
GEOMETRIC GROUP THEORY: SOLUTIONS

JUNMING ZHANG

This is an unofficial solution for the exercises of the short course, Geometric Group Theory,
which is organized by Qiongling Li in the summer of 2021. More information can be found on
http://www.cim.nankai.edu.cn/2021/0611/c11453a372030/page.htm.

Exercise 1. Let (X, d) be a proper length metric space. Given o ∈ X , let pn : [0,∞) be a sequence
of length parameterized geodesic rays with the same origin (pn)− = o. Prove that there exists a
subsequence of pn which converges locally uniformly to a geodesic ray p∞ : [0,∞) with p∞(0) = o.

Solution. Consider the compact ball Bm := B(o,m). We will construct the convergent subse-
quence by induction. By Arzelà-Ascoli Theorem, there exists a subsequence p1,n of pn such that
p1,n uniformly converges to a geodesic segment p1,∞ in B1. Now if the sequence pm,n are chosen,
then by Arzelà-Ascoli Theorem again, there exists a subsequence pm+1,n of pm,n such that pm+1,n

uniformly converges to a geodesic segment pm+1,∞ in Bm+1. Note that pm+1,n is a subsequence of
pm,n, thus pm,∞ = pm+1,∞|[0,m]. Hence pm,m converges locally uniformly to a geodesic ray p∞,
which is equal to pm,∞ when restricts on [0,m], with p∞ = o. �

Exercise 2. Denote by QI(X) the set of equivalent classes of quasi-isometries of X . Prove that the
setQI(X) with the composition operation is a group. Moreover, there exists a homomorphism from
the isometry group Isom(X) of X into the group QI(X).

Solution. a) We first prove that QI(X) is closed under composition. Suppose ψ1, ψ2 ∈ QI(X)
are (λ1, c1), (λ2, c2)-quasi-isometry respectively. Then f = ψ1 ◦ ψ2 satisfies that

dX(f(x), f(x′)) 6 λ2dX(ψ1(x), ψ1(x′)) + c2 6 λ1λ2dX(x, x′) + λ2c1 + c2,

dX(f(x), f(x′)) > λ−12 dX(ψ1(x), ψ1(x′))− c2 > (λ1λ2)−1dX(x, x′)− λ−12 c1 − c2
for any x, x′ ∈ X . Note that λ−12 c1 6 λ2c1, we get f is a (λ1λ2, λ2c1 + c2) quasi-isometric embed-
ding. SupposeX ⊂ NR(ψ2(X)). For any x ∈ X , there exists x′ ∈ X such that dX(ψ2(x), x′) 6 R.
Hence

dX(f(x), ψ1(x′)) 6 λ1R+ c,

i.e. X ⊂ Nλ1R+c(f(x)). Thus f ∈ QI(X).
b) We also would like to prove that composition is well-defined up to equivalent class, i.e. if

f1, f2 are equivalent and g1, g2 are equivalent, then f1 ◦ g1 is equivalent to f2 ◦ g2. Suppose f1 is
(λ, c)-quasi-isometry and dX(f1, f2) 6 R1, dX(g1, g2) 6 R2. Then

dX(f1 ◦ g1(x), f2 ◦ g2(x))

6dX(f1 ◦ g1(x), f1 ◦ g2(x)) + dX(f2 ◦ g2(x), f1 ◦ g2(x))

6λdX(g1(x), g2(x)) + c+R1

6λR2 + c+R1,

which means that f1 ◦ g1 and f2 ◦ g2 are equivalent.
c) Now we want to prove that quasi-inverse is a suitable inverse. Fix a (λ, c)-quasi-isometry

f ∈ QI(X) with its two different quasi-inverse g and g′ with dX(f ◦ g(x), x) 6 R and dX(f ◦
g′(x), x) 6 R. From

λ−1dX(g(x), g′(x))− c 6 dX(f ◦ g(x), f ◦ g′(x)) 6 2R

we get g, g′ are equivalent. Hence quasi-inverse is well-defined up to equivalent class. By definition,
f ◦ g is equivalent to the identity map. Besides, if X ⊂ NR′(f(X)), then

λ−1dX(g ◦ f(x), x)− c 6 dX(f ◦ g ◦ f(x), f(x)) 6 R′

tells us g ◦ f is equivalent to the identity map.
Thus QI(X) is a group equipped with the composition and quasi-inverse as product and in-

verse respectively. Because every isometry is indeed a quasi-isometry, Isom(X) can embedded into
QI(X). �
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Exercise 3. Suppose two metric spaces X,Y are quasi-isometric. Prove that QI(X) is isomorphic
to QI(Y ).

Solution. As the argument in Exercise 2, we can show that if f1, f2 : X → Y are equivalent
quasi-isometry and g1, g2 : Y → Z are equivalent quasi-isometry, then g1 ◦ f1 and g2 ◦ f2 are
equivalent. Now suppose f : X → Y is a quasi-isometry and f−1 is its quasi-inverse. Consider the
map

f̃ : QI(X)→ QI(Y )

φ 7→ f−1 ◦ φ ◦ f
.

f̃ is indeed a homomorphism since f ◦ f−1 is equivalent to idX . Conversely,

f̃−1 : QI(Y )→ QI(X)

φ 7→ f ◦ φ ◦ f−1

is a homomorphism as well. Moreover, f̃ f̃−1 and f̃−1f̃ are both identity map. Thus QI(X) is
isomorphic to QI(Y ). �

Exercise 4. Let n > 3 be an integer. Prove that any two trees with vertices of degree between 3 and
n are quasi-isometric.

Solution. Denote T3 by the 3-regular tree. We will prove that any tree T with vertices degree
between 3 and n is quasi-isometric to T3 by constructing a quasi-isometry q : T3 → T . Fix a vertex
v0,1 ∈ T3 and w0,1 ∈ T . Suppose S(v0,1, k) = {vk,i : 1 6 i 6 m′k} and S(w0,1, k) = {wk,i :
1 6 i 6 mk}, where m′k = #S(v0,1, k) and mk = #S(w0,1, k). And let q(v0,1) = w0,1. By
collapsing the path v0,1v1,1 · · · vm1−3,1 to the vertex w0,1 and define q(vm1−i−2,i+1) = w1,i+1,
where 0 6 i 6 m1 − 3,and q(v1,2) = w1,m1−1, q(v1,m1

). By the induction we can construct a
surjective map q : T3 → T . It’s obvious that

1

n− 2
d(x, y)− 1 6 d(q(x), q(y)) 6 d(x, y).

Thus q is a quasi-isometry. �

Exercise 5. Prove the following two statements.
(1) The growth function of a finitely generated group always dominates that of any finitely gen-

erated subgroup.
(2) The growth function of a finitely generated group always dominates that of any quotient group.

Solution. Suppose G is a finitely generated group with a finite symmetric generating set 1 /∈ S
and growth function φ(n).

(1) Let H be a finitely generated subgroup of G with a finite symmetric generating set 1 /∈ S′
and growth function ψ(n). Let C be the length of the longest word in S′ with respect to S. Thus
ψ(n) 6 φ(Cn).

(2) Let G/N be a quotient group of G with growth function ψ(n). S is still the generating set of
G/N . Thus ψ(n) 6 φ(n). �

Exercise 6. A finitely generated group is of exponential growth if and only if the growth rate with
respect to some (or any) generating set is positive.

Solution. Suppose G is a finitely generated group with a finite symmetric generating set 1 /∈ S
and growth function φ(n).

If G is of exponential growth, i.e. there exists C > 1 such that en 6 Cφ(Cn). Then

δG,S = lim
n→∞

lnφ(n)

n
= lim
n→∞

lnφ(Cn)

Cn
> lim
n→∞

n− lnC

Cn
=

1

C
> 0.

If δG,S > 0, then there exists N such that for any n > N ,
lnφ(n)

n
>
δG,S

2
. Hence there exists

C ′ > 0 such that
lnφ(n)

n
> C ′ for any n ∈ N. So φ(n) > eC

′n. Hence G is of exponential
growth. �

Exercise 7. Let F be a free group of rank n.
(1) Let S be the standard generating set of F . Prove that δF,S = ln(2n− 1).
(2) Let T be a finite generating set of F . Prove that δF,T > ln(2n − 1). Therefore, we see that

δF is realized by some generating set δF = δF,S = ln(2n− 1).
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(3) By the second statement, explain that the value of the growth rate is not invariant under quasi-
isometries.

Solution.
(1) Let φ be the growth function of F with respect to S. Then δ(0) = 1 and when m > 1,

φ(m) = 1 + 2n

m−1∑
i=0

(2n− 1)i.

If n = 1, then φ(m) = 2m+ 1, δF,S = 0 = ln(2× 1− 1). If n > 2, then

φ(m) = 1 +
n

n− 1
[(2n− 1)m − 1]

and δF,S = ln(2n− 1).
(2) Consider the natural homomorphism π : F → F/[F, F ]. Then π(T ) is a generating set of the

free abelian group F/[F, F ]. Thus T contains an n-element subset T1 such that π(T1) generates a
free abelian subgroup of rank n in F/[F, F ] by extending F/[F, F ] to a R-linear space and choosing
basis. Now T1 generates a free subgroup F1 of F . Now π(F1) is at least rank n as a free abelian
group, hence F1 is rank n as a free group. So δF,T > δF1,T1

= ln(2n− 1).
(3) Note that the Cayley graph of any finite rank free group with respect to the standard generators

are quasi-isometry by Exercise 4. However, any two different finite rank free group has different
growth rate by (2). Hence the growth rate is not invariant under quasi-isometries. �

Exercise 8. Suppose G acts co-boundedly on a proper length space (X, d). Fix a basepoint o ∈ X .
Then there exists a (possibly infinite) generating set S of G such that the map

(G, dS)→ (Go, d)

g 7→ go

is a G-equivariant quasi-isometric map.

Solution. Let K be the bounded subset of X such that G ·K = X with DiamK = R. Suppose
S := {s ∈ G : d(o, so) 6 2R + 1}. Note that every proper length space is a geodesic space, so for
any g ∈ G, there is a geodesic p : [0,Len(p)] → X from o to go. Set n := [Len(p)]. For any p(i),
there exists a gi ∈ G such that d(p(i), gio) 6 R, where 1 6 i 6 n. Hence

d(o, g−1i gi+1o)

=d(gio, gi+1o)

6d(p(i), gio) + d(p(i), p(i+ 1)) + d(p(i+ 1), gi+1o)

62R+ 1

for any 1 6 i 6 n− 1 shows that g−1i gi+1 ∈ S. Similarly, g1, g−1n g ∈ S. Thus G is generated by S.
Now for any g, h ∈ G, let g−1h = h1 · · ·hm, where hi ∈ S and m = dS(g, h). Then

d(go, ho) = d(o, g−1ho) 6
m∑
i=1

d(o, hio) 6 (2R+ 1)dS(g, h).

On the other hand, by the above argument about generators and the geodesic we have

dS(g, h) = |g−1h| 6 d(o, g−1ho) + 1 = d(go, ho) + 1.

Therefore, [g 7→ go] is a quasi-isometric embedding. Note that X ⊂ NR(Go), [g 7→ go] is a
quasi-isometry. �

Exercise 9. We would like to prove the uniform boundedness of k-centers in δ-hyperbolic space.
(1) Let 4 = 4(abc) be a geodesic triangle with vertices a, b, c ∈ X and o be a k-center for

k > 0. Prove that
d(c, o)− 2k 6 (a, b)c 6 d(c, o) + k.

(2) Let p, q be the two k-taut paths in X with same endpoints x and y. Let z ∈ p, w ∈ q be two
points such that d(z, x) = d(w, x). Prove that

d(z, w) 6 2k + 16δ.

(3) Prove that the set of k-centers is of uniformly diameter depending only on k and δ.
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Solution.
(1) Let w ∈ [a, b] satisfy d(o, w) 6 k. Then

(a, b)c =
1

2
(d(a, c)− d(a,w) + d(b, c)− d(b, w))

6
1

2
· 2d(c, w)

=d(c, w)

6d(c, o) + d(o, w)

6d(c, o) + k.

Let x ∈ [a, c] satisfy that d(o, x) 6 k. Note that

d(a, c) =d(a, x) + d(c, x)

>d(a, o)− d(x, o) + d(c, o)− d(x, o)

>d(a, o) + d(c, o)− 2k,

and similarly, d(b, c) > d(b, o) + d(c, o)− 2k, we can get

d(a, c) + d(b, c) > d(a, o) + d(b, o) + 2d(c, o)− 4k > d(a, b) + 2d(c, o)− 4k.

Hence (a, b)c > d(c, o)− 2k.
(2) If d(x, z) < d(x, y), there exists a point v ∈ [x, y] such that d(x, v) = d(x, z). Since X is

δ-hyperbolic and p is a k-taut path, there exists a point u ∈ [x, y] such that d(z, u) 6
k

2
+ 4δ. So

d(u, v) = |d(x, u)− d(x, v)| = |d(x, u)− d(x, z)| 6 d(z, u) 6
k

2
+ 4δ.

Hence d(z, v) 6 d(u, v) + d(z, u) 6 k + 8δ. Similarly we have d(w, v) 6 k + 8δ. Thus

d(z, w) 6 d(z, v) + d(w, v) 6 2k + 16δ.

If d(x, z) > d(x, y), then

d(x, z) + d(z, y) 6 Len(p) 6 d(x, y) + k

implies that d(z, y) 6 k. Similarly, d(w, y) 6 k, hence

d(z, w) 6 d(z, y) + d(w, y) 6 2k 6 2k + 16δ.

(3) Suppose there are two k-centers o, o′ with respect to4(abc). Then The path [c, o]∪ [o, a] and
[c, o′] ∪ [o′, a] are two 2k-taut paths. Because d(c, o) > (a, b)c − k and d(c, o′) > (a, b)c − k, there
exists p ∈ [c, o] and p′ ∈ [c, o′] such that d(c, p) = d(c, p′) = (a, b)c − k. So d(p, p′) 6 4k + 16δ.
Since d(o, p) = d(c, o)− d(c, p) 6 3k and d(o′, p′) 6 3k similarly, we have

d(o, o′) 6 d(o, p) + d(p, p′) + d(o′, p′) 6 10k + 16δ.

Thus the diameter of the set of k-centers is smaller than 10k + 16δ. �

Exercise 10. Let (X, d) be a geodesic metric space with δ-thin triangle property. Prove that there
exists a constant δ′ > 0 such that every geodesic triangle is δ′-thinner than a comparison geodesic
triangle in a tree.

Solution. Let4 = 4(abc) be a geodesic triangle in X and x, y, z be the congruent points on the
respect sidelines. Since X has δ-thin triangle property, there is a point p ∈ [a, b] ∪ [a, c] such that
d(p, x) 6 δ. Without loss of generality, suppose p ∈ [a, b]. Hence

d(p, z) = |d(p, b)− d(b, z)| = |d(b, x)− d(b, p)| 6 d(p, x) 6 δ.

So d(x, z) 6 d(p, z) + d(p, x) 6 2δ. Similarly, we can prove min{d(x, y), d(y, z)} 6 2δ. Hence
max{d(x, y), d(y, z), d(z, x)} 6 4δ. Now let π : 4 → T4 be the comparison map from 4 to the
tree T4. Suppose q ∈ T4 is a point satisfying d(π(a), q) ∈ (0, (b, c)a). Then π−1(q) = {q1, q2} and
q1 ∈ [a, y], q2 ∈ [a, z]. Without loss of generality, we only need to prove that dq1,q2 6 4δ. To prove
that, we would like to construct a geodesic triangle in X such that q1, q2 are two congruent points
of it. Let c : [0, d(a, c)]→ X be an arc parameterization of [a, c] and consider the geodesic triangle
4(abc(t)). Since (b, c(0))a = 0, (b, c(d(a, c)))a = (b, c)a and (b, c(t))a is continuous, there is a
t0 ∈ (0, d(a, c)) such that q1, q2 are congruent points of4(abc(t0)). Hence d(q1, q2) 6 4δ. �
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Exercise 11. Let p be a path in a δ-hyperbolic space. Given a non-decreasing function f : R>0 →
R>0, let p be a path such that Len(q) 6 f(d(q−, q+)) for any subpath q of p. Assume that f is
sub-exponential (i.e. lim

n→∞
ln f(n)/n = 0). Prove that p is a quasi-geodesic path.

Solution. We first prove a claim: Any path q satisfying Len(r) 6 f(d(r−, r+)) for any subpath
r of q is contained in a uniform neighborhood in [q−, q+]. Let x ∈ [q−, q+] be the point maximize
d(x, q) and suppose d(x, q) = t. Since q− ∈ q, there exists a point a0 ∈ [q−, x] such that d(x, a0) =
t. Noe let a1 ∈ [q−, a0] be the point satisfying d(x, a1) = min{2t, d(q−, x)}. Moreover, there
exists a point a2 ∈ q which realizes d(a1, q) and d(a1, a2) 6 t. Similarly, we can define b0, b1 on
[q+, x] and b2 ∈ q. Denote q′ by the path which is the restricted part of q from a2 to b2. Hence
Len(q′) 6 f(d(a2, b2)) 6 f(6t). Since q′ ∪ [a0, a1] ∪ [a1, a2] ∪ [b0, b1] ∪ [b1, b2] is a path outside
the t-neighborhood of x,

Len(q′) + 4t > C1e
C2d(a0,b0) = C1e

2C2t

by the exponential divergence of path, where C1, C2 are two constants only depending on δ. Thus

f(6t) + 4t > C1e
2C2t.

That means t has an upper bound D only depending on δ because f is a sub-exponential function.
Now suppose q is a finite subpath of p. Set n := [d(q−, q+)] and let r : [0, d(q−, q+)] → X be

the geodesic from q− to q+. For any 1 6 i 6 n, there exists a point qi ∈ q such that d(qi, r(i)) 6 D.
Hence the length of the path which is the subpath of q from qi to qi+1 is smaller than f(d(qi, qi+1)) 6
f(2D + 1). And similarly, the length of the path which is the subpath of q from q− to q1 (or from
qn to q+) is smaller than f(D + 1) 6 f(2D + 1). Note that the union of the subpaths of q from q−
to q1, from qi to qi+1, from qn to q+ must be longer than q itself, thus

d(q−, q+) 6 Len(q) 6 (n+ 1)f(2D + 1) 6 f(2D + 1)(d(q−, q+) + 1).

So p is a quasi-geodesic. �

Exercise 12. We would like to prove that there are only finitely many conjugacy classes of finite
subgroups in a hyperbolic group in the following steps. Assume that a group G acts geometrically
on a proper hyperbolic space (X, d).

(1) Define a notion of the center for any bounded set B in a metric space X . Define first the
radius of B:

rB := inf{r : B ⊂ B(x, r), r > 0, x ∈ X},
where B(x, r) is the closed ball of radius r at x. The center of B is then defined to be set of points
o ∈ X such that B ⊂ B(o, rB + 1).

(2) Prove that if X is δ-hyperbolic space, the center of any bounded set is bounded by a constant
depending only on δ.

(3) Apply the assertion (2) to the orbit B = F · x of a finite subgroup F of G, and conclude the
proof that there are finitely many conjugacy classes of finite subgroups F .

Solution. Suppose Y ⊂ X is a bounded set with radius ry and two centers o, o′. Note that in the
proper metric space, Y is a compact subspace so d(p, ·) has maximum value on it for any p ∈ Y .
Hence for any p ∈ Y , there is a point p′ ∈ Y such that d(p, p′) > rY . Now let m be the midpoint
of [o, o′]. There exists a point y ∈ Y such that d(m, y) > rY . Since X is a δ-hyperbolic space,
4(oo′y) has 6δ-thin property. Thus there is a point q ∈ [o, y] ∪ [o′, y] such that d(m, q) 6 6δ.
Without loss of generality, suppose q ∈ [o, y]. Then we have

d(y, q) = d(y, o)− d(o, q) 6 rY + 1− d(o,m) + d(m, q) 6 rY + 1 + 6δ − d(o, o′)

2
.

Consequently, we get

rY 6 d(y,m) 6 d(y, q) + d(q,m) 6 12δ + rY + 1− d(o, o′)

2
.

Therefore, d(o, o′) 6 24δ + 2.
Without loss of generality, we can suppose there is a compact subset K with diameter smaller

than 1 such that G ·K (If diameter is R > 1, we can define a new metric d′ = d/R on X , then X
is still hyperbolic but the hyperbolic constants become smaller). Suppose the set of the centers of
B = F · x is C. Now by (2) we know that the diameter of C is bounded by 24δ + 2. If o ∈ X
satisfies that B ⊂ B(o, rB), then for any point o′ ∈ Y which satisfies d(o′, o) 6 1, o′ is a center of
B. In particular, there exists a g ∈ G such that gx is a center of B. Note that C is invariant under
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F , hence g−1C is invariant under g−1Fg. Since id ∈ g−1Fg, g−1Fgx ⊂ g−1C. So every finite
subgroup F is conjugate to a finite subgroup which is contained in

S := {g ∈ G : d(x, gx) 6 24δ + 2}.
Note that #S < ∞ since G-action is proper, we get that there are only finitely many conjugacy
classes of finite subgroups. �

Exercise 13. Let (X, d) be a geodesic metric space. If there exists δ > 0 such that the following
inequality holds

(x, y)w > min{(x, z)w, (y, z)w} − δ
for any x, y, z, w ∈ X , then (X, d) is Gromov-hyperbolic. Now suppose (X, d) is a Gromov-
hyperbolic space. We would like to prove that X is a hyperbolic space.

(1) Prove first that there exists a point w ∈ [x, y] such that (x, z)w, (y, z)w 6 δ.
(2) Then prove that if (x, z)w 6 δ, then d(w, [x, z]) is bounded by a constant depending on δ.

Solution. It’s obvious that by (1) and (2) we can prove the previous statement. Precisely, w is a
δ′-center of4(xyz), where δ′ is the constant bounding d(w, [x, z]).

(1) Let w(t) be an arc parameterization of [x, y] such that w(0) = x, w(d(x, y)) = y. Note that
f(t) := (x, z)w(t) − (y, z)w(t) is a continuous function and f(0) = −(y, z)x 6 0, f(d(x, y)) =
(x, z)y > 0. There exists a point 0 6 t0 6 d(x, y) such that w := wt0 satisfies (x, z)w = (y, z)w.
Since (x, y)w = 0 and X is a Gromov-hyperbolic space, (x, z)w = (y, z)w 6 δ.

(2) By the similar argument in (1), there exists a point u ∈ [x, z] such that (x, u)w = (z, u)w
since (x, x)w − (z, x)w = (z, w)x > 0 and (x, z)w − (z, z)w = −(x,w)z 6 0. Thus

(x, z)w + d(w, u) = (x, u)w + (z, u)w = 2(x, u)w 6 2(x, z)w + 2δ.

So
d(w, [x, z]) 6 d(w, u) 6 (x, z)w + 2δ 6 3δ.

�

Exercise 14. If any infinite set {gn : n ∈ N} inG has the convergence property, prove thatG-action
(on a compact metrizable space M ) is a convergence group action.

Solution. SupposeG-action is not a convergence group action, then there exists a compact subset
K0 ∈ Θ3(M) and an infinite sequence {gn : n ∈ N} such that gnK0 ∩ K0 6= ∅. Hence there
exists a sequence {(xn, yn, zn)} ⊂ K0 such that gn(xn, yn, zn) ∈ K0 for all n ∈ N. By the
compactness of K0, we can find a subsequence {(xni , yni , zni)} of {(xn, yn, zn)} which converges
to (x, y, z) ∈ K0 and {gni(xni , yni , zni)} converges to (x′, y′, z′) ∈ K0. Now by the convergence
property of {gni

}, there exists a subsequence {gnij
} of {gni

} and a, b ∈M such that gnij
converges

to b locally uniformly on M \ {a}. Since (x, y, z) ∈ Θ3(M), there are at least two elements in
{x, y, z} not equal to a. Without loss of generality, suppose a /∈ {x, y}. Similarly, there is at
least one element in {x′, y′} not equal to b. Without loss of generality, suppose x′ 6= b. Then
{xnij

} ∪ {x} is a compact subset in M \ {a}. However, {gnij
xnij
} converges to x′ instead of b, a

contradiction. �

Exercise 15. Let G be acting on a compact metrizable space M as a convergence group. Then any
infinite set {gn : n ∈ N} in G contains a subsequence {gni} and points a, b ∈M so that

(1) gni converges to b locally uniformly in M \ {a}, and
(2) g−1ni

converges to a locally uniformly in M \ {b}.

Solution. There exists a subsequence {gni} and points a, b, x, y ∈M such that gni converges to
b locally uniformly in M \{a}, and g−1ni

converges to x locally uniformly in M \{y} since G-action
is a convergence group action. If x 6= a, then consider a point x′ ∈ M \ {y, b}. g−1ni

x′ converges
to x, hence gni

x converges to x′, which contradicts to x ∈ M \ {a} and x′ 6= b. Similarly we can
prove that y = b, hence gni

is the subsequence we need. �

Exercise 16. Prove that any finite group acts on a tree with a global fixed point.

Solution. Let F be a finite group acts on a tree T . For any x ∈ T , its orbit B := F · x is
a bounded set. Note that there exists an o which satisfies B ⊂ B(o, rB), where rB is the radius
defined in Exercise 12. Such a point o is called a center. If there exists two centers o, o′ in T ,
consider their midpoint m. For any point p ∈ T , let q ∈ [o, o′] be the point realizing d(p, [o, o′]).

If q ∈ [o′,m], then d(p,m) = d(p, o) − d(o, o′)

2
and similar thing happens when q ∈ [o,m] since
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geodesic connecting two points is unique in a tree. Thus the center is unique. Since B is invariant
under F , o is fixed under F . �

Exercise 17. Let a finitely generated group G act without inversion on a tree T . Then there exists a
minimal G-invariant subtree in T .

Solution. If every element in G has a fixed point, then they have a common fixed point by the
Corollary 2 of Chap.I.6.5 in [1]. Hence the common fixed point is a minimal G-invariant subtree in
T . If there exists an element g which fixes no point in T , by the Proposition 25 of Chap.I.6.4 in [1] g
has a unique axis Ag in T where g acts on as a translation. Such a g is called a hyperbolic element in
G. Now let TG be the union of all axes of the hyperbolic elements in G. Note that every G-invariant
subtree contains TG since every g-invariant subtree contains Ag for ant hyperbolic element g ∈ G.
Besides, TG is G-invariant since for any h ∈ G and a hyperbolic element g ∈ G, hAg = Ahgh−1 .
Now it suffices to prove that TG is indeed a tree, i.e. TG is connected. If two axes Ag and Ah
are disjoint, then by the Proposition 1.2 in [2] we can get gh is also a hyperbolic element and Agh
intersects with both Ag and Ah. Hence TG is a minimal G-invariant subtree. �

Exercise 18. Prove that SL(n,Z) for n > 3 is not a hyperbolic group.

Solution. Since SL(3,Z) is a subgroup for any SL(n,Z) when n > 3 and a hyperbolic group
cannot contain a subgroup isomorphic to Z2, it suffices to prove that SL(3,Z) contains a subgroup
isomorphic to Z2. Now it’s easy to verify that

1 a 0
0 1 0
0 b 1

 : a, b ∈ Z


is a subgroup we need since1 a 0

0 1 0
0 b 1

 ·
1 a′ 0

0 1 0
0 b′ 1

 =

1 a+ a′ 0
0 1 0
0 b+ b′ 1

 .
�
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