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Introduction

(M, g) · · · smooth n-dimensional Riemannian manifold,

(E , 〈 , 〉,∇) → M · · · smooth Riemannian vector bundle,

σ · · · smooth section of E ,

X.|σ |2 = 2〈∇Xσ, σ〉

Question: Which sections σ are “best”?

1. σ parallel (∇σ = 0).

Drawbacks (“Reduction of holonomy”).

• |σ | = const. (⇒ χ(E) = 0)

• de Rham Decomposition (E = TM)



2. σ Hodge-de Rham harmonic (∆σ = 0).

Drawbacks. For M compact:

• Hodge’s Theorem.

{H-dR harmonic σ} ∼= H1(M, R)

If β1(M) = 0 then: ∆σ = 0 ⇒ σ = 0.

• Bochner’s Vanishing Theorem.

If Ric(M) > 0 then: ∆σ = 0 ⇒ σ = 0.

If Ric(M) � 0 then: ∆σ = 0 ⇒ ∇σ = 0.



3. σ harmonic section of E.

Ev(σ) =
1
2

∫
M

|∇σ |2 vol(g)

Defn. σ harmonic section of E if: d
dt

∣∣
t=0

Ev(σt) = 0, ∀σt

Euler-Lagrange eqns: ∇∗∇σ = 0 (∇∗∇ = −Tr∇2)

Drawbacks.

• If M compact and ∇∗∇σ = 0 then:

0 =
∫

M

〈∇∗∇σ, σ〉 vol(g) =
∫

M

〈∇σ,∇σ〉 vol(g), so ∇σ = 0.



4. |σ| = k, σ harmonic section of SE(k).

SE(k) = {u ∈ E : |u| = k}, sphere bundle.

Successes.

• E-L equations: ∇∗∇σ =
1
k2

|∇σ |2 σ (nonlinear).

• Many interesting solns. (eg. Hopf vector fields on S2p+1).

• Stability theory. (However...)

Drawbacks.

• Limited to bundles with χ(E) = 0.



Desiderata.

A variational theory on C∞(E) which:

• Works for all bundles E → M , including χ(E) �= 0.

• Applies to all sections σ of E .

• Includes all solutions of 4. as critical points.

Basic Idea.

Eliminate all constraints by perturburbing the background

geometry (of E).



The Harmonic Section Variational Problem

σ:M → E , section. V ⊂ TE , vertical subbundle.

• For each x ∈ M form: dvσ(x):TxM → Vσ(x) ⊂ Tσ(x)E

• Compute: |dvσ(x)|2 =
∑

i |dvσ(x)(Ei)|2 where:

{Ei} is a g(x)-orthonormal basis of TxM ,

| . |2 on Tσ(x)E is induced by the Sasaki metric h on E .

• Then: Ev(σ) =
1
2

∫
M

|∇σ |2 vol(g) =
1
2

∫
M

|dvσ |2 vol(g)



Metrics

Suppose V ∈ Vu, u ∈ E .

Then V = v′(0) for a unique str. line v(t) = u + tv, v ∈ Eπ(u)

Sasaki metric. Define: |V |2 = |v |2.

Cheeger-Gromoll metric. |V |2 =
1

1 + |u|2
(
|v |2 + 〈u, v〉2

)

LBW metric. For any (m, r) ∈ R
2 define:

|V | 2m,r =
1

(1 + |u|2)m

(
|v |2 + r〈u, v〉2

)

Obtain a “metric” hm,r on E .



Note. h0,0 = Sasaki, h1,1 = Cheeger-Gromoll.

Note. If r < 0 then hm,r is Riemannian only on a tubular nhd. of

the zero section:

BE(1/
√
−r) = {u ∈ E : |u|2 < −1/r}

Definition. Say σ is r-Riemannian if r|σ(x)|2 � −1, ∀x.

Note. If r > 0 then every σ is r-Riemannian.

Note. If r1 < r2 then r1-Riemannian ⇒ r2-Riemannian.



Replacing Sasaki with LBW yields:

Ev(σ) = Ev
m,r(σ) =

1
2

∫
M

wm(σ)
(
|∇σ |2 + r|X(σ)|2

)
vol(g)

where w(σ) =
1

1 + |σ |2 and X(σ) = 1
2∇|σ |2.

Remark. If r < 0 and |σ |2 � −1/r, deduce Kato’s Inequality:

|∇σ |2 + r |X(σ)|2 � 0, with equality iff ∇σ = 0.

Definition. A harmonic section of E w.r.t. hm,r is (m, r)-harmonic.

Note. Not necessarily r-Riemannian.



Euler-Lagrange Equations

Remark. If |σ | = k then: Ev
m,r(σ) =

1
(1 + k2)m

Ev
0,0(σ)

σ is an (m, r)-harmonic section of SE(k) if and only if

σ is a harmonic section of SE(k).

Technical Theorem. σ is an (m, r)-harmonic section of E iff:

Tm(σ) = φm,r(σ)σ where:

Tm(σ) = (1 + 2F )∇∗∇σ + 2m∇X(σ)σ

φm,r(σ) = m |∇σ |2 − mr |X(σ)|2 − r(1 + 2F )∆F

2F = |σ |2



Theorem A. Suppose |σ(x)| = k > 0 for all x ∈ M .

(a) If m �= 1+1/k2 then σ is an (m, r)-harmonic section of E if

and only if ∇σ = 0;

(b) If m = 1 + 1/k2 then σ is an (m, r)-harmonic section of E

if and only if σ is a harmonic section of SE(k).

Example. For m > 1 define: σ =
1√

m − 1
ξ,

where ξ is the Hopf vector field on M = S2p+1.

Since ξ is a harmonic section of SE(1), σ is harmonic section of

SE(1/
√

m − 1), hence a (non-parallel) (m, r)-harm. section of E .



Theorem B. Suppose M is compact, χ(E) �= 0, and σ �= 0.

For each m ∈ R there exists at most one r ∈ R such that σ is

(m, r)-harmonic, and:

(a) if −4 � m � −1 then r < −1 − m;

(b) if −1 � m � 1 then r < 0;

(c) if 1 < m � 2 and ‖σ‖∞ � 1/
√

m − 1 then r < 0;

(d) if 2 � m and ‖σ‖∞ � 1/
√

m − 1 then r < 1 − m/2.

Remark. Restrictions when m < −4?

Remark. ‖σ‖∞ indicates non-linearity of (m, r)-harmonic

section equations.



Definition. Define ρ: [−4,∞) → R as follows:

ρ(m) =




−1 − m, m ∈ [−4,−1]
0, m ∈ [−1, 2]
(2 − m)/2, m ∈ [2,∞)

Definition. σ is strictly r-Riemannian if σ is r-Riemannian and:

r |σ(x)|2 > −1, for some x ∈ M .

Theorem B+. Suppose M compact.

Suppose m � −4, r � ρ(m) and σ is strictly (1− r)-Riemannian.

Then σ is (m, r)-harmonic if and only if ∇σ = 0.



F− = {(m, r) : m < 0, r � 2m}, F0 = {(m, r) : 0 � m � 1},

F1 = {(m, r) : m > 1, r < 1 − m}, F = F− ∪ F0 ∪ F1

Theorem C. Suppose that:

• (m, r) ∈ F;

• σ is r-Riemannian;

• |σ |2:M → R is a harmonic function.

Then σ is an (m, r)-harmonic section if and only if ∇σ = 0.

Remark. If |σ | = k and σ is r-Riemannian, then r � −1/k2.

Thus if m = 1 + 1/k2 then r � 1 − m (ie. (m, r) /∈ F).



New Examples

Remark. From Theorems B and C:

If 0 � m � 1 and σ an (m, m)-harmonic section of E (with |σ |2

harmonic if M non-compact) then ∇σ = 0.

Moral. Cheeger-Gromoll no better than Sasaki!

M = Sn ⊂ R
n+1

Let ξ be a standard gradient field: ξ = ∇λ,

where λ:Sn → R is the restriction of a unit vector of (Rn+1)∗.

Define σ = k ξ, k ∈ R.



Theorem.

σ is a non-trivial (m, r)-harmonic section of TM iff n � 3 and:

m = n + 1, r = 2 − n, k2 = −1/r.

Remark. ‖σ‖∞ = |k| = 1/
√
−r.

• σ is r-Riemannian, but only just!

• r � 1 − m/2, with equality only when n = 3. However:

‖σ‖∞ = 1/
√

n − 2 = 1/
√

m − 3 > 1/
√

m − 1

So consistent with Theorem B.

Remark. Non-invariance under scaling!



Idea. Try to find new examples by rescaling old ones!

Theorem. Suppose σ = f ξ where:

• ξ is the Hopf vector field on M = S2p+1;

• f :M → R is any smooth function.

Then σ is a non-trivial (m, r)-harmonic section of TM iff:

m > 1 and f = ±1/
√

m − 1 .

Remark. These are the (m, r)-harmonic sections of Theorem A.



Theorem. Let n = 2q − 1, and let λ:Sn → R be the restriction

of the following harmonic quadratic form on R
n+1:

k
(
x 2

1 + · · · + x 2
q − x 2

q+1 − · · · − x 2
2q

)
, k ∈ R.

Vector field σ = 1
2∇λ is an (m, r)-harmonic section of TSn iff:

• n � 5;

• 2m = n + 3 (ie. m = q + 1);

• k2 is determined by:

4(m − 3)k2 = 4 + 2m − m2 +
√

m − 2
√

m3 − 2m2 − 8

• r is determined by: 0 = m(m − 3) + 2r(m + k2)



Low dimensions.

n = 5, m = 4, r =
1√
3
− 1, k2 =

√
3 − 1

n = 7, m = 5, r =
√

201 − 24
16

, k2 =
√

201 − 11
8

n = 9, m = 6, r =
√

34 − 13
5

, k2 =
√

34 − 5
3


