HARMONIC SECTIONS OF RIEMANNIAN VECTOR BUNDLES

CHRIS WOOD, UNIVERSITY OF YORK, UK

Chern Institute of Mathematics, March 27, 2006 Joint work with:

Eric Loubeau, Michelle Benyounes

Université Occidentale de Bretagne, Brest, France

math.DG/0602049

Diff. Geom. Appl. (to appear)

The work is dedicated to Professors J. Eells and J.H. Sampson, mindful of their paper:

"Harmonic Mappings of Riemannian Manifolds",

American J. Math, 1964

Introduction

 $(M,g) \cdots$ smooth *n*-dimensional Riemannian manifold,

 $(\mathcal{E}, \langle , \rangle, \nabla) \to M \cdots$ smooth Riemannian vector bundle,

 $\sigma \cdots$ smooth section of \mathcal{E} ,

$$X.|\sigma|^2 = 2\langle \nabla_X \sigma, \sigma \rangle$$

Question: Which sections σ are "best"?

1. σ parallel $(\nabla \sigma = 0)$.

Drawbacks ("Reduction of holonomy").

- $|\sigma| = \text{const.} \quad (\Rightarrow \chi(\mathcal{E}) = 0)$
- de Rham Decomposition $(\mathcal{E} = TM)$

2. σ Hodge-de Rham harmonic ($\Delta \sigma = 0$).

Drawbacks. For M compact:

• Hodge's Theorem.

$$\{H\text{-}dR \text{ harmonic } \sigma\} \cong H^1(M,\mathbb{R})$$

If
$$\beta_1(M) = 0$$
 then: $\Delta \sigma = 0 \Rightarrow \sigma = 0$.

• Bochner's Vanishing Theorem.

If
$$Ric(M) > 0$$
 then: $\Delta \sigma = 0 \Rightarrow \sigma = 0$.

If
$$Ric(M) \ge 0$$
 then: $\Delta \sigma = 0 \Rightarrow \nabla \sigma = 0$.

3. σ harmonic section of \mathcal{E} .

$$E^{v}(\sigma) = \frac{1}{2} \int_{M} |\nabla \sigma|^{2} \operatorname{vol}(g)$$

Defn. σ harmonic section of \mathcal{E} if: $\frac{d}{dt}\Big|_{t=0} E^v(\sigma_t) = 0, \ \forall \sigma_t$

Euler-Lagrange eqns:
$$\nabla^* \nabla \sigma = 0$$
 $(\nabla^* \nabla = -\operatorname{Tr} \nabla^2)$

Drawbacks.

• If M compact and $\nabla^* \nabla \sigma = 0$ then:

$$0 = \int_{M} \langle \nabla^* \nabla \sigma, \sigma \rangle \operatorname{vol}(g) = \int_{M} \langle \nabla \sigma, \nabla \sigma \rangle \operatorname{vol}(g), \quad \text{so } \nabla \sigma = 0.$$

4. $|\sigma| = k$, σ harmonic section of $S\mathcal{E}(k)$.

$$S\mathcal{E}(k) = \{u \in \mathcal{E} : |u| = k\},$$
 sphere bundle.

Successes.

• E-L equations:
$$\nabla^* \nabla \sigma = \frac{1}{k^2} |\nabla \sigma|^2 \sigma$$
 (nonlinear).

- Many interesting solns. (eg. Hopf vector fields on S^{2p+1}).
- Stability theory. (However...)

Drawbacks.

Limited to bundles with $\chi(\mathcal{E}) = 0$.

Desiderata.

A variational theory on $\mathcal{C}^{\infty}(\mathcal{E})$ which:

- Works for all bundles $\mathcal{E} \to M$, including $\chi(\mathcal{E}) \neq 0$.
- Applies to all sections σ of \mathcal{E} .
- Includes all solutions of 4. as critical points.

Basic Idea.

Eliminate all constraints by perturburbing the background geometry (of \mathcal{E}).

The Harmonic Section Variational Problem

$$\sigma: M \to \mathcal{E}$$
, section. $\mathcal{V} \subset T\mathcal{E}$, vertical subbundle.

- For each $x \in M$ form: $d^v \sigma(x) : T_x M \to \mathcal{V}_{\sigma(x)} \subset T_{\sigma(x)} \mathcal{E}$
- Compute: $|d^v\sigma(x)|^2 = \sum_i |d^v\sigma(x)(E_i)|^2$ where:

$$\{E_i\}$$
 is a $g(x)$ -orthonormal basis of T_xM ,

- $|\cdot|^2$ on $T_{\sigma(x)}\mathcal{E}$ is induced by the Sasaki metric h on \mathcal{E} .
- Then: $E^{v}(\sigma) = \frac{1}{2} \int_{M} |\nabla \sigma|^{2} \operatorname{vol}(g) = \frac{1}{2} \int_{M} |d^{v}\sigma|^{2} \operatorname{vol}(g)$

Metrics

Suppose $V \in \mathcal{V}_u, u \in \mathcal{E}$.

Then V = v'(0) for a unique str. line v(t) = u + tv, $v \in \mathcal{E}_{\pi(u)}$

Sasaki metric. Define: $|V|^2 = |v|^2$.

Cheeger-Gromoll metric.
$$|V|^2 = \frac{1}{1+|u|^2} (|v|^2 + \langle u,v\rangle^2)$$

LBW metric. For any $(m,r) \in \mathbb{R}^2$ define:

$$|V|_{m,r}^2 = \frac{1}{(1+|u|^2)^m} (|v|^2 + r\langle u, v \rangle^2)$$

Obtain a "metric" $h_{m,r}$ on \mathcal{E} .

Note. $h_{0,0} = \text{Sasaki}, h_{1,1} = \text{Cheeger-Gromoll}.$

Note. If r < 0 then $h_{m,r}$ is Riemannian only on a tubular nhd. of the zero section:

$$B\mathcal{E}(1/\sqrt{-r}) = \{u \in \mathcal{E} : |u|^2 < -1/r\}$$

Definition. Say σ is r-Riemannian if $r|\sigma(x)|^2 \geqslant -1$, $\forall x$.

Note. If r > 0 then every σ is r-Riemannian.

Note. If $r_1 < r_2$ then r_1 -Riemannian $\Rightarrow r_2$ -Riemannian.

Replacing Sasaki with LBW yields:

$$E^{v}(\sigma) = E^{v}_{m,r}(\sigma) = \frac{1}{2} \int_{M} w^{m}(\sigma) (|\nabla \sigma|^{2} + r|X(\sigma)|^{2}) \operatorname{vol}(g)$$

where
$$w(\sigma) = \frac{1}{1 + |\sigma|^2}$$
 and $X(\sigma) = \frac{1}{2}\nabla |\sigma|^2$.

Remark. If r < 0 and $|\sigma|^2 \le -1/r$, deduce Kato's Inequality:

$$|\nabla \sigma|^2 + r |X(\sigma)|^2 \ge 0$$
, with equality iff $\nabla \sigma = 0$.

Definition. A harmonic section of \mathcal{E} w.r.t. $h_{m,r}$ is (m,r)-harmonic.

Note. Not necessarily r-Riemannian.

Euler-Lagrange Equations

Remark. If
$$|\sigma| = k$$
 then: $E_{m,r}^v(\sigma) = \frac{1}{(1+k^2)^m} E_{0,0}^v(\sigma)$

 σ is an (m, r)-harmonic section of $S\mathcal{E}(k)$ if and only if σ is a harmonic section of $S\mathcal{E}(k)$.

Technical Theorem. σ is an (m,r)-harmonic section of \mathcal{E} iff:

$$T_m(\sigma) = \phi_{m,r}(\sigma) \sigma$$
 where:

$$T_m(\sigma) = (1+2F)\nabla^*\nabla\sigma + 2m\nabla_{X(\sigma)}\sigma$$

$$\phi_{m,r}(\sigma) = m |\nabla \sigma|^2 - mr |X(\sigma)|^2 - r(1+2F)\Delta F$$

$$2F = |\sigma|^2$$

Theorem A. Suppose $|\sigma(x)| = k > 0$ for all $x \in M$.

- (a) If $m \neq 1 + 1/k^2$ then σ is an (m, r)-harmonic section of \mathcal{E} if and only if $\nabla \sigma = 0$;
- (b) If $m = 1 + 1/k^2$ then σ is an (m, r)-harmonic section of \mathcal{E} if and only if σ is a harmonic section of $S\mathcal{E}(k)$.

Example. For
$$m > 1$$
 define: $\sigma = \frac{1}{\sqrt{m-1}} \xi$,

where ξ is the Hopf vector field on $M = S^{2p+1}$.

Since ξ is a harmonic section of $S\mathcal{E}(1)$, σ is harmonic section of $S\mathcal{E}(1/\sqrt{m-1})$, hence a (non-parallel) (m,r)-harm. section of \mathcal{E} .

Theorem B. Suppose M is compact, $\chi(\mathcal{E}) \neq 0$, and $\sigma \neq 0$.

For each $m \in \mathbb{R}$ there exists at most one $r \in \mathbb{R}$ such that σ is (m,r)-harmonic, and:

- (a) if $-4 \le m \le -1$ then r < -1 m;
- (b) $if -1 \leq m \leq 1 \text{ then } r < 0;$
- (c) if $1 < m \le 2$ and $\|\sigma\|_{\infty} \le 1/\sqrt{m-1}$ then r < 0;
- (d) if $2 \le m$ and $\|\sigma\|_{\infty} \le 1/\sqrt{m-1}$ then r < 1 m/2.

Remark. Restrictions when m < -4?

Remark. $\|\sigma\|_{\infty}$ indicates non-linearity of (m,r)-harmonic section equations.

Definition. Define $\rho: [-4, \infty) \to \mathbb{R}$ as follows:

$$\rho(m) = \begin{cases} -1 - m, & m \in [-4, -1] \\ 0, & m \in [-1, 2] \\ (2 - m)/2, & m \in [2, \infty) \end{cases}$$

Definition. σ is strictly r-Riemannian if σ is r-Riemannian and:

$$r |\sigma(x)|^2 > -1$$
, for some $x \in M$.

Theorem B+. Suppose M compact.

Suppose
$$m \ge -4$$
, $r \ge \rho(m)$ and σ is strictly $(1-r)$ -Riemannian.

Then σ is (m,r)-harmonic if and only if $\nabla \sigma = 0$.

 $\mathcal{F}_{-} = \{(m,r) : m < 0, r \leq 2m\}, \qquad \mathcal{F}_{0} = \{(m,r) : 0 \leq m \leq 1\},$

$$\mathcal{F}_1 = \{(m,r): m > 1, r < 1 - m\}, \qquad \mathcal{F} = \mathcal{F}_- \cup \mathcal{F}_0 \cup \mathcal{F}_1$$

Theorem C. Suppose that:

- $(m,r) \in \mathcal{F};$
- σ is r-Riemannian;
- $|\sigma|^2: M \to \mathbb{R}$ is a harmonic function.

Then σ is an (m,r)-harmonic section if and only if $\nabla \sigma = 0$.

Remark. If $|\sigma| = k$ and σ is r-Riemannian, then $r \ge -1/k^2$.

Thus if $m = 1 + 1/k^2$ then $r \ge 1 - m$ (ie. $(m, r) \notin \mathcal{F}$).

New Examples

Remark. From Theorems B and C:

If $0 \le m \le 1$ and σ an (m, m)-harmonic section of \mathcal{E} (with $|\sigma|^2$ harmonic if M non-compact) then $\nabla \sigma = 0$.

Moral. Cheeger-Gromoll no better than Sasaki!

$$M = S^n \subset \mathbb{R}^{n+1}$$

Let ξ be a standard gradient field: $\xi = \nabla \lambda$,

where $\lambda: S^n \to \mathbb{R}$ is the restriction of a unit vector of $(\mathbb{R}^{n+1})^*$.

Define $\sigma = k \xi, k \in \mathbb{R}$.

Theorem.

 σ is a non-trivial (m,r)-harmonic section of TM iff $n \geqslant 3$ and:

$$m = n + 1,$$
 $r = 2 - n,$ $k^2 = -1/r.$

Remark.
$$\|\sigma\|_{\infty} = |k| = 1/\sqrt{-r}$$
.

- σ is r-Riemannian, but only just!
- $r \leq 1 m/2$, with equality only when n = 3. However:

$$\|\sigma\|_{\infty} = 1/\sqrt{n-2} = 1/\sqrt{m-3} > 1/\sqrt{m-1}$$

So consistent with Theorem B.

Remark. Non-invariance under scaling!

Idea. Try to find new examples by rescaling old ones!

Theorem. Suppose $\sigma = f\xi$ where:

- ξ is the Hopf vector field on $M = S^{2p+1}$;
- $f: M \to \mathbb{R}$ is any smooth function.

Then σ is a non-trivial (m,r)-harmonic section of TM iff:

$$m > 1$$
 and $f = \pm 1/\sqrt{m-1}$.

Remark. These are the (m, r)-harmonic sections of Theorem A.

Theorem. Let n = 2q - 1, and let $\lambda: S^n \to \mathbb{R}$ be the restriction of the following harmonic quadratic form on \mathbb{R}^{n+1} :

$$k(x_1^2 + \dots + x_q^2 - x_{q+1}^2 - \dots - x_{2q}^2), \quad k \in \mathbb{R}.$$

Vector field $\sigma = \frac{1}{2}\nabla\lambda$ is an (m,r)-harmonic section of TS^n iff:

- $n \geqslant 5$;
- 2m = n + 3 (ie. m = q + 1);
- k^2 is determined by:

$$4(m-3)k^2 = 4 + 2m - m^2 + \sqrt{m-2}\sqrt{m^3 - 2m^2 - 8}$$

• r is determined by: $0 = m(m-3) + 2r(m+k^2)$

Low dimensions.

$$n = 5, \quad m = 4, \quad r = \frac{1}{\sqrt{3}} - 1, \quad k^2 = \sqrt{3} - 1$$

$$n = 7$$
, $m = 5$, $r = \frac{\sqrt{201 - 24}}{16}$, $k^2 = \frac{\sqrt{201 - 11}}{8}$

$$n = 9, \quad m = 6, \quad r = \frac{\sqrt{34} - 13}{5}, \quad k^2 = \frac{\sqrt{34} - 5}{3}$$