EXERCISE SHEET \#2

Prove the uniform boundedness of k-centers in δ-hyperbolic space:
Exercise 0.1. (1) Let $\Delta=\Delta(a b c)$ be a geodesic triangle with vertices $a, b, c \in$ X and o be a k-center for $k>0$. Then

$$
d(c, o)-2 k \leq(a, b)_{c} \leq d(c, o)+k
$$

(2) Let p, q be be two k-taut paths in X with same endpoints x and y. Let $z \in p, w \in q$ be two points such that $d(z, x)=d(w, x)$. Then

$$
d(z, w) \leq 2 k+16 \delta
$$

(3) Prove that the set of k-centers is of uniform diameter depending only on k and δ. Write the statement in a quantitative form and then prove it.
Thin triangle property. Let $\Delta \subset X$ be a geodesic triangle in a metric space X. Let $\Delta^{\prime} \subset T$ be a comparison triangle with same length of sides as those of Δ. There is a natural bijective map $\phi: \Delta \rightarrow \Delta^{\prime}$ which sends sides of Δ isometrically to those of Δ^{\prime}. We say that Δ is δ-thinner than Δ^{\prime} for some $\delta \geq 0$ if for any two congruent points $x^{\prime}, y^{\prime} \in \Delta^{\prime}$, we have $d_{X}\left(\phi^{-1}\left(x^{\prime}\right), \phi^{-1}(y)\right) \leq d_{Y}\left(x^{\prime}, y^{\prime}\right)+\delta$.

Exercise 0.2. Let (X, d) be a geodesic metric space with δ-thin triangle property. Then there exists a constant $\delta^{\prime}>0$ such that every geodesic triangle is δ^{\prime}-thinner than a companion geodesic triangle in a tree.

