Introduction to hyperbolic surfaces

Exercises VII

For $n>0$ integer, we call a polygon an n-gon, if it has n vertices. We denote it by P_{n}.
For any n and g non-negative integers, we denote by $S_{g, n}$ an oriented topological surface of genus g with n boundary components. If there is no boundary components, we will simply denote the surface by S_{g}.

We denote by Möb($\mathbb{H})$ the group of Möbius transformations on \mathbb{H}.

1. For a surface S, we denote by $\chi(S)$ its Euler characteristic.
a) (Easy) Compute $\chi\left(P_{n}\right)$.
b) (Easy) Consider the construction of a flat torus S_{1} by gluing opposite sides of P_{4}. Compute $\chi\left(S_{1}\right)$.
(Hint: Check how many vertices and edges left after the identification of the sides of P_{4}. Then use the formula $V-E+F$ to compute $\chi\left(S_{1}\right)$.)
c) (Easy) Consider the construction of a genus g surface S_{g} using a $4 g$-gon. Compute $\chi\left(S_{g}\right)$.
d) (Normal) Let $P_{4 g}$ be the polygon used to construct S_{g}. By cutting out a triangle in the interior, we create a surface which is topological $S_{0,2}$ a sphere with two holes. Using the same gluing pattern as in c), we get the surface $S_{g, 1}$. Compute $\chi\left(S_{0,2}\right)$ and $\chi\left(S_{g, 1}\right)$.
e) (Normal) By cutting out n disjoint triangles from $P_{4 g}$ and keep the same gluing pattern as in c), we construct surfaces $S_{0, n+1}$ and $S_{g, n}$ before and after the gluing. Compute $\chi\left(S_{0, n+1}\right)$ and $\chi\left(S_{g, n}\right)$.
f) (Hard) We consider gluing surfaces along boundary to get new surfaces.
i. Using e), for $n>1$, show that $\chi\left(S_{g, n}\right)=\chi\left(S_{g+1, n-2}\right)$.
ii. Using e), for $n_{1}>0$ and $n_{2}>0$, show that $\chi\left(S_{g_{1}, n_{1}}\right)+\chi\left(S_{g_{2}, n_{1}}\right)=\chi\left(S_{g_{1}+g_{2}, n_{1}+n_{2}-2}\right)$.
iii. Check both equalities still hold when either g, g_{1} or g_{2} is 0 .
g) (Easy) Compute the number of pair of pants in a pants decomposition of S_{g}.
h) (Easy) Compute the number of curves used in a pair of pants decomposition of S_{g}.
i) (Easy) Based on the answers of the question g) and h), guess the answers of the same questions for $S_{g, n}$ with $n>0$. Check if it is correct.
2. a) (Easy) For any fours pairwise distinct points x_{1}, x_{2}, x_{3} and x_{4} in $\partial \mathbb{H}$, we define the cross ratio to be

$$
\mathbb{B}\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=\frac{\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right)}{\left(x_{1}-x_{3}\right)\left(x_{2}-x_{4}\right)} .
$$

Show that \mathbb{B} is invariant under Möbius transformations, i.e. for any $f \in \operatorname{Möb}(\mathbb{H})$ we have:

$$
\mathbb{B}\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=\mathbb{B}\left(f\left(x_{1}\right), f\left(x_{2}\right) ; f\left(x_{3}\right), f\left(x_{4}\right)\right) .
$$

(Hint: Check T_{t}, ϕ_{λ} and ρ_{θ} for x_{1}, x_{2}, x_{4} and x_{4} finite. Then show that it can be extended to the case where one of them is ∞.)
b) (Easy) Let η denote the geodesic ending at x_{1} and x_{2}, and η^{\prime} denote the geodesic ending at x_{3} and x_{4}. Show that
i. η intersects η^{\prime} if and only if $\mathbb{B}\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)<0$;
ii. η and η^{\prime} are disjoint if and only if $\mathbb{B}\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)>0$.
(Hint: Use an isometry to send η to V_{0}.)
c) (Hard) Let $f \in \operatorname{Möb}(\mathbb{H})$ and γ be a geodesic ending at x and x^{\prime}. Show that f is hyperbolic if

$$
\mathbb{B}\left(x, f\left(x^{\prime}\right) ; x^{\prime}, f(x)\right)<0
$$

(Hint: Show that the translation distance $l(f)$ of f is not 0 . Check first the cyclic order of end points of γ and $f(\gamma)$ on $\partial \mathbb{H}$. Then observe how the half planes with boundary γ moved by f. Use the distance between γ and $f(\gamma)$ to find a lower bound for $l(f)$.)
3. Consider the flat torus $S_{1}=\mathbb{R}^{2} / \mathbb{Z}^{2}$. Let $l(x, y)$ be the line passing $(0,0)$ and (x, y). The projection of $l(x, y)$ to S_{1} is a simple geodesic, denoted by $\gamma(x, y)$. Moreover, $\gamma(x, y)$ is closed if and only if $(x, y) \in \mathbb{Z}^{2}$. Let (p, q) and (r, s) be two distinct points in \mathbb{Z}^{2}. Compute the intersection number between $\gamma(p, q)$ and $\gamma(r, s)$.

