8- Hyperbolic space ~~ > Gromov boundary

 \times \rightarrow $\partial \times as a set$

geodesic metric space \delta { geodesic rays upto finite

hausdorff distance }

· X proper. (2X UX) is compactification

· 4: X = 3.I.E. Y ~~ 39: 3X -> 3

is top embedding

so quasi-isometries induce homes between belies.

Gromou bodry is Q.Z. invariant.

· I a family of visual metrics { [\varepsilon] \times \text{ s.t.}

 $\partial \phi: (\partial X, P_c) \longrightarrow (\partial Y, P_c)$

is quasi-conformal.

$$\forall Pn \in \partial X \equiv Pni$$
 st. $\forall R > 0$ $Pni \mid Bo.R. = Comst.$

for all but fintle $Ni > 0$
 $\wedge \Delta \equiv Pn$ s.t. $Pni \mid Ba.R. = Pni \mid Ba.R. = Pni \mid Ba.R.$

for ... $Ni > 0$.

- . If X is proper (bor. finite) then DX is compact.
- · If 3 ≤ deg (any vertex) ≤ M then 3× ⊆ Cantor Set. Lut 12

$$E\times 2:$$
 (H^2) $\frac{d^2x+d^2y}{y}$ $\sum_{i=1-|2i|^2}^{2Sum}$ (B_i^2) $p=\frac{2|d+2|}{1-|2i|^2}$

Exercise 0.4 (Visual metric). Let $\alpha, \beta : [0, \infty) \to (\mathbb{B}^n, \rho)$ be two distinct geodesic rays (i.e.: isometric embedding) from o ending at two points $p, q \in \mathbb{S}^{n-1}$ respectively. Define

 $\delta(\alpha,\beta) := \lim_{t \to \infty} e^{-\frac{\langle \alpha(t),\beta(t) \rangle_o}{\text{hvD. woth'c}}} \stackrel{\text{def}}{\sim} \left(\text{o, (de), } \text{still} \right)$

边界定义

2021年7月25日 16:00

Definition 8.1. Let $p, q : [0, \infty) \to X$ be two geodesic rays. We say that p, q are asymptotic if there exists D > 0 such that $p \subset N_D(q)$.

Lemma 8.2 (Uniformity of asymptotic rays). Let p, q be two asymptotic geodesic rays. Then there exist $t_0, s_0 > 0$ such that $\times \$ $\sim -$

$$p([t_0,\infty)) \subset N_{4\delta}(q([s_0,\infty)))$$

and

$$q([s_0,\infty)) \subset N_{4\delta}(p([t_0,\infty)))$$

max {d(9-, x), d(P-y)} >> 2D+48

Fix a basepoint of X

do X ≜ { Asymptotic geodesic rays from o}

 $\times \stackrel{\triangle}{=} S[[0, x]] : \forall x \in X , [[0,x]] \underline{an} \text{ geodesics}$ between o and x

Def: · A bi-infinite geodesic & connects [c] \(\)[c'] \(\) if

the two half rays of \(\) end at [c] and [c'].

· A geodesic ray & ends at [c] to, x if 8~c.

SO THE RESTOR TO COST IS BYEMINE.
By the above fact, IT is continuous:
$[C_{0}] \rightarrow c \Rightarrow [C_{0}] \rightarrow [C_{0}]$
Lemma 8.6. Let \bar{X}_o be endowed with the first or second topology. Then \bar{X}_o is a
$compactification\ of\ X$.

7.6. **Approximation trees in hyperbolic spaces.** In this section, we prove a very useful result, which gives a tree-like picture of any finite set in a hyerbolic space.

Lemma 7.20. Let X be a hyperbolic space, and F be a finite set. There exists a constant c = c(|F|) and an embedded tree $\underline{T \subset X \text{ with } F \subset \underline{T^0}}$ such that the following holds

 $d_{\mathsf{x}}(\mathsf{x}, \mathsf{y}) \leqslant d_{T}(x, y) \leq d_{X}(x, y) + c.$ In other words, there exists an injective (1, c)-quasi-isometric map $\iota : T \to X$ with $F \subset \iota(T^{0}).$

 $\sqrt{2}$. Then there exists a metric ρ on M such that

$$\frac{\bar{\rho}(x,y)}{K} \le \underline{\bar{\rho}(x,y)} \le \underline{\bar{\rho}(x,y)}$$

 $M = \frac{3}{2} \times$

for any $x, y \in M$.

Thus, we choose $a \in (0,1]$ small enough such that $e^{a\delta} \leq \sqrt{2}$ (there is a critical value a_0 such that any $a \in (0,a_0]$ works). Then we get a metric ρ_a on \bar{X} by Lemma 8.14 such that

(21)
$$\bar{\rho}_a(x,y)/2 \le \rho_a(x,y) \le \bar{\rho}_a(x,y)$$

Lemma 8.15. The induced topology on ∂X by ρ is the same as the topology defined in previous subsection.

边界延拓

2021年7月25日 21:02

Theorem 8.19. Let X, Y be two hyperbolic spaces. Assume that there exists a quasi-isometry between X and Y. Then the Gromov boundary of X is homeomorphic to that of Y.

 $Proof. \cdot \partial \phi: \partial \times \xrightarrow{121} \partial Y$ by $\partial \phi(\underline{r},\underline{r}) \triangleq [\overline{\phi},\underline{r}]$

where $\overline{\phi(c)}$ represents a geodesic vay in a finite ubhd of $\overline{\phi(c)}$.

[Morse Lemma & Puper]

· Quasi-isometries preserve projections up to finite error.

 $\exists D=D(\lambda,c,\delta): d(\pi_{\phi,\delta}(bu), d(\pi_{\delta,\lambda})) \leq D$

Faut: The set of r-lenters is of diameter D=D(r).

• Cor: Set $x'=\varphi x$, $y'=\varphi y$, $z'=\varphi z$, $o'=\varphi o$. where φ is $(\lambda.c)-\gamma.i.e$. Set $S(x,y,z) \triangleq |\langle x,z\rangle - \langle x,y\rangle |$ Then $\exists c'=c(\lambda,c,\delta)$ st.

$\frac{1}{2}S(x,y,z)-2 \leq S(x',y',z') \leq \lambda S(x,y,z)+2$

Definition 8.22. A homeomorphism $f: X \to Y$ is called *quasi-conformal* if there exists a constant H so that

$$\limsup_{r\to 0}\frac{\sup_{d(x,y)=r}d(f(x),f(y))}{\inf_{d(x,y)=r}d(f(x),f(y))}\leq H<\infty$$

for all x in X.

Theorem' 8.23. Let $\phi: X \to X$ be a quasi-isometry between hyperbolic spaces. Then the induced map $\partial \phi: \partial X \to \partial X$ is a quasi-conformal map with respect to visual metric.

· Let x, y, z + dx, x'= ox, y'= dy, z = dz + dx

Consider the small r-circle at 2.

$$P_0(x, y) = r \times e^{-\langle x, y \rangle_0}$$

 $P_0(x, z) = r \times e^{-\langle x, z \rangle_0}$

$$S(x,y,z) = |\langle x,z\rangle_0 - \langle x,y\rangle_0 | \leq D$$

$S(x', y', z') \leq \lambda D + c'$

$$= > H \triangleq \text{ GimSup} \quad \frac{\text{Sup}[f_{o}(x',y'), f_{o}(x,y)=r]}{\inf\{f_{o}(x',z'), f_{o}(x,z)=r]}$$

 $\frac{y}{p(u,y)=2^{-h}}$

 $\leq e^{\lambda 0 + c} < \infty$

Ruk: An isometry on trees extend to Conformal on

Gwnov. bdry.