Abstract

Let $\$ S=\left\{\left\{s_{-} i \backslash\right\}\{i=1\}^{\wedge}\{\backslash\right.$ infty $\} \$$ be any given infinite sequence of positive integers (note that all the \$s_i\$ are not necessarily distinct and not necessarily monotonic). Let $\$ f(x) \$$ be a polynomial of nonnegative integer coefficients. For any integer \$n\ge 1\$, one lets $\$ S_{-} n:=\backslash\left\{s_{-} 1, \quad . ., \quad \mathrm{s} _\mathrm{n} \backslash\right\} \$$ and \$H_f(S_n):=\sum_\{k=1\}^\{n\}|frac\{1\}\{f(k)^\{s_k\}\}\}\$.When $\$ \mathrm{f}(\mathrm{x})=\mathrm{x} \$$ and $\$ \mathrm{~s} _\mathrm{i}=1 \$$ for all positive integers \$i\ge $1 \$$, then Theisinger proved in 1915 that $\$ \mathrm{H} _f\left(\mathrm{~S} _\mathrm{n}\right)$ \$ is not an integer if \$n $\operatorname{lge} 2 \$$. In 1923, Nagell extended Theisinger's theorem by showing that if $\$ \mathrm{~s} _\mathrm{i}=1 \$$ for all positive integers $\$ i \backslash \mathrm{ge} 1 \$$ and $\$ \mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b} \$$ with $\$ \mathrm{a} \backslash \mathrm{ge} 1 \$$ and $\$ \mathrm{~b} \backslash \mathrm{ge} 0 \$$ being integers, then \$H_f(S_n)\$ is not an integer if \$n\ge $2 \$$. In this talk, we will speak about recent progress on the integrality of the reciprocal power sum \$H_f(S_n)\$.

