Introduction to hyperbolic surfaces

Exercises II

Let $l_{\mathbb{E}}$, $l_{\mathbb{H}}$ and $A_{\mathbb{H}}$ be the notations for the Euclidean length, the hyperbolic length and the hyperbolic area respectively. Let H_y be the horizontal line passing iy and V_x be the vertical geodesic ending at x and ∞ .

- 1. (Easy) Let C denote a circle in \mathbb{H} with Euclidean center $z_{\mathbb{E}} = x + iy_{\mathbb{E}} \in \mathbb{H}$, of Euclidean radius r.
 - a) Compute the hyperbolic radius R of C in term of $x, y_{\mathbb{E}}$ and r.
 - b) For each $y_{\mathbb{E}}$, find r such that $l_{\mathbb{H}}(C) = l_{\mathbb{E}}(C)$.
- 2. Recall the definitions and some properties of the hyperbolic cosine function and the hyperbolic sine functions: for x and y in \mathbb{R} , we have

$$\cosh x = \frac{e^x + e^{-x}}{2},$$

$$\sinh x = \frac{e^x - e^{-x}}{2},$$

$$1 = \cosh^2 x - \sinh^2 x,$$

$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$$

$$\sinh(x+y) = \cosh x \sinh y + \sinh x \cosh y.$$

These functions can be extended to \mathbb{C} . Using $e^{i\theta} = \cos \theta + i \sin \theta$ to verify the following equalities:

a) (Easy) For any $\theta \in [0, 2\pi]$, we have

$$\sinh(i\theta) = i\sin\theta,$$
$$\cosh(i\theta) = \cos\theta.$$

b) (Easy) For any $x \in \mathbb{R}$, we have

$$\sin(ix) = i \sinh x,$$

$$\cos(ix) = \cosh x$$

- 3. (Easy) Let C_R denote a circle in \mathbb{H} of hyperbolic radius R. Let D_R denote the closed disk bounded by C_R . Let $l(R) = l_{\mathbb{H}}(C_R)$ and $A(R) = A_{\mathbb{H}}(D_R)$.
 - a) Compute the following limits:

$$\lim_{R \to 0} l(R) - A(R).$$
$$\lim_{R \to +\infty} l(R) - A(R).$$

b) Verify the following equality.

$$(l(R))^2 = 4\pi A(R) + (A(R))^2.$$

Remark 0.0.1.

We denote by l the hyperbolic length of a closed curve bounding a simply connected region in \mathbb{H} , and by A the area of this region. The *isoperimetric inequality* for hyperbolic plane is as follows:

$$l^2 \ge 4\pi A + A^2.$$

Moreover, the equality holds if and only if the region is a disk.

- 4. We would like to get the formula for the length of an arc in a circle, a horocycle or a hypercycle, and compare them.
 - a) (Easy) Let C be a circle in \mathbb{H} of hyperbolic radius R. Let c be an arc on C with central angle θ . Compute the length of c in term of R and θ .
 - b) (Normal) We consider horocycles H_y 's with center ∞ . Let c be an arc on H_1 between V_0 and V_x .
 - i. Compute the length of c in term of x.
 - ii. Compute the distance R between H_y and H_1 in term of y.
 - iii. Let c_y denote the horocycle arc on H_y between V_0 and V_x . Compute the length of c_y in terms of R and x.
 - c) (Hard) Consider hypercycles of center V_0 . We denote by L_{θ} the hypercycle having angle θ with V_0 . We consider the radius geodesics γ_r which is a geodesic with Euclidean center 0 and Euclidean radius r.
 - i. Compute the distance R between L_{θ} and V_0 in term of θ .
 - ii. Compute the distance d between γ_1 (r = 1) and γ_r in term of r.
 - iii. Compute the length of the arc c in L_{θ} between radius γ_1 and γ_r , in terms of θ and r. (Hint: use polar coordinates.)
 - iv. Rewrite the length c in term of R and d.

(Hint: Draw pictures.)