a quadratic equation with solutions 𝑧1 and 𝑧2 in C,
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– If 𝑧1 = 𝑧2, then this equation has only one real solution which is the fixed point of
𝑓𝐴 in 𝜕H;

– If 𝑧1 and 𝑧2 are different and both real, then they are the fixed points of 𝑓𝐴 in 𝜕H;
– If 𝑧1 and 𝑧2 are conjugate to each other, then there is only one contained in H which

is the fixed point of 𝑓𝐴.

Remark 8.3.2.
To see ∞ is a fixed point, we may consider 𝑧𝑛 a sequence of points in H tends to ∞, as 𝑛 tend
to infinity. If the value 𝑓𝐴(𝑧𝑛) also tends to ∞, as 𝑛 tend to infinity, we say that ∞ is fixed by
𝑓𝐴.

By Proposition 8.2.9, we can conclude that there are three types of fixed point set of 𝑓𝐴:

• 2 distinct fixed points 𝜕H;

• 1 fixed point in H;

• 1 fixed point in 𝜕H,

moreover, the fixed point(s) in each case is(are) the only fixed point(s) of 𝑓𝐴. Notice that 𝑓𝐴

and its inverse have the same fixed points.
In particular, the type of set of fixed points induces a classification of 𝑓𝐴:

• In the first case, if 𝑥1 and 𝑥2 are two distinct fixed points of 𝑓𝐴 in 𝜕H, then 𝑓𝐴 preserves
the geodesic 𝛾 determined by 𝑥1 and 𝑥2, and it is hyperbolic;

• In the second case, if 𝑧 ∈ H is the only fixed point of 𝑓𝐴, then 𝑓𝐴 fixes all circles centered
at 𝑧. It is a rotation of the hyperbolic plane, and hence elliptic;

• In the third case, if 𝑥 ∈ 𝜕H is the only fixed point of 𝑓𝐴, then 𝑓𝐴 must preserve all
horocycles centered at 𝑥.

To see why this is true for the third case, we may assume that 𝑥 = ∞. Then 𝑓𝐴 sends horizontal
lines to horizontal lines. Let 𝑧 = 𝑖𝑦 ∈ H. Assume that its image is 𝑧′ = 𝑥+ 𝑖𝑦′. By compose 𝑇−𝑥

to 𝑓𝐴, we move back 𝑧′ to the imaginary axis, hence get an isometry preserving the imaginary
axis. Hence it is a rescaling. Then 𝑓𝐴 can be written as a composition 𝑇−𝑥 ∘ 𝜑𝜆 where 𝜆 = 𝑦′/𝑦.
The expression of 𝑓𝐴 is then 𝑓𝐴(𝑧) = 𝜆𝑧+ 𝑥. If 𝜆 > 1, then we consider the inverse of 𝑓𝐴 which
is 𝑓−1

𝐴 (𝑧) = (𝑧 − 𝑥)/𝜆. Notice that 𝑓−𝑛
𝐴 (𝑧) form a sequence in H which converges to a point in

R. Hence 𝑓−1
𝐴 has a fixed point different from ∞ in R. Hence 𝑓𝐴 has two distinct fixed points

which is a contradiction. Hence if 𝑓𝐴 has one fixed point on 𝜕H, it is parabolic.
We conclude as follows: a non identity Möbius transformation 𝑓𝐴 is

• hyperbolic, if it has two distinct fixed points on 𝜕H/it can be written as a decomposition
of two reflections whose fixed geodesics are disjoint in H/we have |tr𝐴| > 2;

• elliptic, if it has one fixed points in H/it can be written as a decomposition of two
reflections whose fixed geodesics intersect each other/we have |tr𝐴| < 2;

66



8 2 × 2 Matrices associated to isometries of H

• parabolic, if it has one fixed points on 𝜕H/it can be written as a decomposition of two
reflections whose fixed geodesics share an end point/we have |tr𝐴| = 2;

Definition 8.3.3
The geodesic preserved by a hyperbolic Möbius transformation 𝑓𝐴 is called its axis.

8.4 Translation distance of a Möbius transformation

Let 𝐴 ∈ SL(2,R) and 𝑓𝐴 be the associated Möbius transformation.

Definition 8.4.1
The translation distance 𝑙𝐴 of 𝑓𝐴 is defined by the following quantity:

𝑙𝐴 = inf{dH(𝑧, 𝑓𝐴(𝑧)) | 𝑧 ∈ H}.

Proposition 8.4.2
If 𝑓𝐴 is hyperbolic, then the translation distance is non zero and realized by the point on its axis.

Proof. Let 𝜂𝐴 be the axis of 𝑓𝐴. Let 𝑤 be any point in H. We consider 𝑓𝐴(𝑤) and denote by
𝑧 and 𝑓𝐴(𝑧) the projections of 𝑤 and 𝑓𝐴(𝑤) to 𝜂𝐴 respectively. Let 𝛾𝑤 denote the geodesic
passing 𝑤 and 𝑧 which is orthogonal to 𝜂𝐴.

We have dH(𝑤, 𝑓𝐴(𝑤)) > dH(𝑧, 𝑓𝐴(𝑧)) = dH(𝛾𝑤, 𝑓𝐴(𝛾𝑤)). On the other hand, since 𝑓𝐴 is an
isometry, all points on its axis 𝜂𝐴 moved by a same directed distance along 𝜂𝐴. Hence the
translation distance of 𝑓𝐴 is realized by any point on 𝜂𝐴.

If 𝑓𝐴 is hyperbolic, the matrix 𝐴 can be conjugated to the following one up to a multiplication
with −I2: [︃

𝜆𝐴 0
0 𝜆−1

𝐴

]︃
,

where 𝜆𝐴 > 1. The corresponding Möbius transformation is 𝜑𝜆𝐴
. Its axis is 𝑉0. For any point

𝑖𝑦 ∈ 𝑉0, its image is 𝑖𝜆2
𝐴𝑦. Hence we may verify the following relation:

𝜆𝐴 = exp
(︂
𝑙𝐴
2

)︂
.

Proposition 8.4.3
If 𝑓𝐴 is elliptic, its translation distance is 0 and realized by its fixed point.

Proof. By definition, the translation distance 𝑙𝐴 is always greater or equals to 0. Let 𝑧𝐴 be its
fixed point. It realizes the translation distance of 𝑙𝐴. Since it is the only fixed point of 𝑓𝐴, it is
the only point realizes the translation distance of 𝑓𝐴.
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Proposition 8.4.4
If 𝑓𝐴 is parabolic, the its translation distance is 0 and not realizable.

Proof. Let 𝑥 be its fixed point on 𝜕H. The map 𝑓𝐴 sends a geodesic 𝛾 with one end point 𝑥 to
a geodesic denoted by 𝑓𝐴(𝛾) which also has one end point 𝑥. Moreover, for any horocycle 𝐻
centered at 𝑥, its intersection 𝑧 with 𝛾 is sent to its intersection with 𝑓𝐴(𝛾), denoted by 𝑓(𝑧).

In the previous part, when we discuss the boundary at infinity, we have shown that dH(𝑧, 𝑓(𝑧))
tends to 0 as 𝑧 tends to 𝑥 along 𝛾. Hence the translation distance of 𝑓𝐴 is 0. However, the only
fixed point of 𝑓𝐴 is 𝑥, hence there is no point in H realizing 𝑙𝐴.

8.5 Triple transitivity of Möbius transformations on 𝜕H

In this part, we would like to talk about the action of the group Isom(H) on 𝜕H,

(𝜕H)(2) := {(𝑥, 𝑥′) ∈ 𝜕H × 𝜕H | 𝑥 ̸= 𝑥′},

and
(𝜕H)(3) := {(𝑥, 𝑥′, 𝑥′′) ∈ 𝜕H × 𝜕H × 𝜕H | 𝑥 ̸= 𝑥′, 𝑥′ ̸= 𝑥′′, 𝑥 ̸= 𝑥′′}.

In general, let 𝐺 be a group and 𝑋 be a set.

Definition 8.5.1
The group 𝐺 admits an action on 𝑋 if for each 𝑔 ∈ 𝐺, there is a map 𝑓𝑔 : 𝑋 → 𝑋, such that:

• for any 𝑥, we have 𝑓𝑖𝑑(𝑥) = 𝑥;

• for any 𝑔 and 𝑔′, we have 𝑓𝑔′𝑔 = 𝑓𝑔′ ∘ 𝑓𝑔.

We assume that 𝐺 acts on 𝑋.

Definition 8.5.2
An orbit of the 𝐺-action of 𝑥 on 𝑋 is the subset of 𝑋 given by {𝑓𝑔(𝑥) | 𝑔 ∈ 𝐺}.

Definition 8.5.3
The action of 𝐺 on 𝑋 is said to be transitive if for any pair of elements 𝑥 and 𝑥′ in 𝑋, there
exists an element 𝑔 of 𝐺, such that 𝑓𝑔(𝑥) = 𝑥′.

Remark 8.5.4.
The action is transitive is equivalent to the fact that there is only one orbit.

Definition 8.5.5
The action of 𝐺 on 𝑋 is said to be free, if for any 𝑥 ∈ 𝑋 and any 𝑔 ∈ 𝐺, such that 𝑓𝑔(𝑥) = 𝑥,
then 𝑔 is the identity element in 𝐺
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Definition 8.5.6
For any element 𝑥 ∈ 𝑋, the stabilizer subgroup 𝐺𝑥 of 𝐺 is defined to be the collection of
elements 𝑔, such that 𝑓𝑔(𝑥) = 𝑥.

Remark 8.5.7.
One can show that if a group 𝐺 acts on 𝑋 transitively, the stabilizer subgroups of points in 𝑋
are isomorphic to each other. Moreover, the action is free if and only if the stabilizer subgroup
of a point in 𝑋 is trivial.

Our previous discussion suggests that there are well defined actions of Isom(H) on 𝜕H, (𝜕H)(2)

and (𝜕H)(3). All these actions are all transitive. Hence the stabilizer subgroups for different
points isomorphic to each other.

Notice that the first two action are not free. The stabilizer subgroup for a point in 𝜕H is
isomorphic to the upper triangular subgroup of PGL(2,R) (the stabilizer subgroup for ∞). The
stabilizer subgroup of a point in (𝜕H)(2) is isomorphic to the diagonal subgroup of PGL(2,R)
(the stabilizer subgroup for (0,∞)). The last action is free, i.e. the stabilizer subgroup of a
point in (𝜕H)(3) is trivial.

If we restrict ourselves to the subgroup Isom+(H), then the action Isom+(H) on 𝜕H, (𝜕H)(2)

have similar property as Isom(H)-action: being transitive; stabilizer subgroups isomorphic to
upper triangular subgroup and diagonal subgroup of PSL(2,R) (not PGL(2,R)) respectively.

The Isom+(H)-action on (𝜕H)(3) is slightly different from the Isom(H)-action. There are two
orbits corresponding to the different cyclic order of a triple of distinct point on 𝜕H, for example
(0, 1,∞) and (0,∞, 1). We consider the orientation on 𝜕H following the orientation on the
real axis, and denote by (𝜕H)(3)

+ the subset of (𝜕H)(3) consisting of triples whose cyclic order
coincide with the orientation on 𝜕H. Then Isom+(H)-action on (𝜕H)(3)

+ is transitive and free.

8.6 Comments

From now on, it makes sense to talk about geometric objects in H without making its position
precise. Alternatively, when we talk about a geometric object, we can always consider it to
be at some position which is convenient for us to do computations. For example, later when
we talk about disks or circles in the Poincaré disk model, it is always convenient to put the
center at the origin; when we talk about triangles or more general polygons in H, it is always
convenient to put one side to be on the imaginary axis 𝑉0.
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9 Poincaré disk model D

9.1 How to put the hyperbolic plane in the Euclidean plane in a
conformal way

By our previous computation, the hyperbolic plane can be described using polar coordinates
(𝑅, 𝜃) of the plane R2 with the following metric:

d𝑠2
H = d𝑅2 + sinh2𝑅 d𝜃2.

We would like to send this plane to the Euclidean plane, such that:

(i) The origin is sent to the origin;

(ii) A circle centered at the origin is sent to a circle centered at the origin keeping the central
angle unchanged;

(iii) Radius are sent to radius.

(iv) The hyperbolic metric is written as d𝑠H(𝑅, 𝜃) = 𝑓(𝑅) d𝑠E(𝑟(𝑅), 𝜃).

Recall that the Euclidean metric can be described as follows:

d𝑠2
E = d𝑟2 + 𝑟2 d𝜃2.

If we try to send a hyperbolic circle of radius 𝑅 to an Euclidean circle of radius 𝑅, then
along the radius direction, the dilatation of the metric is 1 and along the circular direction, the
dilatation factor is 𝑅/ sinh𝑅.

On the other hand, if we try to send a hyperbolic circle of radius 𝑅 to an Euclidean circle
of the same length, then the dilatation of the metric along the circular direction is 1, but the
dilatation of the metric along the radius direction is sinh𝑅/𝑅.

Hence, we should consider a more complicated way to achieve our goal. Assume that the
point (𝑅, 𝜃) ∈ H is sent to (𝑟(𝑅), 𝜃) ∈ E. Moreover, we assume that 𝑟(𝑅) is differentiable. Then
we can rewrite the Euclidean metric as:

d𝑠2
E =

(︂ d𝑟
d𝑅

)︂2
d𝑅2 + 𝑟(𝑅) d𝜃2.

Then the hyperbolic metric is

d𝑠2
H = 𝑓(𝑅)2

(︂ d𝑟
d𝑅

)︂2
d𝑅2 + 𝑓(𝑅)2𝑟2(𝑅) d𝜃2 = d𝑅2 + sinh2𝑅 d𝜃2.

Hence we have the following relation:

d𝑟
𝑟

= d𝑅
sinh𝑅.
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By solving this ODE, we have

log 𝑟(𝑅) = log 𝑐𝑒
𝑅 − 1
𝑒𝑅 + 1 ,

where 𝑐 > 0 is a constant.
Without loss of generality, we may assume that 𝑐 = 1. Then the point (𝑅, 𝜃) ∈ H is sent to

(𝑟, 𝜃) with

𝑟(𝑅) = 𝑒𝑅 − 1
𝑒𝑅 + 1 .

In particular, we can see that the range of 𝑟 is [0, 1). From this, we can express 𝑅 in term of 𝑟:

𝑅(𝑟) = log 1 + 𝑟

1 − 𝑟
.

Now we rewrite the hyperbolic metric with respect to the Euclidean parameters:

d𝑠2
H = d𝑅2 + sinh2𝑅 d𝜃2

=
(︂ 2

1 − 𝑟2

)︂2
( d𝑟2 + 𝑟2 d𝜃2).

9.2 Description of D

The set of this model is given by the unit disk of C:

D = {𝑟𝑒𝑖𝜃 ∈ C | 0 ≤ 𝑟 < 1, 0 ≤ 𝜃 < 2𝜋}.

In this model, we use the polar coordinates of C. The hyperbolic metric on D is given by

d𝑠D = 2
√

d𝑟2 + 𝑟2 d𝜃2

1 − 𝑟2 .

Since both H and D are different models of a same space, one may wonder if there is a
transformation map from one to the other. The answer is yes and the formula is given by

𝑓D : H → D,

𝑧 ↦→ 𝑧 − 𝑖

𝑧 + 𝑖
.

Its inverse is given by
𝑓−1
D : D → H,

𝑧 ↦→ 𝑖
1 + 𝑤

1 − 𝑤
.

The transformation 𝑓D is called Cayley transformation and it is an isometry between the two
models of the hyperbolic plane.

Remark 9.2.1.
Since we can compose an isometry of D and precompose an siometry of H to 𝑓D to get new
isometry sending H to D, the isometry between these two models are far from being unique.
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To see the connecting between D and H, we consider the three dimensional Euclidean
space. We denote by (𝑥, 𝑦, 𝑡) the coordinate of a point. We consider the stereographic
projection 𝜋 of the unit sphere to 𝑃𝑥𝑦 the 𝑥𝑦-plane from the point (0, 0, 1).

If we consider 𝐻𝑆1 the half unit sphere defined by the condition 𝑦 > 0, its image will
be the half plane in 𝑃𝑥𝑦 given by 𝑦 > 0 which we consider to be H. If we consider 𝐻𝑆2
the half unit sphere defined by condition 𝑡 < 0, the image is the unit disk in 𝑃𝑥𝑦 which
we consider to be D. Let 𝜌 denote the rotation of 𝑅3 fixing the line passing (1, 0, 0) and
(−1, 0, 0), and it sends 𝐻𝑆1 to 𝐻𝑆2. Then the map from H to D can be written as the
restriction of the composition 𝜋 ∘ 𝜌 ∘ 𝜋−1 on H.

Using the map 𝑓D, we may check that the complete geodesics in this model consists of two
types:

(i) Diameters of D;

(ii) Circular arcs on circles intersecting 𝜕D orthogonally.

Figure 9.2.1: Geodesics in H and D

For any points 𝑤 and 𝑧 in D, the distance between them is given by

dH(𝑤, 𝑧) = log |1 − 𝑤𝑧| + |𝑤 − 𝑧|
|1 − 𝑤𝑧| − |𝑤 − 𝑧|

Same as in H, the circles in D are also Euclidean circles. Horocycles in D are circles tangent
to a point on the unit circle. Given a geodesic 𝛾 in D with end point 𝑒𝑖𝜃 and 𝑒𝑖𝜉, all hypercircle
centered at 𝛾 are given by the intersections between circles passing 𝑒𝑖𝜃 and 𝑒𝑖𝜉 with D.

9.3 Isometries on D

Since 𝑓D is isometry from H to D, given any isometry 𝑓 on H, the composition 𝑓D ∘ 𝑓 ∘ 𝑓−1
D is

an isometry on D. In this way we can get all isometry of D. The isometries of D preserving the
orientation are called the Möbius transformations on D.
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Figure 9.2.2: Horocycles in H and D

Remark 9.3.1.
Similar to the Möbius transformation on H, the Möbius transformations on D are the restrictions
of the Möbius transformations of ̂︀C preserving 𝐷 on 𝐷.

Notice that the map 𝑓D is also a Möbius transformation of ̂︀C. We may associated the matrix

𝐴D =
[︃
1 −𝑖
1 𝑖

]︃

to 𝑓D. We consider the group GL(2,R) as a subgroup of GL(2,C), then we consider the group
obtained by taking conjugacy of SL(2,R) by the 𝐴D. The resulting group is denoted by

U(1, 1) :=
{︃[︃

𝑤 𝑧

𝑧 𝑤

]︃
∈ GL(2,C)

⃒⃒⃒⃒
⃒ |𝑤|2 − |𝑧|2 = 1

}︃
.

The orientation preserving isometry group of D is then isomorphic to

PU(1, 1) :=
{︃[︃

𝑤 𝑧

𝑧 𝑤

]︃
∈ GL(2,C)

⃒⃒⃒⃒
⃒ |𝑤|2 − |𝑧|2 = 1

}︃
/{±𝐼𝑑}.

Remark 9.3.2.
The definition of U(1, 1) is similar to the one for unitary group 𝑈(2). We denote by 𝐽 the
following matrix: [︃

1 0
0 −1

]︃
.

Then we may define U(1, 1) as the following set:

U(1, 1) := {𝑀 ∈ GL(2,C) | 𝑀 𝑡
𝐽𝑀 = 𝐽},

where 𝑀 𝑡 is the transpose of 𝑀 .
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9 Poincaré disk model D

9.4 Compute lengths of circles and areas of disks

Up to applying an isometry, it is enough to consider circles with center at the origin. Let 𝐶 be
a circle with Euclidean radius 𝑟. Recall the following relations:

𝑅 = log 1 + 𝑟

1 − 𝑟
.

and
𝑟 = 𝑒𝑅 − 1

𝑒𝑅 + 1 = tanh 𝑅2 .

Then its length can be computed as follows:

𝑙D(𝐶) =
∫︁ 2𝜋

0

2𝑟 d𝜃
1 − 𝑟2

= 4𝜋𝑟
1 − 𝑟2

=
4𝜋 tanh 𝑅

2
1 − tanh2 𝑅

2

= 2𝜋 sinh𝑅.

The area of the disk bounded by 𝐶 can be computed as before.
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10 Cross ratios

In this part, we would like to introduce a useful tool in the study of hyperbolic geometry: cross
ratios among ideal points.

10.1 See same directions from different reference points

Consider two geodesic rays starting from a point ending at two distinct ideal points. The angle
between them may change as we move the starting point in H. Hence if we try to give certain
measurement on 𝜕H (for example visual angles from a point), it may not be canonic.

Figure 10.1.1: The visual angle depends on the reference point.

10.2 Quantities invariant under this change: Cross ratios

Given a reference point 𝑧 ∈ H and 4 directions 𝑥1, 𝑥2, 𝑥3 and 𝑥4 on 𝜕H, we denote by 𝜃1, 𝜃2,
𝜃3 and 𝜃4 the directed angles between the 4 directions with the negative vertical directions
respectively.

We consider the following quantity associated to (𝑥1, 𝑥2, 𝑥3, 𝑥4):

B𝑧(𝑥1, 𝑥2;𝑥3, 𝑥4) :=
(tan 𝜃1

2 − tan 𝜃4
2 )(tan 𝜃2

2 − tan 𝜃3
2 )

(tan 𝜃1
2 − tan 𝜃3

2 )(tan 𝜃2
2 − tan 𝜃4

2 )
=

sin 𝜃1−𝜃4
2 sin 𝜃2−𝜃3

2
sin 𝜃1−𝜃3

2 sin 𝜃2−𝜃4
2

.

Proposition 10.2.1
For any ordered quadruple points (𝑥1, 𝑥2, 𝑥3, 𝑥4) on 𝜕H, the quantity B𝑧(𝑥1, 𝑥2;𝑥3, 𝑥4) is inde-
pendent of choice of 𝑧.
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10 Cross ratios

Proof. We define the following quantity

B(𝑥1, 𝑥2;𝑥3, 𝑥4) := (𝑥1 − 𝑥4)(𝑥2 − 𝑥3)
(𝑥1 − 𝑥3)(𝑥2 − 𝑥4) ,

Using Euclidean geometry, we can conclude that for any points 𝑧 and 𝑧′ in H, we have

B𝑧(𝑥1, 𝑥2;𝑥3, 𝑥4) = B(𝑥1, 𝑥2;𝑥3, 𝑥4) = B𝑧′(𝑥1, 𝑥2;𝑥3, 𝑥4).

Definition 10.2.2
The quantity B(𝑥1, 𝑥2;𝑥3, 𝑥4) is called the cross ratio of the ordered quadruple (𝑥1, 𝑥2, 𝑥3, 𝑥4).

Proposition 10.2.3
The function B is invariant under Möbius transformations.

Proof. We would like to show that for any 4 ordered ideal points (𝑥1, 𝑥2, 𝑥3, 𝑥4), for any 𝑧 ∈ H,
for any Möbius transformation 𝑓 , we have

B𝑧(𝑥1, 𝑥2;𝑥3, 𝑥4) = B𝑓(𝑧)(𝑓(𝑥1), 𝑓(𝑥2); 𝑓(𝑥3), 𝑓(𝑥4)).

It is enough to show that for 𝑧 = 𝑖, the quantity B𝑧(𝑥1, 𝑥2;𝑥3, 𝑥4) is invariant under 𝑇𝑡’s, 𝜑𝜆’s
and 𝜌𝜃’s. The invariance under actions of 𝑇𝑡’s and 𝜑𝜆 is immediate, since they are Euclidean
isometry and do not change angles.

Let 𝜃 ∈ [0, 2𝜋]. Then under the action 𝜌𝜃, the four angles 𝜃𝑖’s becomes 𝜃𝑖 +2𝜃’s. The following
quantity stays constant under such a change:(︂

sin 𝜃1 − 𝜃4
2 sin 𝜃2 − 𝜃3

2

)︂⧸︂(︂
sin 𝜃1 − 𝜃3

2 sin 𝜃2 − 𝜃4
2

)︂

The cross ratio has the following properties when we permute the points 𝑥1, 𝑥2, 𝑥3 and 𝑥4.

Proposition 10.2.4

B(𝑥1, 𝑥2;𝑥3, 𝑥4) = B(𝑥1, 𝑥2;𝑥4, 𝑥3)−1;
B(𝑥1, 𝑥2;𝑥3, 𝑥4) = 1 − B(𝑥1, 𝑥3;𝑥2, 𝑥4).

In fact there are more combinations (4! = 24), if 𝜆 = B(𝑥1, 𝑥2;𝑥3, 𝑥4), then for any combina-
tion, the cross ratio is one of the following 6 values:

𝜆, 1 − 𝜆,
1
𝜆
, 1 − 1

𝜆
,

1
1 − 𝜆

, 1 − 1
1 − 𝜆

.
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10 Cross ratios

10.3 Geometric meaning of cross ratios

Since cross ratios are invariant under Möbius transformations, it is always convenient to
renormalize the four ideal points to a standard position. Previously, we have shown that the
action of Isom+(H) is transitive and free on triple of distinct point on 𝜕H. Hence without loss
of generality, we may always assume that (𝑥1, 𝑥2, 𝑥3) = (0,∞, 1) or (0,∞,−1), depending on
the cyclic order of (𝑥1, 𝑥2, 𝑥3).

If (𝑥1, 𝑥2, 𝑥3) = (0,∞, 1), we have

B(0,∞; 1, 𝑥4) = 𝑥4,

if (𝑥1, 𝑥2, 𝑥3) = (0,∞,−1), we have

B(0,∞; −1, 𝑥4) = −𝑥4.

Proposition 10.3.1
Let 𝜂 be the geodesic with end point 𝑥1 and 𝑥2, and let 𝜂′ be the geodesic with end point 𝑥3 and
𝑥4, then 𝜂 and 𝜂′ intersect each other if and only if the cross ratio B(𝑥1, 𝑥2;𝑥3, 𝑥4) is negative.

To be more precise about the meaning of the cross ratio, we discuss case by case. We first
consider the case (𝑥1, 𝑥2, 𝑥3) = (0,∞, 1). Let 𝛾 denote the geodesic with end points 1 and 𝑥4.
Hence if B(𝑥1, 𝑥2;𝑥3, 𝑥4) is positive, it equals to tanh2(𝑙/2) where 𝑙 is the distance between 𝛾

and 𝑉0. If B(𝑥1, 𝑥2;𝑥3, 𝑥4) is negative, it equals to − tan2(𝜃/2) where 𝜃 is the angle from 𝑉0 to
𝛾 following the positive orientation.

We now consider the case (𝑥1, 𝑥2, 𝑥3) = (0,∞,−1). Let 𝛾 denote the geodesic with end points
−1 and 𝑥4. Hence if B(𝑥1, 𝑥2;𝑥3, 𝑥4) is positive, it equals to coth2(𝑙/2) where 𝑙 is the distance
between 𝛾 and 𝑉0. If B(𝑥1, 𝑥2;𝑥3, 𝑥4) is negative, it equals to − cot2(𝜃/2) where 𝜃 is the angle
from 𝑉0 to 𝛾 following the positive orientation.

Proposition 10.3.2
Let 𝛾 be a geodesic with end point 𝑥1 and 𝑥2, and let 𝜂 be a geodesic with end point 𝑥3 and
𝑥4, assume that (𝑥1, 𝑥3, 𝑥2) is in the positive cyclic order. Then the cross ratio B(𝑥1, 𝑥2;𝑥3, 𝑥4)
is either tanh2(𝑙/2) where 𝑙 is the distance between 𝛾 and 𝑉0, if it is positive, or − tan2(𝜃/2)
where 𝜃 is the angle from 𝑉0 to 𝛾 following the positive orientation, if it is negative.

Another case that we would like to discuss here is related to hyperbolic Möbius transformation.
Without loss of generality, we consider 𝐴 to be the matrix[︃

𝜆 0
0 𝜆−1

]︃
,

where 𝜆 > 1. Then we have 𝑓𝐴(𝑧) = 𝜆2𝑧. Its axis is 𝑉0. Let 𝑥 be any point on 𝜕H different
from 0 and ∞. Then we have

Proposition 10.3.3
The cross ratio B(0,∞;𝑥, 𝑓𝐴(𝑥)) = 𝑒𝑙𝐴, where 𝑙𝐴 is the translation distance of 𝑓𝐴.
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10 Cross ratios

Corollary 10.3.4
Let 𝛾 be a the axis of a hyperbolic Möbius transformation 𝑓 with end points 𝑥1 and 𝑥2, such
that the translation direction of 𝑓 on 𝛾 is from 𝑥1 to 𝑥2. Let 𝑥 ∈ 𝜕H ∖ {𝑥1, 𝑥2}. Then
B(𝑥1, 𝑥2;𝑥, 𝑓(𝑥)) = 𝑒𝑙 where 𝑙 is the translation distance of 𝑓 .

Remark 10.3.5.
Cross ratios are widely used in the study of the (real or complex) projective geometry. In
particular, we consider ̂︀C as the complex 1-dimensional projective space, we may consider cross
ratios for any distinct quadruple points on ̂︀C. In fact it is real if and only if the four points
are on a same circle in ̂︀C. The cross ratio is invariant under the Möbius transformations of ̂︀C.
Using the Cayley transformation, all results that we talked about above still holds using points
in 𝜕D.
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11 Polygons

11.1 Triangles in H

11.1.1 Definition

Definition 11.1.1
For any three distinct points 𝑧1, 𝑧2 and 𝑧3 in H, the triangle Δ(𝑧1, 𝑧2, 𝑧3) in H with vertices
𝑧1, 𝑧2 and 𝑧3 is defined to be, as a subset of H, the union of the three geodesics segments
connecting pairs of 𝑧1, 𝑧2 and 𝑧3. When 𝑧1, 𝑧2 and 𝑧3 are on a same geodesic, we say that the
triangle is degenerate.

Figure 11.1.1: Δ(𝑧1, 𝑧2, 𝑧3)

Definition 11.1.2
The three geodesic segments in a triangle are called its sides. The angles between pairs of sides
with value in [0, 𝜋] is called the interior angles of the triangle.

We denote by 𝐼1, 𝐼2 and 𝐼3 the three sides opposite to the three vertices 𝑧1, 𝑧2 and 𝑧3
respectively, and by 𝑙1, 𝑙2 and 𝑙3 their lengths respectively. We denote by 𝜃1, 𝜃2 and 𝜃3 the
three interior angles associated to 𝑧1, 𝑧2 and 𝑧3 respectively.

Definition 11.1.3
By allowing vertices to be on 𝜕H, we get triangles with ideal points. In particular, a triangle
with three ideal points is called an ideal triangle.

When the vertex is idea, as a convention, we say that the interior angles is 0 at this vertex.
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11 Polygons

Figure 11.1.2: Triangles with ideal points

11.1.2 Determine a triangle by its interior angles

When there is an ideal vertex in a triangle, its adjacent sides will have infinite lengths which
are not easy to compare with each other. On the other hand, it is easy to describe the angles of
triangles. We would like to show in this part that the interior angles can be used to determine
a triangle. In the other words, we would like prove the following proposition:

Proposition 11.1.4
Two hyperbolic triangles are isometric to each other if and only if their interior angles are the
same.

Remark 11.1.5.
This proposition shows us that unlike in Euclidean geometry, we do not have similarity of
triangles in hyperbolic geometry.

Similar to the discussion on distances, we would like to show some strict monotonicity of
angles when we move points along geodesics. Let us be more precise.

We first consider the case when Δ(𝑧1, 𝑧2, 𝑧3) has no ideal point. We denote by 𝛾1, 𝛾2 and
𝛾3 the three geodesics containing 𝐼1, 𝐼2 and 𝐼3 respectively. By applying an isometry, we may
assume that 𝑧1 = 𝑖 and 𝛾2 = 𝑉0, such that 𝑧2 has positive real part. We will try to construct
the triangle Δ(𝑧1, 𝑧2, 𝑧3) by determining the position of 𝛾1. Recall that we have the following
fact.

Proposition 11.1.6
Given a geodesic 𝛾, a any geodesic 𝜂 intersecting 𝛾 can be determined by its intersecting point
and its intersecting angle.

Proof. To each such data, we have a unique point 𝑧 ∈ H and a unique direction −→𝑣 at 𝑧. It
determines a unique Euclidean straight line 𝐿. Now we consider all circles tangent to this line
with center on R. To do so, we may consider the Euclidean line 𝐿′ orthogonal to 𝐿 at 𝑧. Then
its intersection with the real axis is the center that we are looking for. Hence we obtain a
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11 Polygons

geodesic in H. Notice that this construction only produce one unique geodesic in H, hence the
proposition.

Remark 11.1.7.
This is essentially to say that for any tangent vector (𝑧,−→𝑣 ) of H, there is a unique geodesic
passing 𝑧 following the direction of −→𝑣 .

We move the point 𝑧1 = 𝑖 along 𝑉0 to the positive direction of 𝑉0. We denote the resulting
point by 𝑧. Let 𝛾𝑧 denote the geodesic intersecting 𝑉0 with angle 𝜃3. Let 𝜃𝑧 denote the
intersecting angle between 𝛾𝑧 and 𝛾3.

Proposition 11.1.8
The angle 𝜃𝑧 as a function on 𝑧 = 𝑖𝑦 is strictly monotonically decreasing to 0 as 𝑦 increasing.

Proof. We may try to compute the formula for 𝜃𝑧 using Euclidean geometry. To do so, we first
get the position of the geodesic 𝛾𝑧. Notice that it intersects 𝑉0 with angle 𝜃3. Let 𝑧 = 𝑖𝑦. Then
the center of 𝛾𝑧 is 𝑥𝑧 = −𝑦/ tan 𝜃3 and the radius is 𝑟𝑧 = 𝑦/ sin 𝜃3. On the other hand, the
geodesic 𝛾3 has center at 𝑥3 = 1/| tan 𝜃1| and radius 𝑟3 = 1/ sin 𝜃1.

Figure 11.1.3: Computing 𝜃𝑧
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More precisely, we have

cos 𝜃𝑧 = −(𝑥3 − 𝑥𝑧)2 + 𝑟2
𝑧 + 𝑟2

3
2𝑟𝑧𝑟3

= sin 𝜃3 sin 𝜃1(𝑦2 + 1) − 2𝑦 cos 𝜃3 cos 𝜃1
2𝑦

= sin 𝜃3 sin 𝜃1
2

(︂
𝑦 + 1

𝑦

)︂
− cos 𝜃3 cos 𝜃1

Notice that 𝑦 is positive and greater or equals to 1, hence cos 𝜃𝑧 is strictly monotonically
increasing, hence 𝜃𝑧 is strictly monotonically decreasing. Notice that the limit case is when 𝛾𝑧

and 𝛾3 share one end point in which case, the angle 𝜃𝑧 is 0.

Remark 11.1.9.
We use the fact that Isom(H) acts transitively on pairs of distinct points in H with a same
distance.

Corollary 11.1.10
Two triangles are isometric if and only if they have the same interior angles.

Proposition 11.1.11
Two triangles with ideal vertices are isometric to each other if and only if they have the same
interior angles.

Proof. Given two triangles with ideal vertices with the same interior angles, we try to find an
isometry sending one to the other. The proof is essentially the same as above. We omit it
here.

Remark 11.1.12.
We use the fact that Isom(H) acts transitively on 𝜕H × H and on (𝜕H)(2).

Corollary 11.1.13
The sum of interior angles of a hyperbolic triangle is strictly smaller than 𝜋. Reciprocally, for
any three non-negative numbers with sum smaller than 𝜋, we have a unique hyperbolic triangle
up to isometry.

11.1.3 Ideal triangles

Ideal triangles are used a lot when studying hyperbolic surfaces. We would like to show some
facts about it.

Proposition 11.1.14
All ideal triangles are isometric to each other.
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Proof. Since triangles are determined by their interior angles. All triangles with interior angles
0, 0 and 0 are isometric to each other.

On the other hand one may understand this by looking at the vertices. We have shown that
Isom(H) acts transitively on (𝜕H)(3) which can also be considered as ideal triangles marked by
ordered vertices.

Proposition 11.1.15
Any triangle is contained in one ideal triangle.

Proof. For any triangle Δ, we may use the construction in the proof of Proposition 11.1.8 to
get an ideal triangle such that Δ is contained in the interior of the ideal triangle.

Let Δ be an ideal triangle.

Proposition 11.1.16
For any point 𝑧 ∈ 𝐼1, its distance to 𝐼2 ∪ 𝐼3 is bounded by (

√
2 + 1)/3.

Proof. Without loss of generality, we may consider the ideal triangle with vertices 𝑧1 = ∞,
𝑧2 = 0 and 𝑧3 = 1. By the symmetry of Δ, we only need to consider the point 𝑧 = (1/2) + 𝑖(1/2)
and its distance to the side 𝐼3 which is 𝑉0.

Since the distance is realized by the circular geodesic segment with center at 0, we consider
the angle bounded by the two Euclidean radius which is 𝜋/4. Hence the distance from 𝑧 to 𝑉0
is (

√
2 + 1)/3.

Corollary 11.1.17
For any triangle, a point on one side is in the 𝛿-neighborhood of the union of the other two
sides, for any 𝛿 > (

√
2 + 1)/3.

Remark 11.1.18.
We only consider open neighborhoods.

Remark 11.1.19.
This is not true for Euclidean triangles, since we have the rescaling to make the distance to be
bigger and bigger with no limit. This is one way to say triangles in hyperbolic space are thin.
This notion is generalized to the one called Gromov 𝛿-hyperbolicity.

11.1.4 Trigonometry formulas

To study the trigonometry geometry of triangles, we will start by looking at some special
types, then use them to get information for general triangles. As we discussed before, by using
isometry of H, we will renormalize triangles to some standard position when we make the
discussion in the following parts.
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Triangles with interior angles (0, 𝛼, 𝛼)

We consider a isosceles triangle Δ with one ideal vertex. Let 𝛼 ∈ (0, 𝜋/2). Without loss of
generality, we may assume that the vertices of Δ are 𝑧1 = ∞, 𝑧2 = 𝑒𝑖(𝜋−𝛼) and 𝑧3 = 𝑒𝑖𝛼. Hence
𝑧2 and 𝑧3 are on a same circular geodesic with center 0 and radius 𝑟 = 1.

The finite ones among all side lengths and angles in this case are 𝜃2 = 𝜃3 = 𝛼, 𝑙1 = 𝑙. Using
the distance formula, we have the following relation:

𝑙 = log sin(𝜋 − 𝛼)
cos(𝜋 − 𝛼) + 1 − log sin𝛼

cos𝛼+ 1

= log 1 + cos𝛼
1 − cos𝛼.

This can be in turn rewritten as
coth 𝑙

2 cos𝛼 = 1,

cosh 𝑙

2 sin𝛼 = 1,

sinh 𝑙

2 tan𝛼 = 1.

We compute the area of Δ. First we consider the area between the vertical geodesics 𝑉cos 𝛼 and
𝑉− cos 𝛼 above 𝐻sin 𝛼. We denote this region by 𝐾

𝐴H(𝐾) =
∫︁ ∞

sin 𝛼

∫︁ cos 𝛼

− cos 𝛼

1
𝑦2 d𝑥 d𝑦

=
∫︁ ∞

sin 𝛼

2 cos𝛼
𝑦2 d𝑦

= −2 cos𝛼
𝑦

⃒⃒⃒⃒∞
sin 𝛼

= 2 cos𝛼
sin𝛼 = 2 cot𝛼.

Now we consider the region 𝐾 ′ which is the intersection between the unit disk and 𝐾.

𝐴H(𝐾 ′) =
∫︁ 1

sin 𝛼

∫︁ √
1−𝑦2

−
√

1−𝑦2

1
𝑦2 d𝑥 d𝑦

=
∫︁ 1

sin 𝛼

2
√︀

1 − 𝑦2

𝑦2 d𝑦

=
∫︁ 𝜋

2

𝛼

2 cos 𝑡
sin2 𝑡

d sin 𝑡

= 2
∫︁ 𝜋

2

𝛼

(︂ 1
sin2 𝑡

− 1
)︂

d𝑡

= 2 cot𝛼− (𝜋 − 2𝛼).

Hence we have
𝐴H(Δ) = 𝐴H(𝐾) −𝐴H(𝐾 ′) = 𝜋 − 2𝛼.
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Triangles with interior angles (0, 𝜋/2, 𝛼)

This triangle can be considered as half of a triangle with interior angles 0, 𝛼 and 𝛼. Without
loss of generality, we assume that Δ is given by 𝑧1 = ∞, 𝑧2 = 𝑖 and 𝑧3 = 𝑒𝑖𝛼. Let 𝑙1 = 𝑙. Using
the computation from the previous case, we have

coth 𝑙 cos𝛼 = 1,
cosh 𝑙 sin𝛼 = 1,
sinh 𝑙 tan𝛼 = 1.

and
𝐴H(Δ) = 𝜋

2 − 𝛼.

Triangles with interior angles (0, 𝛼, 𝛽)

Without loss of generality, we may assume that the triangle Δ is given by 𝑧1 = ∞, 𝑧2 = 𝑒𝑖(𝜋−𝛽)

and 𝑧3 = 𝑒𝑖𝛼. Let 𝑙1 = 𝑙.
We consider two cases. The first case is that both 𝛼 and 𝛽 are in (0, 𝜋/2). In this case, we

can combine the two triangles to get Δ. The first triangle is given by 𝑤1 = ∞, 𝑤2 = 𝑖 and
𝑤3 = 𝑒𝑖𝛼, and the second triangle is given by 𝑤′

1 = ∞, 𝑤′
2 = 𝑖 and 𝑤′

3 = 𝑒𝑖(𝜋−𝛽). We denote by
𝑡1 and 𝑡2 the finite sides in the first and second triangles respectively.

Hence we have
cosh 𝑙 = cosh 𝑡1 cosh 𝑡2 + sinh 𝑡1 sinh 𝑡2

= 1
sin𝛼 sin 𝛽 + 1

tan𝛼 tan 𝛽

= 1 + cos𝛼 cos𝛽
sin𝛼 sin 𝛽 .

and
sinh 𝑙 = sinh 𝑡1 cosh 𝑡2 + sinh 𝑡2 cosh 𝑡1

= 1
tan𝛼 sin 𝛽 + 1

tan 𝛽 sin𝛼

= cos𝛼+ cos𝛽
sin𝛼 sin 𝛽 .

And the area of Δ is given by

𝐴H(Δ) =
(︂
𝜋

2 − 𝛼

)︂
+
(︂
𝜋

2 − 𝛽

)︂
= 𝜋 − 𝛼− 𝛽.

The second case is that one of 𝛼 and 𝛽 is in (𝜋/2, 𝜋). We may verify that the above formula
still hold for this case.

Triangles with interior angles (𝜃1, 𝜃2, 𝜃3)

We may show the following formulas for general triangles:

• The Sine rule:
sinh 𝑙1
sin 𝜃1

= sinh 𝑙2
sin 𝜃2

= sinh 𝑙3
sin 𝜃3

;
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• The Cosine rule I:

cosh 𝑙3 = cosh 𝑙1 cosh 𝑙2 − sinh 𝑙1 sinh 𝑙2 cos 𝜃3,

• The Cosine rule II:

cos 𝜃3 = sin 𝜃1 sin 𝜃2 cosh 𝑙3 − cos 𝜃1 cos 𝜃2.

The area for a general triangle is given by

𝐴H(Δ) = 𝜋 − (𝜃1 + 𝜃2 + 𝜃3).

11.2 Polygons

Let 𝑃 be a general polygon with 𝑛 sides. Let 𝜃1, ..., 𝜃𝑛 to be the interior angles of 𝑃 . Using
triangulation of 𝑃 , we can show that

𝐴H(𝑃 ) = (𝑛− 2)𝜋 − (𝜃1 + · · · + 𝜃𝑛).

We may try to study the relations among side lengths and interior angles as what we have done
for triangles. We will not list all of them here but only one that we may use a lot later for the
right angle hexagon:

• The Sine rule:
sinh 𝑙1
sinh 𝑙4

= sinh 𝑙2
sinh 𝑙5

= sinh 𝑙3
sinh 𝑙6

,

• The cosine rule:
cosh 𝑙3 = cosh 𝑙1 cosh 𝑙2 − sinh 𝑙1 sinh 𝑙2 cosh 𝑙4.

Remark 11.2.1.
We may verify that

𝑖 sin 𝑥 = sinh(𝑖𝑥),
cos𝑥 = cosh(𝑖𝑥).

In some sense, we may consider the length in the right angle hexagon as imaginary angles.

Remark 11.2.2.
We recall some trigonometry formulas from Euclidean geometry:

• The Sine rule:
𝑙1

sin 𝜃1
= 𝑙2

sin 𝜃2
= 𝑙3

sin 𝜃3

• The Cosine rule:
𝑙23 = 𝑙21 + 𝑙22 − 2𝑙1𝑙2 cos 𝜃3.
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12 Convex sets

12.1 Definition

Definition 12.1.1
A subset of H is said to be convex if for any pair of points in it, the geodesic segment connecting
these two points is also contained in this subset.

We say it is strictly convex if there is no geodesic segment contained in its boundary.

12.2 Describe convex sets with half planes

To study convex subset, we use a lot half planes in H. Let 𝛾 be a complete geodesic. It separate
H into two disconnected parts.

Definition 12.2.1
Each part together with 𝛾 is called a half plane associated to 𝛾.

Proposition 12.2.2
Any half plane is convex.

Proof. Since all geodesics belong to either straight line or circles symmetric to the real axis,
given any two geodesics they only intersect once. If a half plane is not convex, there will be
another geodesic intersecting the boundary with two points, which is a contradiction.

Corollary 12.2.3
The intersection of any two half planes is convex.

Proof. An intersection among convex sets is convex.

Let 𝐾 be a closed convex subset in H. Let ℋ𝐾 be the collection of all half planes containing
𝐾. Then we have the following proposition:

Proposition 12.2.4

∩𝐻∈ℋ𝐾
𝐻 = 𝐾.

Proof. To show this, we prove the following two things:
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(i) ∩𝐻∈ℋ𝐾
𝐻 ⊃ 𝐾,

(ii) ∩𝐻∈ℋ𝐾
𝐻 ⊂ 𝐾.

By the definition of ℋ𝐾 , we have 𝐾 ⊂ 𝐻 for all 𝐻 ∈ ℋ𝐾 , hence we have the first.
For the second, we may consider the complementary of both sets. Let 𝑤 be a point not in 𝐾.

We may consider the geodesic ray issued from 𝑤 parametrized by 𝑆1. Each ray either intersects
𝐾 or not. We denote by 𝐼 the subset of 𝑆1 consisting of rays intersecting 𝐾.

We claim that 𝐼 is an interval. Since given any two rays intersecting 𝐾, there are two points
one on each ray contained in 𝐾. By convexity, the geodesic segment connecting these two
points will also be in 𝐾. Hence one of the segment in 𝑆1 connecting the parameters of the two
rays will be contained in 𝐼. Since it is path connected, we have 𝐼 is an interval.

Secondly, the closure of 𝐼 is strictly contained in the interior of a half circle of 𝑆1. Otherwise,
there will be a ray 𝜎 and its opposite ray 𝜎̄ contained in 𝐼. We denote by 𝑒𝑖𝜃 and −𝑒𝑖𝜃 the
parameter for 𝜎 and −𝜎 respectively. We consider a sequence (𝑧𝑛)𝑛 of parameters in 𝐼 converges
to 𝑒𝑖𝜃 and a sequence (𝑤𝑛)𝑛 of parameters in 𝐼 converges to −𝑒𝑖𝜃. Hence we get a sequence
of (𝛾𝑛)𝑛 where 𝛾𝑛 is a geodesic intersecting the rays with parameters 𝑧𝑛 and 𝑤𝑛 where the
segment between these two rays are contained in 𝐾.

Hence the end points of 𝛾𝑛 converge to the end point of the geodesic given by 𝜎 ∪ (−𝜎).
Moreover the points of 𝐾 on the ray with parameter 𝑧𝑛 will converges to a point on 𝜎̄ and the
points of 𝐾 on rays with parameters 𝑤𝑛 will converges to a point on −𝜎. For any of these
two points, if it is in H, then it must be in 𝐾 , since 𝐾 is closed. Otherwise, it is the ending
point of the geodesic ray 𝜎 or −𝜎. In either case, the geodesic segment connecting these two
limit points should be at least on the boundary of 𝐾. Since 𝐾 is closed, this geodesic segment
will be in 𝐾. Since it contains 𝑤, then 𝑤 must be in 𝐾 as well. Hence a contradiction to the
assumption that 𝑤 is not in 𝐾.

We denote by 𝐽 the half circle which strictly contains 𝐼. Since the complement of 𝐾 is open,
we may choose a ball 𝐵𝑤 in centered at 𝑤 and disjoint from 𝐾. The set 𝐽 ∖ 𝐼 consists of two
connected components with non empty interior. We consider one parameter in the interior of
each connected component. Consider the two rays associated to these two parameters. We
choose two points in the intersection between the two rays and 𝐵𝑤, one for each ray. The
geodesic passing through them will not intersect 𝐾. At the same time, it separates 𝑤 from 𝐾.
Hence the complement of 𝐾 is also contained in the complement of the intersection among the
half spaces 𝐻 ∈ ℋ𝐾 . This prove the second point.

Example 12.2.5.
We give some examples of convex sets: Half plane, circle, triangle, convex polygon.

Figure 12.2.1: Convex sets

as well as non examples: non-convex polygon.

88



12 Convex sets

Figure 12.2.2: Non-convex polygon

12.3 Convex curves

Let 𝛾 be a path in H, with no self-intersection and separating H into two connected components
𝐻 and 𝐻 ′.

Definition 12.3.1
We say that 𝛾 is convex to 𝐻 (resp. to 𝐻 ′) if 𝐻 (resp. 𝐻 ′) is a convex set in H.

Remark 12.3.2.
In the other word, the curve 𝛾 is on the boundary of a convex set.

Proposition 12.3.3
A curve 𝛾 is convex to both 𝐻 and 𝐻 ′ if and only if it is a complete geodesic.

Proof. We may repeat the proof above using rays on 𝛾. The maximal interval in 𝑆1 for 𝐻 and
𝐻 ′ have disjoint interiors, since they are disjoint. If one of them is contained in the interior of a
half circle, we may find two rays with angle smaller than 𝜋 bigger than 0, such that the part of H
between them is in the complement of 𝐻 ∪𝐻 ′ which is contradiction, since 𝛾 ∪𝐻 ∪𝐻 ′ = H.

Proposition 12.3.4
If one of 𝐻 and 𝐻 ′ is compact, it will be the convex set.

Proof. Since one of them is compact which can be covered by finitely many finite radius balls,
then the other one have the entire boundary at infinity as its boundary in H. Hence all geodesics
should be in that part, which is a contradiction.

Example 12.3.5.
Below are some examples of convex curves to only one side: circle, horocycle, hypercycle. The
orange domain is convex in each picture. The green line and blue line are geodesics to show
that they are convex to only one side.
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12 Convex sets

Figure 12.3.1: Circle

Figure 12.3.2: Horocycles

Figure 12.3.3: Hypercycles

90



Bibliography

[1] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91,
Springer-Verlag, New York, 1983.

[2] Benson Farb and Dan Margalit, A primer on mapping class groups, Princeton Mathematical
Series, vol. 49, Princeton University Press, Princeton, NJ, 2012.

[3] Travaux de Thurston sur les surfaces, Société Mathématique de France, Paris, 1991. Séminaire
Orsay, Reprint of ıt Travaux de Thurston sur les surfaces, Soc. Math. France, Paris, 1979 [
MR0568308 (82m:57003)], Astérisque No. 66-67 (1991) (1991).

[4] Greg McShane, A remarkable identity for lengths of curves, ProQuest LLC, Ann Arbor, MI,
1991. Thesis (Ph.D.)–University of Warwick (United Kingdom).

[5] Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago
Press, Chicago, IL, 1992.

[6] Maryam Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of
bordered Riemann surfaces, Invent. Math. 167 (2007), no. 1, 179–222.

[7] , Growth of the number of simple closed geodesics on hyperbolic surfaces, Ann. of
Math. (2) 168 (2008), no. 1, 97–125.

[8] R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies,
vol. 125, Princeton University Press, Princeton, NJ, 1992.

91


	Preliminary
	Introduction
	First impression of non Euclidean geometry
	Plan of the mini course
	References

	Hyperbolic plane
	Models of hyperbolic plane
	Upper half plane model H
	Distance in H
	Geodesics in H

	Distance formula and its convexity
	Distance formula
	Distance function
	Along horizontal lines Hy
	Along vertical lines Vx
	Along circular geodesics C(x,r)

	Applications

	Circles in H
	Definitions
	Hyperbolic circles are also Euclidean circles
	Circles and hyperbolic radius

	Horocycle and hypercycles
	Circle revisit
	Horocycles
	Hypercircles
	Horocycles and hypercircles with centers involving 

	Boundary at infinity (Ideal boundary) of H
	Isometries of H
	Definition
	First examples of isometries
	Reflections along geodesics in H
	Composition of two reflections
	All isometries can be expressed as compositions of reflections

	22 Matrices associated to isometries of H
	Matrices associated to reflections
	Isometric action of GL(2,R) on H
	Classification of Möbius transformations
	Translation distance of a Möbius transformation
	Triple transitivity of Möbius transformations on H
	Comments

	Poincaré disk model D
	How to put the hyperbolic plane in the Euclidean plane in a conformal way
	Description of D
	Isometries on D
	Compute lengths of circles and areas of disks

	Cross ratios
	See same directions from different reference points
	Quantities invariant under this change: Cross ratios
	Geometric meaning of cross ratios

	Polygons
	Triangles in H
	Definition
	Determine a triangle by its interior angles
	Ideal triangles
	Trigonometry formulas

	Polygons

	Convex sets
	Definition
	Describe convex sets with half planes
	Convex curves


