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We are going to present several geometric prob-

lems related to integral geometry, geometric con-

vexity, geometric inequalities and geometric analy-

sis (solved and unsolved).
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1. Hyperplane Sections of the Cube.

The unit cube C = [−1
2,

1
2]

n ⊂ Rn cutting

by hyperplane H , which hyperplane cuts C with

maximum volume?

for n = 2, max(V oln−1(H ∩C)) =
√

2 attained

by either of the diagonals.

for n = 3 the smart reader will guess that the

most wonderful section of the cube is the regular

hexagon obtained by cutting through the origin

(center of the cube C) by a hyperplane H∗ or-

thogonal to a diagonal, that is, V oln−1(H
∗∩C) =

3
√

3/4. But it is wrong since
√

2 > 3
√

3/4.

It was conjectured for a long time that
√

2 is the

optimum for any n.
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K. Ball, Cube slicing in Rn, Proc. Amer.

Math. Soc., 97(1986), 465-473.

Probability theory and Fourier theory:

C ∩H :
n∑

i=1
aixi = 0 (

n∑

i=1
a2

i = 1),

V ol(C ∩H) =
1

π

∫ ∞
−∞

sin(a1t)

a1t
· · ·

∫ ∞
−∞

sin(ant)

ant
dt,

1

π

∫ ∞
−∞

∣∣∣∣∣∣
sin t

t

∣∣∣∣∣∣

n

dt ≤
√

2

n
if n ≥ 2,

and equality holds only for n = 2.

Though it is apparently obvious it not easy to

prove that any hyperplane section through the cen-

ter of a unit cube has a volume greater than or

equal to 1 (it was prove by Vaaler only in 1979:

Vaaler, Jeffrey D. A geometric inequality with

applications to linear forms. Pacific J. Math.

83 (1979), no. 2, 543–553).

n = 2, 3 done by students.
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2. Busemann-Petty Problem

If two convex bodies Ki and Kj (say symmetric

in the origin) are such that the volume of the sec-

tion of Ki by any hyperplane H through the origin

is always smaller than the volume of the section of

Kj by H , that is

V oln−1(Ki ∩H) ≤ V oln−1(Kj ∩H),

then the volume of Ki is smaller that the volume

of Kj, that is,

V ol(Ki) ≤ V ol(Kj).

for n = 2, it is trivially true (since Ki ⊂ Kj).

for n ≥ 12, not true (counterexample: D. Lar-

man & C. Rogers, The existence of a centrally

symmetric convex body with central sections that

are unexpectedly small, Mathematika, 22(1975),

no.2, 164-175).

for n ≥ 10, not true (K. Ball (1986)).

for n ≥ 7, not true (A. Giannopoulos, preprint

(1990)).

for n ≥ 5, not true (J. Bourgain, On the Busemann-

Petty problem for perturbations of the ball, Geom.

Funct. Anal. 1(1991), no.1, 1-13)
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for n ≥ 4, not true (Gaoyong Zhang, Intersec-

tion bodies and the Busemann-Petty inequali-

ties in R4, Ann. of Math. (2) 140 (1994), no.

2, 331–346).

for n = 3, true (R. Gardner, Intersection bod-

ies and the Busemann-Petty problem, Trans.

Amer. Math. Soc. 342 (1994), no. 1, 435–

445).

”The combination of Zhang’s work and

Gardner’s 3-dimensional result is undoubt-

edly one of the most significant results in

this area of geometry” by Paul Goodey.

for n = 4, true (by G. Zhang, A positive so-

lution to the Busemann-Petty problem in R4.

Ann. of Math. (2) 149 (1999), no. 2, 535–

543).

The support function (of a convex set) K ⊂ Rn,

is defined as: for u ∈ Sn−1 = {u = (u1, · · · , un) :

|u| = 1},
hK(u) = h(K, u) = sup{(x, u)| x ∈ K}.

A convex set K of Rn is a subset such that
⋃

x,y∈K [x, y]. A convex body is a convex subset

with non-empty interior.
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3. Hadwiger Containment Problem

Given two (convex) domains Ki, Kj ⊂ Rn, if

there is a rigid motion g ∈ ISO(Rn), such that

gKj ⊂ Ki or gKj ⊃ Ki?

Is there a sufficient condition for gKj ⊂ Ki or

gKj ⊃ Ki? Hopefully the sufficient condition is

a geometric inequality involving the geometric in-

variants of Ki and Kj (areas, volumes, etc.). If

m{g ∈ ISO(Rn) : gKj ⊂ Ki or gKj ⊃ Ki} > 0?

for n = 2, (Hadwiger 1942)

2π(Ai + Aj)− LiLj > 0,

where A, L are respectively the area, length of K.

(D. Ren, 1987)

Li − Lj > (∆i + ∆j)
1
2

is a sufficient condition for gKj ⊂ Ki, where ∆ =

L2− 4πA is the isoperimetric deficit of domain D.

(E. Grinberg, D. Ren & J. Zhou 1998) for do-

mains in a plane Xε of constant curvature ε,

2π(Ai + Aj)− LiLj − εAiAj > 0,

is a sufficient condition for gKj ⊂ Ki or gKj ⊃
Ki.
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(For n = 3) Let Kk (k = i, j) be convex do-

mains in R3 with the C2 smooth boundaries ∂Kk.

Denote by Ak the areas, Vk the volumes, W
(k)
j

the jth order Minkowski quermassintegrales, and

H̃k =
∫
∂Kk

H2
kdσ the total square mean curvatures

of Kk.

(G. Zhang, A sufficient condition for one con-

vex domain containing another, Chin. Ann. of

Math., 4(1988), 447-451) A sufficient condition

for convex body Ki to contain, or to be contained

in, convex body Kj is

12π(Vi + Vj)− 3(W
(i)
2 Aj + W

(j)
2 Ai)

−(2AiAj[3(H̃iAj + H̃jAi)

−4π(Ai + Aj)− 36W
(i)
2 W

(j)
2 ])

1
2 > 0.

(J. Zhou, A kinematic formula and analogues

of Hadwiger’s theorem in space, Cont. Math.

Amer. Math. Soc. 140(1992), 159-167) A suf-

ficient condition for convex body Ki to contain, or

to be contained in, convex body Kj is

8(Vi + Vj)− 6(W
(i)
2 Aj + W

(j)
2 Ai)

−π(AiAj[3(H̃iAj + H̃jAi)− 4π(Ai + Aj)])
1
2 > 0.
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(J. Zhou, When can one domainenclose another

in R3? J. Austral. Math Soc. 59 (1995), 266-

272) A sufficient condition for convex body Ki to

contain, or to be contained in, convex body Kj is

8(Vi + Vj)− 6(W
(i)
2 Aj + W

(j)
2 Ai)

−πr(3(H̃iAj + H̃jAi)− 4π(Ai + Aj)) > 0.

(J. Zhou, The Willmore functional and the con-

tainment problem in R4, to appear in Science

in China, 2006) Let Kk (k = i, j) be two con-

vex bodies with the C2 smooth boundaries ∂Kk

in the Euclidean space R4. Let H̃k be the total

square mean curvatures of ∂Kk, Ak the areas of

∂Kk, Vk the volumes of Kk, and W
(k)
j the jth-

order Minkowski quermassintegrales of Kk. Then

a sufficient condition for Ki to contain, or to be

contained in, Kj is

5π2(Vi + Vj) + 14(W
(i)
3 Aj + W

(j)
3 Ai) +

60W
(i)
2 W

(j)
2 − 6(H̃iAj + H̃jAi) > 0.
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For domains in a 3-space of constant curvature

and in R2n, see:

1. J. Zhou, Sufficient conditions for one do-

main to contain another in a space of constant

curvature, Proc. Amer. Math. Soc., 126 (1998),

2797-2803.

2. J. Zhou, Kinematic formulas for mean cur-

vature powers of hypersurfaces and Hadwiger’s

theorem in R2n, Trans. Amer. Math. Soc., 345

(1994), 243-262.

Open for general cases!
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4. The Willmore functional.

Let M be an m-dimensional submanifold, which

is assumed to be C2 smooth, in Euclidean space

Rn, and H be the mean curvature of M . If dσ

denote the volume density of M , we wish to find a

lowor bound for the total square mean curvature
∫

M
H2dσ.

Proposition 1 (Willmore). Let M be a com-

pact surface in R3 and H be the mean curvature

of M . Then
∫

M
H2dσ ≥ 4π,

with equality if and only if M is a standard

sphere.

Willmore initiated the question if an embedded

torus in R3 must have the illmore functional bounded

from below by that of the Clifford torus. However,

Willmore’s original question is still open. The nov-

elty of Willmore question was the fact that the es-

timate is independent on the metric as well as the

embedding. Reference can be easily found in the

geometric literature.
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If dim(M) 6= 2, then the Willmore functional

is not a Riemannian invariant, so by applying ho-

mothetic transformation, the value may approach

zero. So there is no lower bound in this case. How-

ever if we assume that vol(M), the volume of M , is

positive, then the Willmore functional should have

a lower bound. The following result is due to B-Y

Chen

Proposition 2 (Chen). Let M be a closed sub-

manifold of dimension m in Euclidean space Rn

and H be the mean curvature of M . Then
∫

M
|H|mdσ ≥ Om,

with equality if and only if M is imbedded as an

m-sphere of Rn.

Here Om is the area of the m-dimensional unit

sphere and its value is

Om =
2π(m+1)/2

Γ((m + 1)/2)
,

where Γ denote the gamma function.
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B-Y Chen also achieved the following inequality:
∫

M
H2dσ ≥ λp

m
vol(M),

where p is the lower oder of the immersion (in the

case of Chen finite type theory), λp is the p-th non-

negative eigenvalue of Laplacian and the equality

holds when and only when the immersion is of 1-

type with order p.

We define the Willmore deficit of a closed surface

M of R3 as

WD(M) =
∫

M
H2dσ − 4π. (1)

Then the result of Willmore will be restated as

WD(M) ≥ 0.

(J. Zhou, The willmore functional and the con-

tainment problem in R4, to appear in Science

in China, 2006) Let Σ be a convex hypersurface

of class C2, which bounds a convex body K, in the

Euclidean space R4. Let H be the mean curvature

of Σ, A the area of Σ, V the volume of K, and Wj

the jth-order Minkowski quermassintegrale of K.

Then we have
∫

Σ
H2dσ ≥ 7W3

3
+

5W 2
2

A
+

5π2V

6A
,

with equality if Σ is a standard sphere.
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J. Zhou, On Willmore inequality for submani-

folds, to appear in Canadian Mathematical Bul-

letin.

Theorem 1. Let M be a submanifold of di-

mension n+1
2 in the Euclidean space Rn and H be

the mean curvature of M . Denote by S̃ the total

scarlar curvature of M and R the radius of the

circumscribed ball of M . Then
∫

M
H2dσ ≥ 1

3(n + 1)2


8S̃(M) +

n + 5

R2
Vol(M)


 .

Theorem 2. Let M be a submanifold of di-

mension n+1
2 in the Euclidean space Rn and H be

the mean curvature of M . Denote by χ(M) the

Euler characteristic of M and R the radius of the

minimum circumscribed ball of M . If n+1
2 is even,

then we have

∫

M
H2dσ ≥ 1

3(n + 1)2




2
n+7

2 π
n+1

4

(n− 1)(n− 5) · · · 2χ(M)

+
n + 5

R2
Vol(M)


 .

(For a case of R3 see: J. Zhou, On the Willmore

deficit of convex surfaces, Lect. in Appl. Math.

Amer. Math. Soc., 30 (1994), 279-287.)
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5. Minkowski quermassintegrale

A support hyperplane of a convex set K (or a

support hyperplane of the convex surface ∂K) is a

hyperplane that contains points of K but does not

seperate any two points of K. Let K be a convex

set and let O be a fixed point in Rn. Consider all

the (n− r)-plane Ln−r[O] through O and let K ′
n−r

be the orthogonal projection of K into Ln−r[O].

That is, K ′
n−r denotes the convex set of all intersec-

tion points of Ln−r[O] with the r-plane perpendicu-

lar to Ln−r[O] through each point of K. Then the r-

th Minkowski quermassintegrale Wr(K), or mean

cross-sectional measure, introduced by Minkowski,

is defined by the normalized E(V (K ′
n−r)):

E(V (K ′
n−r)) =

Ir(K)

m(Gn−r,r)
,

where

Ir(K) =
∫

Gn−r,r

V ol(K ′
n−r)dLn−r[O] =

∫

Gr,n−r

V ol(K ′
n−r)dLr[O],

m(Gn−r,r) =
∫

Gn−r,r

dLn−r[O].

Alexandrov-Fenchel inequalities:

W 2
i ≥ Wi−1Wi+1; W1 = A; W0 = V (i = 1, · · · , n−1).

open questions?
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The Minkowski theory has been an active and

fascinating field in Mathematics in the last century

and is still going on.

1) R. Schneider, Convex Bodies: The Brunn-

Minkowski Theory, Cambridge University Press,

(1993).

2) L. Santaló, Integral Geometry and Geomet-

ric Probability, Addison-Wesley Pub. Company

(1976).

3) D. Ren, Topic in Integral Geometry, World

Scientific, Singapore (1994).

4) D. Klain & G. Rota, Introduction to Geo-

metric Probability, Cambridge University Press,

(1997).

5) Yu. D. Burago & V. A. Zalgaller, Geomet-

ric Inequalities, Springer-Verlag Berlin Heidelberg

(1988).

15



6. Geometric inequalities

Perhaps the oldest geometric inequality is the

following isoperimetric inequality:

Theorem 1 . The area A and the length L of

any domain D in the euclidean plane R2 satisfy

the inequality

L2 − 4πA ≥ 0, (2)

with the equality if and only if D is a disc.

If we take the convex hull D∗ of any domain D,

then we have L2 − 4πA ≥ L∗2 − 4πA∗ since the

convex hull increases the area and decreases the

length of the boundary. Therefore we only consider

the convex domain for the case of isoperimetric

inequality.

A more stronger inequality related to isoperimet-

ric inequality is due to Bonnesen:

Theorem 2 . The area A and the length L of

any convex domain D in the euclidean plane R2

satisfy

L2 − 4πA ≥ π2(re − ri)
2, (3)

where re and ri are the out-radius and the in-

radius of the convex domain D with the quality

when and only when re = ri, that is, D is a

disc.
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Another geometric question closely related to

the isoperimetric inequality asks: given two do-

mains Dk (k = i, j), when can one domain con-

tain another? More precisely, we ask if there is

an isometry g of the plane R2 so that gDj ⊂ Di

or gDj ⊃ Di. We wish to have an answer that

depends only on the geometric invariants of do-

mains involved, preferably on the areas Ak and

the lengths Lk. One would ask the same question

for domains in the plane of constant curvature and

the domains in Rn. But the invariants may involve

more curvature integrals.
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Let Dk (k = i, j) be two domains of connected

and simply connected and bounded by simple curves.

Let G be the group of isometries in Rn and dg be

the kinematic measure (Harr measure in measure

theory) on G. Then we have the following contain-

ment measure

m{g ∈ G : gDj ⊂ Di or gDj ⊃ Di}
= m{g ∈ G : Di ∩ gDj 6= ∅}
−m{g ∈ G : ∂Di ∩ g∂Dj 6= ∅}. (4)

If we can estimate the measure m{g ∈ G : Di ∩
gDj 6= ∅} from below or (and) the measure m{g ∈
G : ∂Di ∩ g∂Dj 6= ∅} from above in terms of

geometric invariants of Di and Dj, then we obtain

an inequality of the form

m{g ∈ G : gDj ⊂ Di or gDj ⊃ Di}
≥ f (A1

i , · · · , Ar
i ; A

1
j , · · · , Ar

j), (5)

where each of Aα
k (k = i, j; α = 1, · · · , r) is an

integral geometric invariant of Dk.

One can then immediately state the following

conclusion:
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(I). If f (A1
i , · · · , Ar

i ; A
1
j , · · · , Ar

j) > 0 then there

is an isometry g ∈ G such that either gDj contains

or is contained in Di.

(II). If one let Di ≡ Dj ≡ D, then there is no

g ∈ G such that gD ⊂ D or gD ⊃ D. Therefore

we have

f (A1(D), · · · , Ar(D)) ≤ 0. (6)

This will result in a geometric inequality.

(III). Let Di be, respectively, the in-ball and the

out-ball of domain Dj (≡ D), i.e., the largest ball

contained in D and the smallest ball containing

D. Then there is no g ∈ G such that gD ⊂ Di or

gD ⊃ Di and we have

f (A1(D), · · · , Ar(D), re) ≤ 0,

f (A1(D), · · · , Ar(D), ri) ≤ 0. (7)

We would have an Bonnesen-type inequality.

(IV). If we let Di be a ball of radius r between

the inscribed ball of radius ri and the circumscribed

ball of radius re of Dj (≡ D), then we have nei-

ther gD ⊂ Di nor gD ⊃ Di. Therefore we have

an inequality

f (A1(D), · · · , Ar(D), r) ≤ 0; ri ≤ r ≤ re.
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Let g ∈ G, the isometries in R2. If µ denotes

set of all positions of Dj in which either gDj ⊂ Di

or gDj ⊃ Di then by the Poincaé formula and

the fundamental kinematic formula of Blaschké we

have

m{g ∈ G : gDj ⊂ Di or gDj ⊃ Di}
=

∫

µ
dg ≥ 2π(Ai + Aj)− LiLj. (8)

This immediately gives

Theorem 3 . (Hadwiger) Let Di and Dj be

two domains in the euclidean plane R2. A suf-

ficient condition for Dj to contain, or to be con-

tained in, Di is

2π(Ai + Aj)− LiLj > 0. (9)

Moreover, if Ai ≥ Aj, then Di can contain a

copy of Dj.
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If we let Di ≡ Dj ≡ D, then D can not contain

any copy of D itself. Then the left hand side inte-

gral of (7) vanishes and we have Theorem 1, i.e.,

the isoperimetric inequality (1).

If we let Di be, respectively, the inscribed disc of

radius ri of Dj (≡ D) and the circumscribed disc

of radius re of Dj (≡ D), then we have

πr2
i − Lri + A ≤ 0; πr2

e − Lre + A ≤ 0. (10)

From these inequality and another general inequal-

ity x2 +y2 ≥ (x+y)2/2, we obtain the Bonnesen’s

isoperimetric inequality (Theorem 2):

L2 − 4πA ≥ π2(re − ri)
2. (11)

If we let Dj ≡ D and Di be a disc of radius r

satisfying the condition

ri ≤ r ≤ re, (12)

then formula (7) immediately gives the following

Bonnesen’s inequality

πr2 − Lr + A ≤ 0. (13)
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The inequality (12) can be rewritten in several

equivalent forms:

Theorem 4 . Let D be a plane domain of area

A and bounded by a simple closed curve of length

L. Let ri and re are, respectively, the in-radius

and out-radius of D. Then for any disc of ra-

dius r, ri ≤ r ≤ re, we have the following in-

equalities

Lr ≥ A + πr2;

L2 − 4πA ≥ (L− 2πr)2;

L2 − 4πA ≥
(
L− 2A

r

)2
; (14)

L2 − 4πA ≥
(

A
r − πr

)2
.

Notice that the third inequality of (14) implies
√

L2 − 4πA ≥ 2A

ri
− L,

√
L2 − 4πA ≥ L− 2A

re
. (15)

Adding inequality (15) yields

L2 − 4πA ≥ A2

 1

ri
− 1

re




2

. (16)

Adding after multiplied by ri and re gives

L2 − 4πA ≥ L2

re − ri

re + ri




2

. (17)
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Therefore we have

Theorem 5 . Let D be a plane domain of area

A and bounded by a simple closed curve of length

L. Let ri and re are, respectively, the in-radius

and out-radius of D. Then we have the follow-

ing inequalities

L2 − 4πA ≥ A2

 1

ri
− 1

re




2

;

L2 − 4πA ≥ L2

re − ri

re + ri




2

. (18)

These geometric inequalities has been general-

ized to the plane of constant curvature by J. Zhou:

1) J. Zhou, The Bonnesen-type isoperimetric

inequalities, The 10th International Workshop

on Differential Geometry, Korea (2006).

2) J. Zhou, The Bonnesen-type inequalities,

preprint.

3) J. Zhou & F. Chen, The Bonnesen-type in-

equalities in a plane of constant curvature, preprint.
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7. Kinematic formulas

Let M p, N q be compact submanifolds of dimen-

sions p, q, respectively, in a homogeneous space

G/H and let I(M p∩gN q) be an integral invariant

(e.g., volume, surface area, etc.) of the submani-

fold M p ∩ gN q. Then a lot of works in integral

geometry have been concerned with computing in-

tegrals of the following type
∫

G
I(M p ∩ gN q) dg, (19)

where dg is the normalized kinematic density of

G. For example in the case that G is the group of

motions in an n-dimensional Euclidean space Rn,

M p, N q are submanifolds of Rn and

I(M p ∩ gN q) = Vol(M p ∩ gN q)

evaluation of (19) leads to the formulas of Poincaré,

Blaschké, Santaló and others. Howard obtained a

kinematic formula for I(M p ∩ gN q) = Vol(M p ∩
gN q) in a homogeneous space. If I(M ∩ gN) =

χ(M ∩ gN), the Euler-Poincalé’s characteristic of

the intersection M ∩ N of domains M , N in Rn

with smooth boundaries, then (19) leads to S. S.

Chern’s kinematic fundamental formula. Assume

that I(M p ∩ gN q) = µ(M p ∩ gN q) is one of the

integral invariant from the Weyl tube formula then
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(19) leads to the Chern-Federer kinematic formula

for submanifolds in Rn. This integral also leads

to the C-S. Chen kinematic formula if we take

I(M ∩ gN) =
∫
M∩gN κ2dσ, the total square of the

curvature of the intersection curve M ∩ gN of two

compact surfaces M , N in R3. T. Shifrin also ob-

tained a kinematic formula by letting I(M p∩gN q)

be the integral of a Chern class. Howard and

Zhou achieved more general kinematic formula in

the case that I(M p ∩ gN q) is a invariant homoge-

neous polynomial of the second fundamental forms

of M p ∩ gN q in a homogeneous space.

S. S. Chern, Kinematic formulas in integral

geometry, J. Math. and Mech. 16 (1966), 101-

118. (translated by Zhou in Mathematics Trans-

lations of Chinese Math. Soc.)

R. Howard, The kinematic formula in Rie-

mannian homogeneous space, Memoirs Amer.

Math. Soc. 509 (1993).

J. Zhou, Kinematic formulas for mean cur-

vature powers of hypersurfaces and Hadwiger’s

theorem in R2n, Trans. Amer. Math. Soc., 345

(1994), 243-262.
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8. Integrals for power of the chords of a

convex set.

Let K be a convex set and let σ denote the

length of the chord determined by the line G on

K. Consider the integrals

In =
∫

G∩K 6=∅
σndG, Jn =

∫

P1,P2∈K

rndP1 ∧ dP2

where n is an integer and r means the distance

between points P1 and P2 of K.

for the case of K ⊂ R2,

I2
0 − 4I1 ≥ 0; (isoperimetric inequality)

In ≥ 2 · 4 · · ·n
3 · 5 · · · (n + 1)

2n+1π−nI
(n+1)/2
1 for n = 2, 4, 6, · · · ;

In ≥ 1 · 3 · · ·n
2 · 4 · · · (n + 1)

2nπ−(n+1)I
(n+1)/2
1 for n = 3, 5, 7, · · · ;

28I3
1 ≥ 32π4I2

2 ,

Inequalities among these In are works of Santaló

(for R2), D. Wu (for R3), D. Ren (for Rn) and

others.

Open questions?

L. Santaló, Integral Geometry and Geometric

Probability, Addison-Wesley Pub. Company (1976).

D. Ren, Topic in Integral Geometry, World Sci-

entific, Singapore (1994).
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9. Geometric Measure.

A measure is characterized by two axioms:

(A1) : µ(∅) = 0, ∅ is the emptyset.

(A2): µ(A∪B) = µ(A) + µ(B)−µ(A∩B).

And therefore

µ(∪n
i=1Ai) =

∑

i
µ(Ai)−∑

i<j
µ(Ai∩Aj)+

∑

i<j<k
µ(Ai∩Aj∩Ak)+· · ·

for all positive integer.

For a measure to be the volume µn(A) of a solid

A in the Euclidean space Rn we must add addi-

tional axioms to the definition of a measure.

(A3) : µ(A) = µ(gA), for g ∈ G = Iso(Rn).

(The volume of a set A is independent of the po-

sition of A in Rn.)

(A4) : µn(P ) = x1x2 · · ·xn,

for a parallelotope P with orthogonal sides of length

x1, x2, · · · , xn.
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By these 4 axioms, we have the following formu-

las of a sphere Sk of radius (in n-dimensional space

Rn):

µn(Sk) =
πn/2rn/2

(n/2)!
, n is even;

µn(Sk) =
2nπ(n−1)/2((n− 1)/2)!rn

n!
, n is odd.

If we keep the first 3 axioms but tamper the

forth axiom, the normalization axiom, what will

happen?

The elementary symmetric functions of (the fol-

lowing polynomials in) n variables:

e1(x1, x2, · · · , xn) = x1 + x2 + · · · + xn;

e2(x1, x2, · · · , xn) = x1x2 + x1x3 + · · · + xn−1xn;

· · ·
en−1(x1, x2, · · · , xn) = x2x3 · · ·xn+· · ·+x1x2 · · ·xn−1;

en(x1, x2, · · · , xn) = x1x2 · · ·xn.
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Letting µk = ek(x1, x2, · · · , xn) (k = 1, 2, · · · , n)

will lead to n different invariant measure. Each of

the n elementary symmetric functions of n vari-

ables leads to the definition of a new invariant

measure which is a different generalization of the

volume. These n measures are called the intrinsic

measures.

The intrinsic measures are independent of each

other, except for certain inequalities they satisfy.

These inequalities generalized the classical isoperi-

metric inequality that relates area to volume. Math-

ematicians are presently studying these as yet un-

known inequalities among the intrinsic volumes (geo-

metric inequalities). We know very little about the

intrinsic volumes and inequalities among them.

If we add another invariant measure:

µ0(C) = 1, C is non-empty convex set,

and µ(∅) = 0, then we have the Main Theorem of

Geometric Probability:

The n + 1 intrinsic volume µ0, µ1, · · · , µn

are a basis of the space of all continuous

invariant measures defined on all finite

unions of compact sets (Hadwiger, D. Klain).
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10. Geometric Probability

Consider two compact convex sets A and B in

Rn. Let B to be fixed and we randomly drop the

rigid set A in the space Rn. What is the proba-

bility that A meets B. In other words, we keep

B fixed and let A moving under the rigid motion

g ∈ Iso(Rn), find the invariant measure of those g

such that B ∩ gA 6= ∅. That is, to find the invari-

ant measure m{g ∈ Iso(Rn)| B ∩ gA 6= ∅}. By

Hadwiger’s theorem of geometric probability, such

an invariant measure equals a linear combination

of the n + 1 intrinsic volumes with coefficients in-

dependent of B. We determine these coefficients

by taking suitable B’s (for example, let B be unit

balls). This invariant measure is known as a kine-

matic formula.

One would like to identify these n + 1 intrinsic

volume with Minkowski quermassintegrales.
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Thank you for your attention!
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