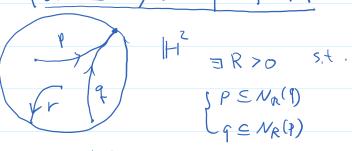
8- Hyperbolic space ~~ > Gromov boundary

 $\times$   $\rightarrow$   $\partial \times as a set$ 

geodesic metric space \delta { geodesic rays upto finite

hausdorff distance }

· X proper. (2X UX) is compactification



· 4: X = 3.I.E. Y ~~ 39: 3X -> 3

is top embedding

so quasi-isometries induce homes between belies.

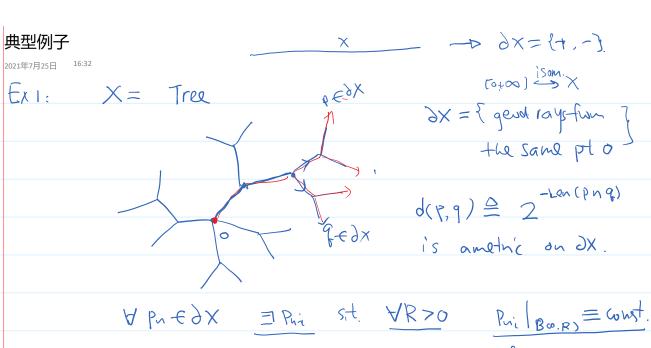
Gromou bodry is Q.Z. invariant.

· I a family of visual metrics { [ \varepsilon ] \times \text{ s.t.}

 $\partial \phi: (\partial X, P_c) \longrightarrow (\partial Y, P_c)$ 

is quasi-conformal.





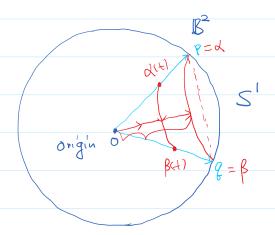
$$\forall Pn \in \partial X \equiv Pni$$
 st.  $\forall R > 0$   $Pni \mid Bo.R. = Comst.$ 

for all but fintle  $Ni > 0$ 
 $\wedge \Delta \equiv Pn$  s.t.  $Pni \mid Ba.R. = Pni \mid Ba.R. = Pni \mid Ba.R.$ 

for ...  $Ni > 0$ .

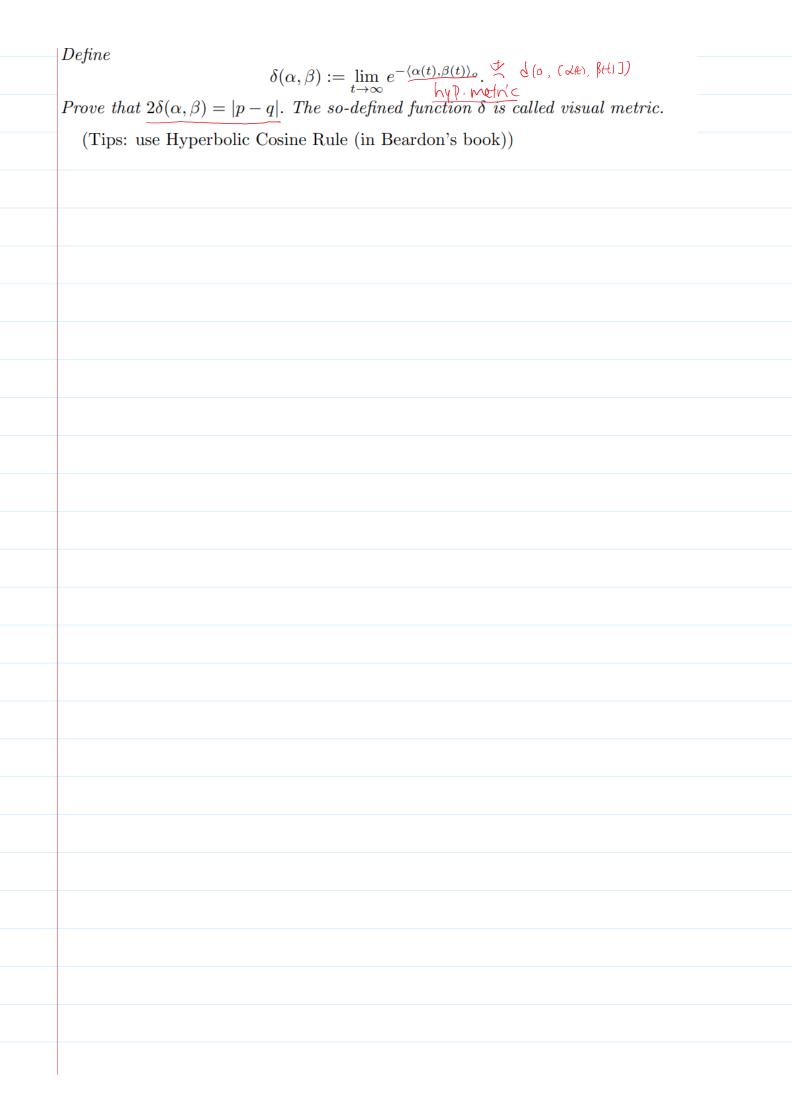
- . If X is proper ( bor. finite) then DX is compact.
- · If 3 ≤ deg (any vertex) ≤ M then 3× ⊆ Cantor Set. Lut 12

$$E\times 2:$$
  $(H^2)$   $\frac{d^2x+d^2y}{y}$   $\sum_{i=1-|2i|^2}^{2Sum}$   $(B_i^2)$   $p=\frac{2|d+2|}{1-|2i|^2}$ 



**Exercise 0.4** (Visual metric). Let  $\alpha, \beta : [0, \infty) \to (\mathbb{B}^n, \rho)$  be two distinct geodesic rays (i.e.: isometric embedding) from o ending at two points  $p, q \in \mathbb{S}^{n-1}$  respectively. Define

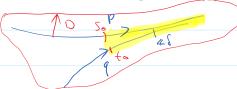
 $\delta(\alpha,\beta) := \lim_{t \to \infty} e^{-\frac{\langle \alpha(t),\beta(t) \rangle_o}{\text{hvD. woth'c}}} \stackrel{\text{def}}{\sim} \left( \text{o, (de), } \text{still} \right)$ 



## 边界定义

2021年7月25日 16:00

**Definition 8.1.** Let  $p, q : [0, \infty) \to X$  be two geodesic rays. We say that p, q are asymptotic if there exists D > 0 such that  $p \subset N_D(q)$ .

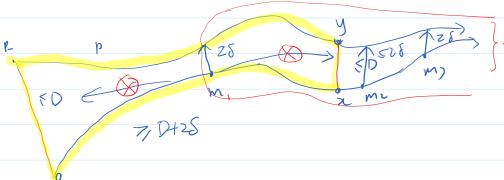


**Lemma 8.2** (Uniformity of asymptotic rays). Let p, q be two asymptotic geodesic rays. Then there exist  $t_0, s_0 > 0$  such that  $\times \$   $\sim -$ 

$$p([t_0,\infty)) \subset N_{4\delta}(q([s_0,\infty)))$$

and

$$q([s_0,\infty)) \subset N_{4\delta}(p([t_0,\infty)))$$



max {d(9-, x), d(P-y)} >> 2D+48

Fix a basepoint of X

do X ≜ { Asymptotic geodesic rays from o}

 $\times \stackrel{\triangle}{=} S[[0, x]] : \forall x \in X , [[0,x]] \underline{an} \text{ geodesics}$ between o and x



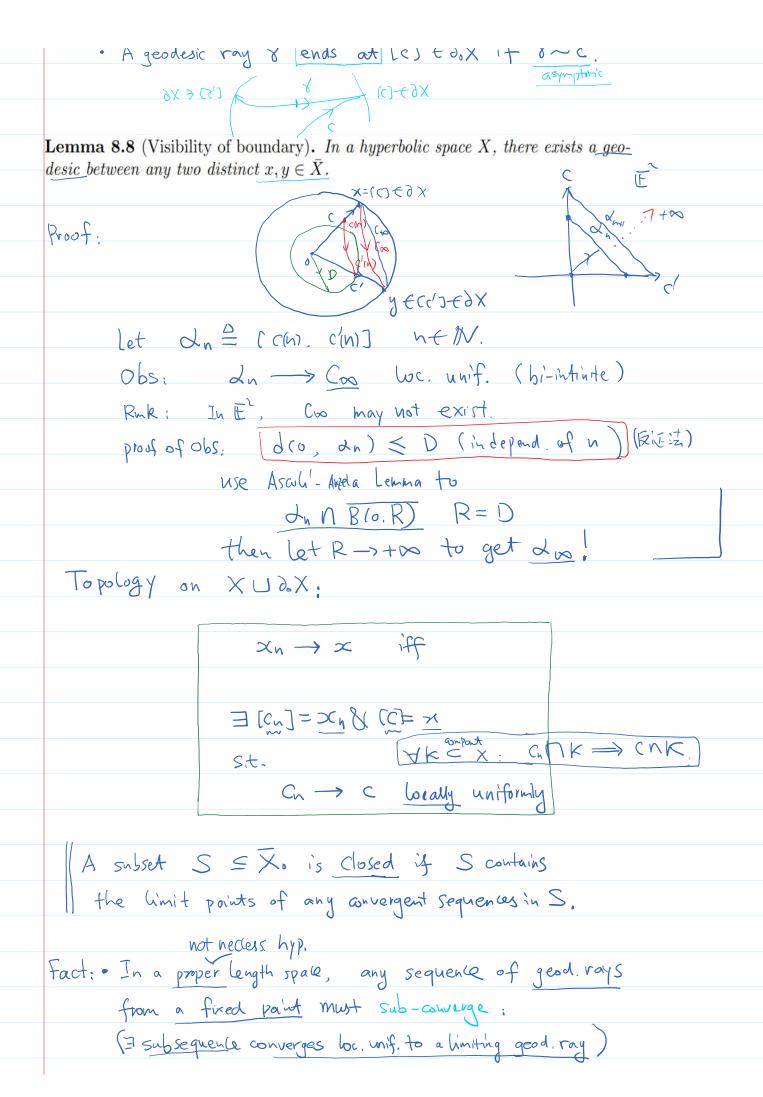


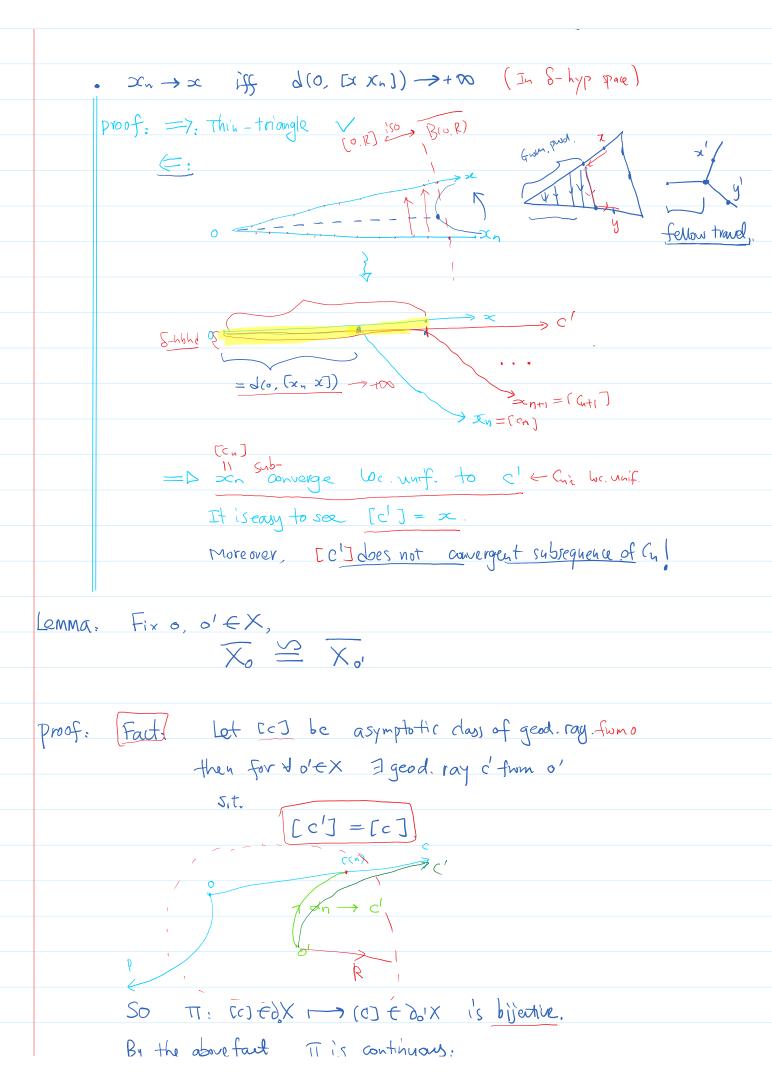


Def: · A bi-infinite geodesic & connects [c] \( \)[c'] \( \) if

the two half rays of \( \) end at [c] and [c'].

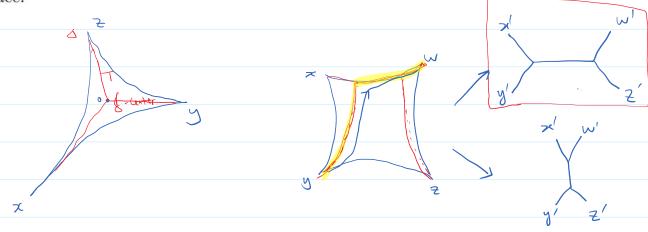
· A geodesic ray & ends at [c] to, x if 8~c.





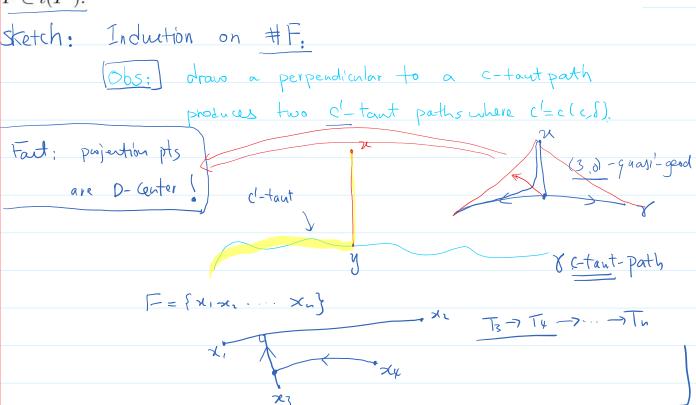
| SO THE RESTOR TO COST IS BYEMINE.                                                              |
|------------------------------------------------------------------------------------------------|
| By the above fact, IT is continuous:                                                           |
|                                                                                                |
| $[C_{0}] \rightarrow c \Rightarrow [C_{0}] \rightarrow [C_{0}]$                                |
| Lemma 8.6. Let $\bar{X}_o$ be endowed with the first or second topology. Then $\bar{X}_o$ is a |
| $compactification\ of\ X$ .                                                                    |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |

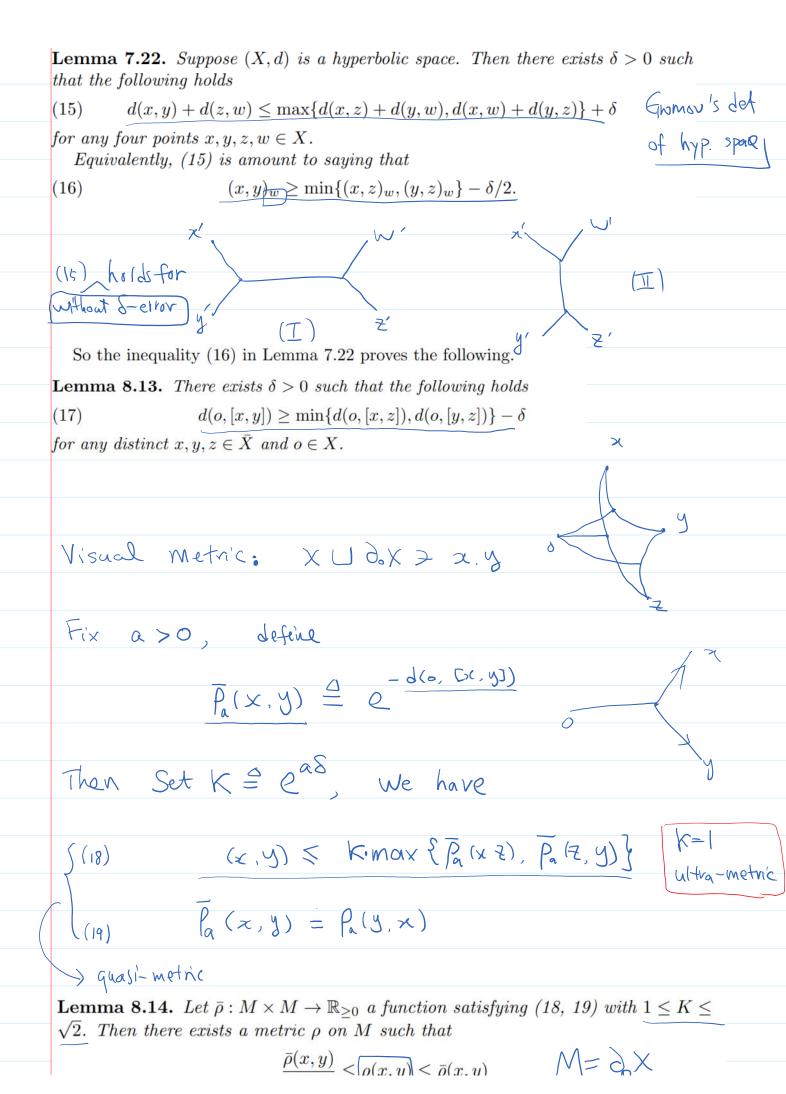
7.6. **Approximation trees in hyperbolic spaces.** In this section, we prove a very useful result, which gives a tree-like picture of any finite set in a hyerbolic space.



**Lemma 7.20.** Let X be a hyperbolic space, and F be a finite set. There exists a constant c = c(|F|) and an embedded tree  $\underline{T \subset X \text{ with } F \subset \underline{T^0}}$  such that the following holds

 $d_{\mathsf{x}}(\mathsf{x}, \mathsf{y}) \leqslant d_{T}(x, y) \leq d_{X}(x, y) + c.$ In other words, there exists an injective (1, c)-quasi-isometric map  $\iota : T \to X$  with  $F \subset \iota(T^{0}).$ 





 $\sqrt{2}$ . Then there exists a metric  $\rho$  on M such that

$$\frac{\bar{\rho}(x,y)}{K} \le \underline{\bar{\rho}(x,y)} \le \underline{\bar{\rho}(x,y)}$$

 $M = \frac{3}{2} \times$ 

for any  $x, y \in M$ .

Thus, we choose  $a \in (0,1]$  small enough such that  $e^{a\delta} \leq \sqrt{2}$  (there is a critical value  $a_0$  such that any  $a \in (0,a_0]$  works). Then we get a metric  $\rho_a$  on  $\bar{X}$  by Lemma 8.14 such that

(21) 
$$\bar{\rho}_a(x,y)/2 \le \rho_a(x,y) \le \bar{\rho}_a(x,y)$$

**Lemma 8.15.** The induced topology on  $\partial X$  by  $\rho$  is the same as the topology defined in previous subsection.

## 边界延拓

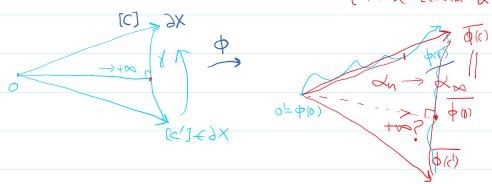
2021年7月25日 21:02

**Theorem 8.19.** Let X, Y be two hyperbolic spaces. Assume that there exists a quasi-isometry between X and Y. Then the Gromov boundary of X is homeomorphic to that of Y.

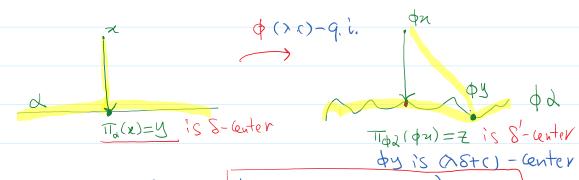
 $Proof. \cdot \partial \phi: \partial \times \xrightarrow{121} \partial Y$  by  $\partial \phi(\underline{r},\underline{r}) \triangleq [\overline{\phi},\underline{r}]$ 

where  $\overline{\phi(c)}$  represents a geodesic vay in a finite ubhd of  $\overline{\phi(c)}$ .

[Morse Lemma & Puper]



· Quasi-isometries preserve projections up to finite error.



 $\exists D=D(\lambda,c,\delta): d(\pi_{\phi,\delta}(bu), d(\pi_{\delta,\lambda})) \leq D$ 

Faut: The set of r-lenters is of diameter D=D(r).

• Cor: Set  $x'=\varphi x$ ,  $y'=\varphi y$ ,  $z'=\varphi z$ ,  $o'=\varphi o$ . where  $\varphi$  is  $(\lambda.c)-\gamma.i.e$ . Set  $S(x,y,z) \triangleq |\langle x,z\rangle - \langle x,y\rangle |$ Then  $\exists c'=c(\lambda,c,\delta)$  st.

## $\frac{1}{2}S(x,y,z)-2 \leq S(x',y',z') \leq \lambda S(x,y,z)+2$

**Definition 8.22.** A homeomorphism  $f: X \to Y$  is called *quasi-conformal* if there exists a constant H so that

$$\limsup_{r\to 0}\frac{\sup_{d(x,y)=r}d(f(x),f(y))}{\inf_{d(x,y)=r}d(f(x),f(y))}\leq H<\infty$$

for all x in X.



Theorem' 8.23. Let  $\phi: X \to X$  be a quasi-isometry between hyperbolic spaces. Then the induced map  $\partial \phi: \partial X \to \partial X$  is a quasi-conformal map with respect to visual metric.

· Let x, y, z + dx, x'= ox, y'= dy, z = dz + dx

Consider the small r-circle at 2.

$$P_0(x, y) = r \times e^{-\langle x, y \rangle_0}$$
  
 $P_0(x, z) = r \times e^{-\langle x, z \rangle_0}$ 





$$S(x,y,z) = |\langle x,z\rangle_0 - \langle x,y\rangle_0 | \leq D$$

## $S(x', y', z') \leq \lambda D + c'$

$$= > H \triangleq \text{ GimSup} \quad \frac{\text{Sup}[f_{o}(x',y'), f_{o}(x,y)=r]}{\inf\{f_{o}(x',z'), f_{o}(x,z)=r]}$$

 $\frac{y}{p(u,y)=2^{-h}}$ 

 $\leq e^{\lambda 0 + c} < \infty$ 

Ruk: An isometry on trees extend to Conformal on

Gwnov. bdry.