GEOMETRIC GROUP THEORY: SOLUTIONS

JUNMING ZHANG

This is an unofficial solution for the exercises of the short course, Geometric Group Theory, which is organized by Qiongling Li in the summer of 2021. More information can be found on http://www.cim.nankai.edu.cn/2021/0611/c11453a372030/page.htm

Exercise 1. Let (X, d) be a proper length metric space. Given $o \in X$, let $p_{n}:[0, \infty)$ be a sequence of length parameterized geodesic rays with the same origin $\left(p_{n}\right)_{-}=o$. Prove that there exists a subsequence of p_{n} which converges locally uniformly to a geodesic ray $p_{\infty}:[0, \infty)$ with $p_{\infty}(0)=o$.
Solution. Consider the compact ball $B_{m}:=\overline{B(o, m)}$. We will construct the convergent subsequence by induction. By Arzelà-Ascoli Theorem, there exists a subsequence $p_{1, n}$ of p_{n} such that $p_{1, n}$ uniformly converges to a geodesic segment $p_{1, \infty}$ in B_{1}. Now if the sequence $p_{m, n}$ are chosen, then by Arzelà-Ascoli Theorem again, there exists a subsequence $p_{m+1, n}$ of $p_{m, n}$ such that $p_{m+1, n}$ uniformly converges to a geodesic segment $p_{m+1, \infty}$ in B_{m+1}. Note that $p_{m+1, n}$ is a subsequence of $p_{m, n}$, thus $p_{m, \infty}=\left.p_{m+1, \infty}\right|_{[0, m]}$. Hence $p_{m, m}$ converges locally uniformly to a geodesic ray p_{∞}, which is equal to $p_{m, \infty}$ when restricts on $[0, m]$, with $p_{\infty}=o$.
Exercise 2. Denote by $Q I(X)$ the set of equivalent classes of quasi-isometries of X. Prove that the set $Q I(X)$ with the composition operation is a group. Moreover, there exists a homomorphism from the isometry group $\operatorname{Isom}(X)$ of X into the group $Q I(X)$.

Solution. a) We first prove that $Q I(X)$ is closed under composition. Suppose $\psi_{1}, \psi_{2} \in Q I(X)$ are $\left(\lambda_{1}, c_{1}\right),\left(\lambda_{2}, c_{2}\right)$-quasi-isometry respectively. Then $f=\psi_{1} \circ \psi_{2}$ satisfies that

$$
\begin{gathered}
d_{X}\left(f(x), f\left(x^{\prime}\right)\right) \leqslant \lambda_{2} d_{X}\left(\psi_{1}(x), \psi_{1}\left(x^{\prime}\right)\right)+c_{2} \leqslant \lambda_{1} \lambda_{2} d_{X}\left(x, x^{\prime}\right)+\lambda_{2} c_{1}+c_{2}, \\
d_{X}\left(f(x), f\left(x^{\prime}\right)\right) \geqslant \lambda_{2}^{-1} d_{X}\left(\psi_{1}(x), \psi_{1}\left(x^{\prime}\right)\right)-c_{2} \geqslant\left(\lambda_{1} \lambda_{2}\right)^{-1} d_{X}\left(x, x^{\prime}\right)-\lambda_{2}^{-1} c_{1}-c_{2}
\end{gathered}
$$

for any $x, x^{\prime} \in X$. Note that $\lambda_{2}^{-1} c_{1} \leqslant \lambda_{2} c_{1}$, we get f is a $\left(\lambda_{1} \lambda_{2}, \lambda_{2} c_{1}+c_{2}\right)$ quasi-isometric embedding. Suppose $X \subset N_{R}\left(\psi_{2}(X)\right)$. For any $x \in X$, there exists $x^{\prime} \in X$ such that $d_{X}\left(\psi_{2}(x), x^{\prime}\right) \leqslant R$. Hence

$$
d_{X}\left(f(x), \psi_{1}\left(x^{\prime}\right)\right) \leqslant \lambda_{1} R+c,
$$

i.e. $X \subset N_{\lambda_{1} R+c}(f(x))$. Thus $f \in Q I(X)$.
b) We also would like to prove that composition is well-defined up to equivalent class, i.e. if f_{1}, f_{2} are equivalent and g_{1}, g_{2} are equivalent, then $f_{1} \circ g_{1}$ is equivalent to $f_{2} \circ g_{2}$. Suppose f_{1} is (λ, c)-quasi-isometry and $d_{X}\left(f_{1}, f_{2}\right) \leqslant R_{1}, d_{X}\left(g_{1}, g_{2}\right) \leqslant R_{2}$. Then

$$
\begin{aligned}
& d_{X}\left(f_{1} \circ g_{1}(x), f_{2} \circ g_{2}(x)\right) \\
\leqslant & d_{X}\left(f_{1} \circ g_{1}(x), f_{1} \circ g_{2}(x)\right)+d_{X}\left(f_{2} \circ g_{2}(x), f_{1} \circ g_{2}(x)\right) \\
\leqslant & \lambda d_{X}\left(g_{1}(x), g_{2}(x)\right)+c+R_{1} \\
\leqslant & \lambda R_{2}+c+R_{1},
\end{aligned}
$$

which means that $f_{1} \circ g_{1}$ and $f_{2} \circ g_{2}$ are equivalent.
c) Now we want to prove that quasi-inverse is a suitable inverse. Fix a (λ, c)-quasi-isometry $f \in Q I(X)$ with its two different quasi-inverse g and g^{\prime} with $d_{X}(f \circ g(x), x) \leqslant R$ and $d_{X}(f \circ$ $\left.g^{\prime}(x), x\right) \leqslant R$. From

$$
\lambda^{-1} d_{X}\left(g(x), g^{\prime}(x)\right)-c \leqslant d_{X}\left(f \circ g(x), f \circ g^{\prime}(x)\right) \leqslant 2 R
$$

we get g, g^{\prime} are equivalent. Hence quasi-inverse is well-defined up to equivalent class. By definition, $f \circ g$ is equivalent to the identity map. Besides, if $X \subset N_{R^{\prime}}(f(X))$, then

$$
\lambda^{-1} d_{X}(g \circ f(x), x)-c \leqslant d_{X}(f \circ g \circ f(x), f(x)) \leqslant R^{\prime}
$$

tells us $g \circ f$ is equivalent to the identity map.
Thus $Q I(X)$ is a group equipped with the composition and quasi-inverse as product and inverse respectively. Because every isometry is indeed a quasi-isometry, $\operatorname{Isom}(X)$ can embedded into $Q I(X)$.

Exercise 3. Suppose two metric spaces X, Y are quasi-isometric. Prove that $Q I(X)$ is isomorphic to $Q I(Y)$.
Solution. As the argument in Exercise 2, we can show that if $f_{1}, f_{2}: X \rightarrow Y$ are equivalent quasi-isometry and $g_{1}, g_{2}: Y \rightarrow Z$ are equivalent quasi-isometry, then $g_{1} \circ f_{1}$ and $g_{2} \circ f_{2}$ are equivalent. Now suppose $f: X \rightarrow Y$ is a quasi-isometry and f^{-1} is its quasi-inverse. Consider the map

$$
\begin{aligned}
\tilde{f}: Q I(X) & \rightarrow Q I(Y) \\
\phi & \mapsto f^{-1} \circ \phi \circ f
\end{aligned}
$$

\tilde{f} is indeed a homomorphism since $f \circ f^{-1}$ is equivalent to id_{X}. Conversely,

$$
\begin{aligned}
\tilde{f}^{-1}: Q I(Y) & \rightarrow Q I(X) \\
\phi & \mapsto f \circ \phi \circ f^{-1}
\end{aligned}
$$

is a homomorphism as well. Moreover, $\tilde{f} \tilde{f}^{-1}$ and $\tilde{f}^{-1} \tilde{f}$ are both identity map. Thus $Q I(X)$ is isomorphic to $Q I(Y)$.
Exercise 4. Let $n \geqslant 3$ be an integer. Prove that any two trees with vertices of degree between 3 and n are quasi-isometric.

Solution. Denote T_{3} by the 3 -regular tree. We will prove that any tree T with vertices degree between 3 and n is quasi-isometric to T_{3} by constructing a quasi-isometry $q: T_{3} \rightarrow T$. Fix a vertex $v_{0,1} \in T_{3}$ and $w_{0,1} \in T$. Suppose $S\left(v_{0,1}, k\right)=\left\{v_{k, i}: 1 \leqslant i \leqslant m_{k}^{\prime}\right\}$ and $S\left(w_{0,1}, k\right)=\left\{w_{k, i}:\right.$ $\left.1 \leqslant i \leqslant m_{k}\right\}$, where $m_{k}^{\prime}=\# S\left(v_{0,1}, k\right)$ and $m_{k}=\# S\left(w_{0,1}, k\right)$. And let $q\left(v_{0,1}\right)=w_{0,1}$. By collapsing the path $v_{0,1} v_{1,1} \cdots v_{m_{1}-3,1}$ to the vertex $w_{0,1}$ and define $q\left(v_{m_{1}-i-2, i+1}\right)=w_{1, i+1}$, where $0 \leqslant i \leqslant m_{1}-3$, and $q\left(v_{1,2}\right)=w_{1, m_{1}-1}, q\left(v_{1, m_{1}}\right)$. By the induction we can construct a surjective map $q: T_{3} \rightarrow T$. It's obvious that

$$
\frac{1}{n-2} d(x, y)-1 \leqslant d(q(x), q(y)) \leqslant d(x, y) .
$$

Thus q is a quasi-isometry.
Exercise 5. Prove the following two statements.
(1) The growth function of a finitely generated group always dominates that of any finitely generated subgroup.
(2) The growth function of a finitely generated group always dominates that of any quotient group.

Solution. Suppose G is a finitely generated group with a finite symmetric generating set $1 \notin S$ and growth function $\phi(n)$.
(1) Let H be a finitely generated subgroup of G with a finite symmetric generating set $1 \notin S^{\prime}$ and growth function $\psi(n)$. Let C be the length of the longest word in S^{\prime} with respect to S. Thus $\psi(n) \leqslant \phi(C n)$.
(2) Let G / N be a quotient group of G with growth function $\psi(n) . S$ is still the generating set of G / N. Thus $\psi(n) \leqslant \phi(n)$.
Exercise 6. A finitely generated group is of exponential growth if and only if the growth rate with respect to some (or any) generating set is positive.

Solution. Suppose G is a finitely generated group with a finite symmetric generating set $1 \notin S$ and growth function $\phi(n)$.

If G is of exponential growth, i.e. there exists $C>1$ such that $e^{n} \leqslant C \phi(C n)$. Then

$$
\delta_{G, S}=\lim _{n \rightarrow \infty} \frac{\ln \phi(n)}{n}=\lim _{n \rightarrow \infty} \frac{\ln \phi(C n)}{C n} \geqslant \lim _{n \rightarrow \infty} \frac{n-\ln C}{C n}=\frac{1}{C}>0 .
$$

If $\delta_{G, S}>0$, then there exists N such that for any $n>N, \frac{\ln \phi(n)}{n}>\frac{\delta_{G, S}}{2}$. Hence there exists $C^{\prime}>0$ such that $\frac{\ln \phi(n)}{n}>C^{\prime}$ for any $n \in \mathbb{N}$. So $\phi(n) \geqslant e^{C^{\prime} n}$. Hence G is of exponential growth.
Exercise 7. Let F be a free group of rank n.
(1) Let S be the standard generating set of F. Prove that $\delta_{F, S}=\ln (2 n-1)$.
(2) Let T be a finite generating set of F. Prove that $\delta_{F, T} \geqslant \ln (2 n-1)$. Therefore, we see that δ_{F} is realized by some generating set $\delta_{F}=\delta_{F, S}=\ln (2 n-1)$.
(3) By the second statement, explain that the value of the growth rate is not invariant under quasiisometries.

Solution.

(1) Let ϕ be the growth function of F with respect to S. Then $\delta(0)=1$ and when $m \geqslant 1$,

$$
\phi(m)=1+2 n \sum_{i=0}^{m-1}(2 n-1)^{i}
$$

If $n=1$, then $\phi(m)=2 m+1, \delta_{F, S}=0=\ln (2 \times 1-1)$. If $n \geqslant 2$, then

$$
\phi(m)=1+\frac{n}{n-1}\left[(2 n-1)^{m}-1\right]
$$

and $\delta_{F, S}=\ln (2 n-1)$.
(2) Consider the natural homomorphism $\pi: F \rightarrow F /[F, F]$. Then $\pi(T)$ is a generating set of the free abelian group $F /[F, F]$. Thus T contains an n-element subset T_{1} such that $\pi\left(T_{1}\right)$ generates a free abelian subgroup of $\operatorname{rank} n$ in $F /[F, F]$ by extending $F /[F, F]$ to a \mathbb{R}-linear space and choosing basis. Now T_{1} generates a free subgroup F_{1} of F. Now $\pi\left(F_{1}\right)$ is at least rank n as a free abelian group, hence F_{1} is rank n as a free group. So $\delta_{F, T} \geqslant \delta_{F_{1}, T_{1}}=\ln (2 n-1)$.
(3) Note that the Cayley graph of any finite rank free group with respect to the standard generators are quasi-isometry by Exercise 4 . However, any two different finite rank free group has different growth rate by (2). Hence the growth rate is not invariant under quasi-isometries.

Exercise 8. Suppose G acts co-boundedly on a proper length space (X, d). Fix a basepoint $o \in X$. Then there exists a (possibly infinite) generating set S of G such that the map

$$
\begin{aligned}
\left(G, d_{S}\right) & \rightarrow(G o, d) \\
g & \mapsto g o
\end{aligned}
$$

is a G-equivariant quasi-isometric map.
Solution. Let K be the bounded subset of X such that $G \cdot K=X$ with Diam $K=R$. Suppose $S:=\{s \in G: d(o, s o) \leqslant 2 R+1\}$. Note that every proper length space is a geodesic space, so for any $g \in G$, there is a geodesic $p:[0, \operatorname{Len}(p)] \rightarrow X$ from o to $g o$. Set $n:=[\operatorname{Len}(p)]$. For any $p(i)$, there exists a $g_{i} \in G$ such that $d\left(p(i), g_{i} o\right) \leqslant R$, where $1 \leqslant i \leqslant n$. Hence

$$
\begin{aligned}
& d\left(o, g_{i}^{-1} g_{i+1} o\right) \\
= & d\left(g_{i} o, g_{i+1} o\right) \\
\leqslant & d\left(p(i), g_{i} o\right)+d(p(i), p(i+1))+d\left(p(i+1), g_{i+1} o\right) \\
\leqslant & 2 R+1
\end{aligned}
$$

for any $1 \leqslant i \leqslant n-1$ shows that $g_{i}^{-1} g_{i+1} \in S$. Similarly, $g_{1}, g_{n}^{-1} g \in S$. Thus G is generated by S. Now for any $g, h \in G$, let $g^{-1} h=h_{1} \cdots h_{m}$, where $h_{i} \in S$ and $m=d_{S}(g, h)$. Then

$$
d(g o, h o)=d\left(o, g^{-1} h o\right) \leqslant \sum_{i=1}^{m} d\left(o, h_{i} o\right) \leqslant(2 R+1) d_{S}(g, h)
$$

On the other hand, by the above argument about generators and the geodesic we have

$$
d_{S}(g, h)=\left|g^{-1} h\right| \leqslant d\left(o, g^{-1} h o\right)+1=d(g o, h o)+1
$$

Therefore, $[g \mapsto g o]$ is a quasi-isometric embedding. Note that $X \subset N_{R}(G o),[g \mapsto g o]$ is a quasi-isometry.

Exercise 9. We would like to prove the uniform boundedness of k-centers in δ-hyperbolic space.
(1) Let $\triangle=\triangle(a b c)$ be a geodesic triangle with vertices $a, b, c \in X$ and o be a k-center for $k>0$. Prove that

$$
d(c, o)-2 k \leqslant(a, b)_{c} \leqslant d(c, o)+k .
$$

(2) Let p, q be the two k-taut paths in X with same endpoints x and y. Let $z \in p, w \in q$ be two points such that $d(z, x)=d(w, x)$. Prove that

$$
d(z, w) \leqslant 2 k+16 \delta
$$

(3) Prove that the set of k-centers is of uniformly diameter depending only on k and δ.

Solution.

(1) Let $w \in[a, b]$ satisfy $d(o, w) \leqslant k$. Then

$$
\begin{aligned}
(a, b)_{c} & =\frac{1}{2}(d(a, c)-d(a, w)+d(b, c)-d(b, w)) \\
& \leqslant \frac{1}{2} \cdot 2 d(c, w) \\
& =d(c, w) \\
& \leqslant d(c, o)+d(o, w) \\
& \leqslant d(c, o)+k
\end{aligned}
$$

Let $x \in[a, c]$ satisfy that $d(o, x) \leqslant k$. Note that

$$
\begin{aligned}
d(a, c) & =d(a, x)+d(c, x) \\
& \geqslant d(a, o)-d(x, o)+d(c, o)-d(x, o) \\
& \geqslant d(a, o)+d(c, o)-2 k,
\end{aligned}
$$

and similarly, $d(b, c) \geqslant d(b, o)+d(c, o)-2 k$, we can get

$$
d(a, c)+d(b, c) \geqslant d(a, o)+d(b, o)+2 d(c, o)-4 k \geqslant d(a, b)+2 d(c, o)-4 k .
$$

Hence $(a, b)_{c} \geqslant d(c, o)-2 k$.
(2) If $d(x, z)<d(x, y)$, there exists a point $v \in[x, y]$ such that $d(x, v)=d(x, z)$. Since X is δ-hyperbolic and p is a k-taut path, there exists a point $u \in[x, y]$ such that $d(z, u) \leqslant \frac{k}{2}+4 \delta$. So

$$
d(u, v)=|d(x, u)-d(x, v)|=|d(x, u)-d(x, z)| \leqslant d(z, u) \leqslant \frac{k}{2}+4 \delta
$$

Hence $d(z, v) \leqslant d(u, v)+d(z, u) \leqslant k+8 \delta$. Similarly we have $d(w, v) \leqslant k+8 \delta$. Thus

$$
d(z, w) \leqslant d(z, v)+d(w, v) \leqslant 2 k+16 \delta
$$

If $d(x, z) \geqslant d(x, y)$, then

$$
d(x, z)+d(z, y) \leqslant \operatorname{Len}(p) \leqslant d(x, y)+k
$$

implies that $d(z, y) \leqslant k$. Similarly, $d(w, y) \leqslant k$, hence

$$
d(z, w) \leqslant d(z, y)+d(w, y) \leqslant 2 k \leqslant 2 k+16 \delta
$$

(3) Suppose there are two k-centers o, o^{\prime} with respect to $\triangle(a b c)$. Then The path $[c, o] \cup[o, a]$ and $\left[c, o^{\prime}\right] \cup\left[o^{\prime}, a\right]$ are two $2 k$-taut paths. Because $d(c, o) \geqslant(a, b)_{c}-k$ and $d\left(c, o^{\prime}\right) \geqslant(a, b)_{c}-k$, there exists $p \in[c, o]$ and $p^{\prime} \in\left[c, o^{\prime}\right]$ such that $d(c, p)=d\left(c, p^{\prime}\right)=(a, b)_{c}-k$. So $d\left(p, p^{\prime}\right) \leqslant 4 k+16 \delta$. Since $d(o, p)=d(c, o)-d(c, p) \leqslant 3 k$ and $d\left(o^{\prime}, p^{\prime}\right) \leqslant 3 k$ similarly, we have

$$
d\left(o, o^{\prime}\right) \leqslant d(o, p)+d\left(p, p^{\prime}\right)+d\left(o^{\prime}, p^{\prime}\right) \leqslant 10 k+16 \delta
$$

Thus the diameter of the set of k-centers is smaller than $10 k+16 \delta$.
Exercise 10. Let (X, d) be a geodesic metric space with δ-thin triangle property. Prove that there exists a constant $\delta^{\prime}>0$ such that every geodesic triangle is δ^{\prime}-thinner than a comparison geodesic triangle in a tree.

Solution. Let $\triangle=\triangle(a b c)$ be a geodesic triangle in X and x, y, z be the congruent points on the respect sidelines. Since X has δ-thin triangle property, there is a point $p \in[a, b] \cup[a, c]$ such that $d(p, x) \leqslant \delta$. Without loss of generality, suppose $p \in[a, b]$. Hence

$$
d(p, z)=|d(p, b)-d(b, z)|=|d(b, x)-d(b, p)| \leqslant d(p, x) \leqslant \delta
$$

So $d(x, z) \leqslant d(p, z)+d(p, x) \leqslant 2 \delta$. Similarly, we can prove $\min \{d(x, y), d(y, z)\} \leqslant 2 \delta$. Hence $\max \{d(x, y), d(y, z), d(z, x)\} \leqslant 4 \delta$. Now let $\pi: \triangle \rightarrow T_{\triangle}$ be the comparison map from \triangle to the tree T_{\triangle}. Suppose $q \in T_{\triangle}$ is a point satisfying $d(\pi(a), q) \in\left(0,(b, c)_{a}\right)$. Then $\pi^{-1}(q)=\left\{q_{1}, q_{2}\right\}$ and $q_{1} \in[a, y], q_{2} \in[a, z]$. Without loss of generality, we only need to prove that $d_{q_{1}, q_{2}} \leqslant 4 \delta$. To prove that, we would like to construct a geodesic triangle in X such that q_{1}, q_{2} are two congruent points of it. Let $c:[0, d(a, c)] \rightarrow X$ be an arc parameterization of $[a, c]$ and consider the geodesic triangle $\triangle(a b c(t))$. Since $(b, c(0))_{a}=0,(b, c(d(a, c)))_{a}=(b, c)_{a}$ and $(b, c(t))_{a}$ is continuous, there is a $t_{0} \in(0, d(a, c))$ such that q_{1}, q_{2} are congruent points of $\triangle\left(a b c\left(t_{0}\right)\right)$. Hence $d\left(q_{1}, q_{2}\right) \leqslant 4 \delta$.

Exercise 11. Let p be a path in a δ-hyperbolic space. Given a non-decreasing function $f: \mathbb{R}_{>0} \rightarrow$ $\mathbb{R}_{>0}$, let p be a path such that $\operatorname{Len}(q) \leqslant f\left(d\left(q_{-}, q_{+}\right)\right)$for any subpath q of p. Assume that f is sub-exponential (i.e. $\lim _{n \rightarrow \infty} \ln f(n) / n=0$). Prove that p is a quasi-geodesic path.

Solution. We first prove a claim: Any path q satisfying $\operatorname{Len}(r) \leqslant f\left(d\left(r_{-}, r_{+}\right)\right)$for any subpath r of q is contained in a uniform neighborhood in $\left[q_{-}, q_{+}\right]$. Let $x \in\left[q_{-}, q_{+}\right]$be the point maximize $d(x, q)$ and suppose $d(x, q)=t$. Since $q_{-} \in q$, there exists a point $a_{0} \in\left[q_{-}, x\right]$ such that $d\left(x, a_{0}\right)=$ t. Noe let $a_{1} \in\left[q_{-}, a_{0}\right]$ be the point satisfying $d\left(x, a_{1}\right)=\min \left\{2 t, d\left(q_{-}, x\right)\right\}$. Moreover, there exists a point $a_{2} \in q$ which realizes $d\left(a_{1}, q\right)$ and $d\left(a_{1}, a_{2}\right) \leqslant t$. Similarly, we can define b_{0}, b_{1} on $\left[q_{+}, x\right]$ and $b_{2} \in q$. Denote q^{\prime} by the path which is the restricted part of q from a_{2} to b_{2}. Hence $\operatorname{Len}\left(q^{\prime}\right) \leqslant f\left(d\left(a_{2}, b_{2}\right)\right) \leqslant f(6 t)$. Since $q^{\prime} \cup\left[a_{0}, a_{1}\right] \cup\left[a_{1}, a_{2}\right] \cup\left[b_{0}, b_{1}\right] \cup\left[b_{1}, b_{2}\right]$ is a path outside the t-neighborhood of x,

$$
\operatorname{Len}\left(q^{\prime}\right)+4 t \geqslant C_{1} e^{C_{2} d\left(a_{0}, b_{0}\right)}=C_{1} e^{2 C_{2} t}
$$

by the exponential divergence of path, where C_{1}, C_{2} are two constants only depending on δ. Thus

$$
f(6 t)+4 t \geqslant C_{1} e^{2 C_{2} t}
$$

That means t has an upper bound D only depending on δ because f is a sub-exponential function.
Now suppose q is a finite subpath of p. Set $n:=\left[d\left(q_{-}, q_{+}\right)\right]$and let $r:\left[0, d\left(q_{-}, q_{+}\right)\right] \rightarrow X$ be the geodesic from q_{-}to q_{+}. For any $1 \leqslant i \leqslant n$, there exists a point $q_{i} \in q$ such that $d\left(q_{i}, r(i)\right) \leqslant D$. Hence the length of the path which is the subpath of q from q_{i} to q_{i+1} is smaller than $f\left(d\left(q_{i}, q_{i+1}\right)\right) \leqslant$ $f(2 D+1)$. And similarly, the length of the path which is the subpath of q from q_{-}to q_{1} (or from q_{n} to q_{+}) is smaller than $f(D+1) \leqslant f(2 D+1)$. Note that the union of the subpaths of q from q_{-} to q_{1}, from q_{i} to q_{i+1}, from q_{n} to q_{+}must be longer than q itself, thus

$$
d\left(q_{-}, q_{+}\right) \leqslant \operatorname{Len}(q) \leqslant(n+1) f(2 D+1) \leqslant f(2 D+1)\left(d\left(q_{-}, q_{+}\right)+1\right)
$$

So p is a quasi-geodesic.
Exercise 12. We would like to prove that there are only finitely many conjugacy classes of finite subgroups in a hyperbolic group in the following steps. Assume that a group G acts geometrically on a proper hyperbolic space (X, d).
(1) Define a notion of the center for any bounded set B in a metric space X. Define first the radius of B :

$$
r_{B}:=\inf \{r: B \subset B(x, r), r \geqslant 0, x \in X\}
$$

where $B(x, r)$ is the closed ball of radius r at x. The center of B is then defined to be set of points $o \in X$ such that $B \subset B\left(o, r_{B}+1\right)$.
(2) Prove that if X is δ-hyperbolic space, the center of any bounded set is bounded by a constant depending only on δ.
(3) Apply the assertion (2) to the orbit $B=F \cdot x$ of a finite subgroup F of G, and conclude the proof that there are finitely many conjugacy classes of finite subgroups F.

Solution. Suppose $Y \subset X$ is a bounded set with radius r_{y} and two centers o, o^{\prime}. Note that in the proper metric space, \bar{Y} is a compact subspace so $d(p, \cdot)$ has maximum value on it for any $p \in Y$. Hence for any $p \in Y$, there is a point $p^{\prime} \in Y$ such that $d\left(p, p^{\prime}\right) \geqslant r_{Y}$. Now let m be the midpoint of $\left[o, o^{\prime}\right]$. There exists a point $y \in Y$ such that $d(m, y) \geqslant r_{Y}$. Since X is a δ-hyperbolic space, $\triangle\left(o o^{\prime} y\right)$ has 6δ-thin property. Thus there is a point $q \in[o, y] \cup\left[o^{\prime}, y\right]$ such that $d(m, q) \leqslant 6 \delta$. Without loss of generality, suppose $q \in[o, y]$. Then we have

$$
d(y, q)=d(y, o)-d(o, q) \leqslant r_{Y}+1-d(o, m)+d(m, q) \leqslant r_{Y}+1+6 \delta-\frac{d\left(o, o^{\prime}\right)}{2}
$$

Consequently, we get

$$
r_{Y} \leqslant d(y, m) \leqslant d(y, q)+d(q, m) \leqslant 12 \delta+r_{Y}+1-\frac{d\left(o, o^{\prime}\right)}{2}
$$

Therefore, $d\left(o, o^{\prime}\right) \leqslant 24 \delta+2$.
Without loss of generality, we can suppose there is a compact subset K with diameter smaller than 1 such that $G \cdot K$ (If diameter is $R>1$, we can define a new metric $d^{\prime}=d / R$ on X, then X is still hyperbolic but the hyperbolic constants become smaller). Suppose the set of the centers of $B=F \cdot x$ is C. Now by (2) we know that the diameter of C is bounded by $24 \delta+2$. If $o \in X$ satisfies that $B \subset B\left(o, r_{B}\right)$, then for any point $o^{\prime} \in Y$ which satisfies $d\left(o^{\prime}, o\right) \leqslant 1, o^{\prime}$ is a center of B. In particular, there exists a $g \in G$ such that $g x$ is a center of B. Note that C is invariant under
F, hence $g^{-1} C$ is invariant under $g^{-1} F g$. Since id $\in g^{-1} F g, g^{-1} F g x \subset g^{-1} C$. So every finite subgroup F is conjugate to a finite subgroup which is contained in

$$
S:=\{g \in G: d(x, g x) \leqslant 24 \delta+2\} .
$$

Note that $\# S<\infty$ since G-action is proper, we get that there are only finitely many conjugacy classes of finite subgroups.

Exercise 13. Let (X, d) be a geodesic metric space. If there exists $\delta>0$ such that the following inequality holds

$$
(x, y)_{w} \geqslant \min \left\{(x, z)_{w},(y, z)_{w}\right\}-\delta
$$

for any $x, y, z, w \in X$, then (X, d) is Gromov-hyperbolic. Now suppose (X, d) is a Gromovhyperbolic space. We would like to prove that X is a hyperbolic space.
(1) Prove first that there exists a point $w \in[x, y]$ such that $(x, z)_{w},(y, z)_{w} \leqslant \delta$.
(2) Then prove that if $(x, z)_{w} \leqslant \delta$, then $d(w,[x, z])$ is bounded by a constant depending on δ.

Solution. It's obvious that by (1) and (2) we can prove the previous statement. Precisely, w is a δ^{\prime}-center of $\triangle(x y z)$, where δ^{\prime} is the constant bounding $d(w,[x, z])$.
(1) Let $w(t)$ be an arc parameterization of $[x, y]$ such that $w(0)=x, w(d(x, y))=y$. Note that $f(t):=(x, z)_{w(t)}-(y, z)_{w(t)}$ is a continuous function and $f(0)=-(y, z)_{x} \leqslant 0, f(d(x, y))=$ $(x, z)_{y} \geqslant 0$. There exists a point $0 \leqslant t_{0} \leqslant d(x, y)$ such that $w:=w_{t_{0}}$ satisfies $(x, z)_{w}=(y, z)_{w}$. Since $(x, y)_{w}=0$ and X is a Gromov-hyperbolic space, $(x, z)_{w}=(y, z)_{w} \leqslant \delta$.
(2) By the similar argument in (1), there exists a point $u \in[x, z]$ such that $(x, u)_{w}=(z, u)_{w}$ since $(x, x)_{w}-(z, x)_{w}=(z, w)_{x} \geqslant 0$ and $(x, z)_{w}-(z, z)_{w}=-(x, w)_{z} \leqslant 0$. Thus

$$
(x, z)_{w}+d(w, u)=(x, u)_{w}+(z, u)_{w}=2(x, u)_{w} \leqslant 2(x, z)_{w}+2 \delta
$$

So

$$
d(w,[x, z]) \leqslant d(w, u) \leqslant(x, z)_{w}+2 \delta \leqslant 3 \delta
$$

Exercise 14. If any infinite set $\left\{g_{n}: n \in \mathbb{N}\right\}$ in G has the convergence property, prove that G-action (on a compact metrizable space M) is a convergence group action.

Solution. Suppose G-action is not a convergence group action, then there exists a compact subset $K_{0} \in \Theta^{3}(M)$ and an infinite sequence $\left\{g_{n}: n \in \mathbb{N}\right\}$ such that $g_{n} K_{0} \cap K_{0} \neq \emptyset$. Hence there exists a sequence $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\} \subset K_{0}$ such that $g_{n}\left(x_{n}, y_{n}, z_{n}\right) \in K_{0}$ for all $n \in \mathbb{N}$. By the compactness of K_{0}, we can find a subsequence $\left\{\left(x_{n_{i}}, y_{n_{i}}, z_{n_{i}}\right)\right\}$ of $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}$ which converges to $(x, y, z) \in K_{0}$ and $\left\{g_{n_{i}}\left(x_{n_{i}}, y_{n_{i}}, z_{n_{i}}\right)\right\}$ converges to $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in K_{0}$. Now by the convergence property of $\left\{g_{n_{i}}\right\}$, there exists a subsequence $\left\{g_{n_{i_{j}}}\right\}$ of $\left\{g_{n_{i}}\right\}$ and $a, b \in M$ such that $g_{n_{i_{j}}}$ converges to b locally uniformly on $M \backslash\{a\}$. Since $(x, y, z) \in \Theta^{3}(M)$, there are at least two elements in $\{x, y, z\}$ not equal to a. Without loss of generality, suppose $a \notin\{x, y\}$. Similarly, there is at least one element in $\left\{x^{\prime}, y^{\prime}\right\}$ not equal to b. Without loss of generality, suppose $x^{\prime} \neq b$. Then $\left\{x_{n_{i_{j}}}\right\} \cup\{x\}$ is a compact subset in $M \backslash\{a\}$. However, $\left\{g_{n_{i_{j}}} x_{n_{i_{j}}}\right\}$ converges to x^{\prime} instead of b, a contradiction.

Exercise 15. Let G be acting on a compact metrizable space M as a convergence group. Then any infinite set $\left\{g_{n}: n \in \mathbb{N}\right\}$ in G contains a subsequence $\left\{g_{n_{i}}\right\}$ and points $a, b \in M$ so that
(1) $g_{n_{i}}$ converges to b locally uniformly in $M \backslash\{a\}$, and
(2) $g_{n_{i}}^{-1}$ converges to a locally uniformly in $M \backslash\{b\}$.

Solution. There exists a subsequence $\left\{g_{n_{i}}\right\}$ and points $a, b, x, y \in M$ such that $g_{n_{i}}$ converges to b locally uniformly in $M \backslash\{a\}$, and $g_{n_{i}}^{-1}$ converges to x locally uniformly in $M \backslash\{y\}$ since G-action is a convergence group action. If $x \neq a$, then consider a point $x^{\prime} \in M \backslash\{y, b\} . g_{n_{i}}^{-1} x^{\prime}$ converges to x, hence $g_{n_{i}} x$ converges to x^{\prime}, which contradicts to $x \in M \backslash\{a\}$ and $x^{\prime} \neq b$. Similarly we can prove that $y=b$, hence $g_{n_{i}}$ is the subsequence we need.

Exercise 16. Prove that any finite group acts on a tree with a global fixed point.
Solution. Let F be a finite group acts on a tree T. For any $x \in T$, its orbit $B:=F \cdot x$ is a bounded set. Note that there exists an o which satisfies $B \subset B\left(o, r_{B}\right)$, where r_{B} is the radius defined in Exercise 12. Such a point o is called a center. If there exists two centers o, o^{\prime} in T, consider their midpoint m. For any point $p \in T$, let $q \in\left[o, o^{\prime}\right]$ be the point realizing $d\left(p,\left[o, o^{\prime}\right]\right)$. If $q \in\left[o^{\prime}, m\right]$, then $d(p, m)=d(p, o)-\frac{d\left(o, o^{\prime}\right)}{2}$ and similar thing happens when $q \in[o, m]$ since
geodesic connecting two points is unique in a tree. Thus the center is unique. Since B is invariant under F, o is fixed under F.

Exercise 17. Let a finitely generated group G act without inversion on a tree T. Then there exists a minimal G-invariant subtree in T.

Solution. If every element in G has a fixed point, then they have a common fixed point by the Corollary 2 of Chap.I. 6.5 in [1]. Hence the common fixed point is a minimal G-invariant subtree in T. If there exists an element g which fixes no point in T, by the Proposition 25 of Chap.I.6.4 in [1] g has a unique axis A_{g} in T where g acts on as a translation. Such a g is called a hyperbolic element in G. Now let T_{G} be the union of all axes of the hyperbolic elements in G. Note that every G-invariant subtree contains T_{G} since every g-invariant subtree contains A_{g} for ant hyperbolic element $g \in G$. Besides, T_{G} is G-invariant since for any $h \in G$ and a hyperbolic element $g \in G, h A_{g}=A_{h g h^{-1}}$. Now it suffices to prove that T_{G} is indeed a tree, i.e. T_{G} is connected. If two axes A_{g} and A_{h} are disjoint, then by the Proposition 1.2 in [2] we can get $g h$ is also a hyperbolic element and $A_{g h}$ intersects with both A_{g} and A_{h}. Hence T_{G} is a minimal G-invariant subtree.

Exercise 18. Prove that $\operatorname{SL}(n, \mathbb{Z})$ for $n \geqslant 3$ is not a hyperbolic group.
Solution. Since $\operatorname{SL}(3, \mathbb{Z})$ is a subgroup for any $\operatorname{SL}(n, \mathbb{Z})$ when $n \geqslant 3$ and a hyperbolic group cannot contain a subgroup isomorphic to \mathbb{Z}^{2}, it suffices to prove that $\operatorname{SL}(3, \mathbb{Z})$ contains a subgroup isomorphic to \mathbb{Z}^{2}. Now it's easy to verify that

$$
\left\{\left[\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & b & 1
\end{array}\right]: a, b \in \mathbb{Z}\right\}
$$

is a subgroup we need since

$$
\left[\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & b & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & a^{\prime} & 0 \\
0 & 1 & 0 \\
0 & b^{\prime} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a+a^{\prime} & 0 \\
0 & 1 & 0 \\
0 & b+b^{\prime} & 1
\end{array}\right] .
$$

References

[1] Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980, Translated from the French by John Stillwell.
[2] M. Culler and K. Vogtmann, A Group Theoretic Criterion for Property FA, Proceedings of the American Mathematical Society Vol. 124, No. 3 (Mar., 1996), pp. 677-683

School of Mathematical Sciences, Nankai University, Tianjin, P.R.China
Email address: llddeddym@outlook.com

