Introduction to hyperbolic surfaces

Exercises VII

For n > 0 integer, we call a polygon an n-gon, if it has n vertices. We denote it by P_n .

For any n and g non-negative integers, we denote by $S_{g,n}$ an oriented topological surface of genus g with n boundary components. If there is no boundary components, we will simply denote the surface by S_g .

We denote by $M\"ob(\mathbb{H})$ the group of M"obius transformations on \mathbb{H} .

- 1. For a surface S, we denote by $\chi(S)$ its Euler characteristic.
 - a) (Easy) Compute $\chi(P_n)$.
 - b) (Easy) Consider the construction of a flat torus S_1 by gluing opposite sides of P_4 . Compute $\chi(S_1)$.

(Hint: Check how many vertices and edges left after the identification of the sides of P_4 . Then use the formula V - E + F to compute $\chi(S_1)$.)

- c) (Easy) Consider the construction of a genus g surface S_g using a 4g-gon. Compute $\chi(S_g)$.
- d) (Normal) Let P_{4g} be the polygon used to construct S_g . By cutting out a triangle in the interior, we create a surface which is topological $S_{0,2}$ a sphere with two holes. Using the same gluing pattern as in c), we get the surface $S_{g,1}$. Compute $\chi(S_{0,2})$ and $\chi(S_{g,1})$.
- e) (Normal) By cutting out *n* disjoint triangles from P_{4g} and keep the same gluing pattern as in c), we construct surfaces $S_{0,n+1}$ and $S_{g,n}$ before and after the gluing. Compute $\chi(S_{0,n+1})$ and $\chi(S_{g,n})$.
- f) (Hard) We consider gluing surfaces along boundary to get new surfaces.
 - i. Using e), for n > 1, show that $\chi(S_{g,n}) = \chi(S_{g+1,n-2})$.

ii. Using e), for
$$n_1 > 0$$
 and $n_2 > 0$, show that $\chi(S_{g_1,n_1}) + \chi(S_{g_2,n_1}) = \chi(S_{g_1+g_2,n_1+n_2-2})$.

- iii. Check both equalities still hold when either g, g_1 or g_2 is 0.
- g) (Easy) Compute the number of pair of pants in a pants decomposition of S_g .
- h) (Easy) Compute the number of curves used in a pair of pants decomposition of S_q .
- i) (Easy) Based on the answers of the question g) and h), guess the answers of the same questions for $S_{q,n}$ with n > 0. Check if it is correct.
- 2. a) (Easy) For any fours pairwise distinct points x_1, x_2, x_3 and x_4 in $\partial \mathbb{H}$, we define the cross ratio to be

$$\mathbb{B}(x_1, x_2; x_3, x_4) = \frac{(x_1 - x_4)(x_2 - x_3)}{(x_1 - x_3)(x_2 - x_4)}$$

Show that \mathbb{B} is invariant under Möbius transformations, i.e. for any $f \in Möb(\mathbb{H})$ we have:

$$\mathbb{B}(x_1, x_2; x_3, x_4) = \mathbb{B}(f(x_1), f(x_2); f(x_3), f(x_4)).$$

(Hint: Check T_t , ϕ_{λ} and ρ_{θ} for x_1 , x_2 , x_4 and x_4 finite. Then show that it can be extended to the case where one of them is ∞ .)

- b) (Easy) Let η denote the geodesic ending at x_1 and x_2 , and η' denote the geodesic ending at x_3 and x_4 . Show that
 - i. η intersects η' if and only if $\mathbb{B}(x_1, x_2; x_3, x_4) < 0$;
 - ii. η and η' are disjoint if and only if $\mathbb{B}(x_1, x_2; x_3, x_4) > 0$.

(Hint: Use an isometry to send η to V_0 .)

c) (Hard) Let $f \in M\"{o}b(\mathbb{H})$ and γ be a geodesic ending at x and x'. Show that f is hyperbolic if

$$\mathbb{B}(x, f(x'); x', f(x)) < 0$$

(Hint: Show that the translation distance l(f) of f is not 0. Check first the cyclic order of end points of γ and $f(\gamma)$ on $\partial \mathbb{H}$. Then observe how the half planes with boundary γ moved by f. Use the distance between γ and $f(\gamma)$ to find a lower bound for l(f).)

3. Consider the flat torus $S_1 = \mathbb{R}^2 / \mathbb{Z}^2$. Let l(x, y) be the line passing (0, 0) and (x, y). The projection of l(x, y) to S_1 is a simple geodesic, denoted by $\gamma(x, y)$. Moreover, $\gamma(x, y)$ is closed if and only if $(x, y) \in \mathbb{Z}^2$. Let (p, q) and (r, s) be two distinct points in \mathbb{Z}^2 . Compute the intersection number between $\gamma(p, q)$ and $\gamma(r, s)$.