
Mathematical Aspects of

String Duality

Kefeng Liu

December 7, 2006

Chern Institute

Nankai, Tianjin



Dedicated to the Memory of
S.-S. Chern

Twenty years ago I started my mathematical

career here at Nankai.



String Duality is to identify different theories

in string theory. Such identifications have

produced many surprisingly beautiful mathe-

matical formulas.

The mathematical proofs of many of such

formulas depend on Localization Techniques

on various finite dimensional moduli spaces.

More precisely integrals of Chern classes on

moduli spaces:

Combined with various mathematics: Chern-

Simons knot invariants, Kac-Moody algebras’

representations, Calabi-Yau, geometry and

topology of moduli space of stable maps,

moduli of stable bundles....

A simple technique we use: Functorial Lo-

calization transfers computations on com-

plicated spaces to simple spaces: Connects

computations of mathematicians and physi-

cists.



Atiyah-Bott Localization Formula:

For ω ∈ H∗
T (X) an equivariant cohomology

class, we have

ω =
∑

E

iE∗
(

i∗Eω

eT (E/X)

)
.

where E runs over all connected components

of T fixed points set, iE denotes the inlcu-

sion.

Equivariant cohomology

H∗
T (X) = H∗(X ×T ET )

where ET is the universal bundle of T .

Example: ES1 = S∞. If S1 acts on Pn by

λ · [Z0, . . . , Zn] = [λw0Z0, . . . , λwnZn],

then we have

HS1(Pn;Q) ∼= Q[H, α]/〈(H−w0α) · · · (H−wnα)〉



Functorial Localization Formula (LLY):

f : X → Y equivariant map. F ⊂ Y a fixed

component, E ⊂ f−1(F ) fixed components in

f−1(F ). Let f0 = f |E, then for ω ∈ H∗
T (X) an

equivariant cohomology class, we have iden-

tity on F :

f0∗[
i∗Eω

eT (E/X)
] =

i∗F (f∗ω)

eT (F/Y )
.

This formula is used to push computations

on complicated moduli space to simple mod-

uli space. In most cases,

Complicated moduli: moduli of stable maps.

Simple moduli: projective spaces.



I will discuss the following topics:

(1) The mirror principle; (2) Hori-Vafa for-

mula: The discussion will be very brief. (Joint

with Lian, Yau).

(3) A new localization proof of the ELSV

formula; (4) A proof of the Witten conjec-

ture through localization. (Joint with Kim;

with Lin Chen, Yi Li).

(5) The proof of the Mariño-Vafa formula;

(6) Work in progress: an effective method to

derive recursion formulas from localization.

(With M. Liu, Zhou; Kim)

(7) Mathematical theory of topological ver-

tex; (8) Applications of topological vertex.

(Joint with J. Li, M. Liu, Zhou; Peng).

(9) Recent work joint with Hao Xu: explicit

formula for n-point functions.



(1). Mirror Principle:

Mathematical moduli: M
g
d(X) = stable map

moduli of degree (1, d) into P1×X = {(f, C) :

f : C → P1 × X} with C a genus g (nodal)

curve, modulo obvious equivalence.

Physical moduli: Wd for toric X. (Witten,

Aspinwall-Morrison):

Example: Pn with homogeneous coordinate

[z0, · · · , zn]. Then

Wd = [f0(w0, w1), · · · , fn(w0, w1)]

fj(w0, w1): homogeneous polynomials of de-

gree d. A large projective space.

There exists an explicit equivariant collapsing

map(LLY+Li; Givental for g = 0):

ϕ : M
g
d(P

n) −→ Wd.

M
g
d(X), embedded into M

g
d(P

n), is very ”sin-

gular” and complicated. But Wd smooth and



simple. The embedding induces a map of

M
g
d(X) to Wd.

Functorial localization formula pushes all com-

putations on the stable map moduli to the

simple moduli Wd.

Mirror formulas are to compute certain Chern

numbers on the moduli spaces of stable maps

in terms of hypergeometric type functions

from mirror manifolds. In fact we can say:

Mirror formulas = Comparison of computa-

tions on the two moduli spaces M
g
d and Wd!

Hypergeometric functions arise naturally on

Wd through localization formula.



(2). Proof of the Hori-Vafa Formula

Let M0,1(d, X) be the genus 0 moduli space

of stable maps of degree d into X with one

marked point, ev : M0,1(d, X) → X be eval-

uation map, and c the first Chern class of

the tangent line at the marked point. One

needs to compute the generating series

HG[1]X(t) = e−tH/α
∞∑

d=0

ev∗[
1

α(α− c)
] edt.

Example: X = Pn, then we have ϕ∗(1) = 1,

trivially follow from functorial localization:

ev∗[ 1
α(α−c)] = 1∏d

m=1(x−mα)n+1

in Pn, where the denominators of both sides

are equivariant Euler classes of normal bun-

dles of fixed points. Here x denotes the hy-

perplane class. We easily get the hypergeo-

metric series.



For X = Gr(k, n) and flag manifolds, Hori-

Vafa conjectured a formula for HG[1]X(t) by

which we can compute this series in terms of

those of projective spaces:

Hori-Vafa Formula for Grassmannian:

HG[1]Gr(k,n)(t) = e(k−1)π
√−1σ/α 1∏

i<j(xi−xj)
·

∏
i<j(α

∂
∂xi
−α ∂

∂xj
)|ti=t+(k−1)π

√−1HG[1]P(t1, · · · , tk)

where P = Pn−1× · · · ×Pn−1 is product of k

copies of the projective spaces. Here σ is the

generator of the divisor classes on Gr(k, n)

and xi the hyperplane class of the i-th copy

Pn−1:

HG[1]P(t1, · · · , tk) =
∏k

i=1 HG[1]P
n−1

(ti).

We use another smooth moduli, the Grothendieck

quot-scheme Qd of quotient sheaves on P1



to play the role of the simple moduli, and ap-

ply the functorial localization formula, and a

general set-up.

Plücker embedding τ : Gr(k, n) → PN in-

duces embedding of the stable map moduli

of Gr(k, n) into the corresponding stable map

moduli of PN . Composite with the collaps-

ing map gives us a map

ϕ : Md → Wd

into the simple moduli space Wd of PN .

On the other hand the Plücker embedding

also induces a map:

ψ : Qd → Wd.

The above two maps have the same image

in Wd: Imψ = Imϕ, and all the maps are



equivariant with respect to the induced circle

action from P1.

Functorial localization, applied to both ϕ and

ψ, transfers the computations on the stable

map moduli spaces to smooth moduli spaces,

the quot-scheme Qd.

Hori-Vafa formula = explicit computations

of localization in the quot-scheme Qd.

This can be explicitly done with combinato-

rial computations by analyzing fixed points

in Qd.



In the following discussions, we will study

Hodge integrals (i.e. intersection numbers

of λ classes and ψ classes) on the Deligne-

Mumford moduli space of stable curvesMg,h.

A point in Mg,h consists of (C, x1, . . . , xh), a

(nodal) curve and h smooth points on C.

The Hodge bundle E is a rank g vector bundle

over Mg,h whose fiber over [(C, x1, . . . , xh)] is

H0(C, ωC). The λ classes are Chern Classes:

λi = ci(E) ∈ H2i(Mg,h;Q).

The cotangent line T ∗xi
C of C at the i-th

marked point xi gives a line bundle Li over

Mg,h. The ψ classes are also Chern classes:

ψi = c1(Li) ∈ H2(Mg,h;Q).



(3). A New Proof of ELSV Formula

Given a partition µ = (µ1 ≥ · · · ≥ µl(µ) ≥ 0)

of length l(µ), write |µ| = ∑
j µj.

Mg(P1, µ): moduli space of relative stable

maps from a genus g (nodal) curve to P1

with fixed ramification type µ at ∞. (Jun

Li)

Hg,µ : the Hurwitz number of almost simple

covers of P1 of ramification type µ at ∞ by

connected genus g Riemann surfaces.

Theorem: The ELSV formula:

Hg,µ = (2g − 2 + |µ|+ l(µ))!Ig,µ

where

Ig,µ =
1

|Aut(µ)|
l(µ)∏

i=1

µ
µi
i

µi!

∫

Mg,l(µ)

Λ∨g (1)
∏l(µ)

i=1(1− µiψi)
.



Functorial localization formula, applied to the

branching morphism:

Br : Mg(P
1, µ) → Pr,

where r denotes the dimension of Mg(P1, µ).

Label the isolated fixed points {p0, · · · , pr} of

Pr and denote by

I0
g,µ : the fixed points contribution in Br−1(p0).

I1
g,µ : the fixed points contribution in Br−1(p1).

Since Br∗(1) is a constant, we get

I0
g,µ = I1

g,µ

where I0
g,µ = Ig,µ and

I1
g,µ =

∑

ν∈J(µ)

I1(ν)Ig,ν +
∑

ν∈C(µ)

I2(ν)Ig−1,ν+

∑

g1+g2=g

∑

ν1∪ν2∈C(µ)

I3(ν
1, ν2)Ig1,ν1Ig2,ν2,



where I1, I2, I3 are some explicit combina-

torial coefficients. This recursion formula is

equivalent to that the generating function

R(λ, p) =
∑

g≥0

∑

|µ|≥1

Ig,µλ2g−2+|µ|+l(µ)pµ,

where p = (p1, p2, . . . , pn, . . .) denotes formal

variables and pµ = pµ1 · · · pµl(µ), satisfies the

cut-and-join equation:

∂R

∂λ
=

1

2

∞∑

i,j=1

(
(i + j)pipj

∂R

∂pi+j

+ijpi+j

(
∂R

∂pi

∂R

∂pj
+

∂2R

∂pi∂pj

))

The cut-and-join equation of same kind for

the generating series P of Hg,µ is simple and

explicit combinatorial computation. This equa-

tion is equivalent to systems of linear ODE.

R and P have the same initial value p1 at

λ = 0, therefore are equal, which gives the

ELSV formula.



(4). Localization Proof of the Witten

Conjecture

The Witten conjecture for moduli spaces states

that the generating series F of the integrals

of the ψ classes for all genera and any num-

ber of marked points satisfies the KdV equa-

tions and the Virasoro constraint. For ex-

ample the Virasoro constraint states that F

satisfies

Ln · F = 0, n ≥ −1

where Ln denote certain Virasoro operators.

Witten conjecture was first proved by Kont-

sevich using combinatorial model of the mod-

uli space and matrix model, with later ap-

proaches by Okounkov-Pandhripande using

ELSV formula and combinatorics, by Mirza-

khani using Weil-Petersson volumes on mod-

uli spaces of bordered Riemann surfaces.



I will present a much simpler proof by us-

ing functorial localization and asymptotics,

jointly with Y.-S. Kim. The method has

more applications in deriving more general

recursion formulas in the subject.

The basic idea is to directly prove the fol-

lowing recursion formula which, as derived

in physics by Dijkgraaf, Verlinde and Verlinde

using quantum field theory, implies the Vira-

soro and the KdV equation for the generating

series F of the integrals of the ψ classes:



Theorem: (DVV Conjecture) We have the

identity:

〈σ̃n
∏

k∈S

σ̃k〉g =
∑

k∈S

(2k + 1)〈σ̃n+k−1
∏

l 6=k

σ̃l〉g+

1

2

∑

a+b=n−2

〈σ̃aσ̃b

∏

l 6=a,b

σ̃l〉g−1+

1

2

∑

S=X∪Y,
a+b=n−2,
g1+g2=g

〈σ̃a
∏

k∈X

σ̃k〉g1〈σ̃b

∏

l∈Y

σ̃l〉g2.

Here σ̃n = (2n + 1)!!ψn and

〈
n∏

j=1

σ̃kj
〉g =

∫

Mg,n

n∏

j=1

σ̃kj
.

The notation S = {k1, · · · , kn} = X ∪ Y .

To prove the above recursion relation, recall

that the functorial localization applied to the

map

Br : Mg(P
1, µ) → Pr,



and by comparing the contributions in Br−1(p0)

and Br−1(p1), we easily get the cut-and-join

equation for one Hodge integral:

Ig,µ =
∑

ν∈J(µ)

I1(ν)Ig,ν +
∑

ν∈C(µ)

I2(ν)Ig−1,ν+

∑

g1+g2=g

∑

ν1∪ν2∈C(µ)

I3(ν
1, ν2)Ig1,ν1Ig2,ν2

where I(ν), I(ν1, ν2) are some explicit com-

binatorial coefficients. Here recall

Ig,µ =
1

|Aut µ|
n∏

i=1

µ
µi
i

µi!

∫

Mg,n

Λ∨g (1)
∏
(1− µiψi)

.

We then do asymptotic expansion. Write

µi = Nxi and let N go to infinity and ex-

pand in N and xi, and take the coefficient of

Nm+1
2 with m = 3g − 3 + n

2.



We obtained the identity:

n∑

i=1

[
(2ki + 1)!!

2ki+1ki!
x

ki
i

∏

j 6=i

x
kj−1

2
j√
2π

∫

Mg,n

∏
ψ

kj
j −

∑

j 6=i

(xi + xj)
ki+kj−1

2√
2π

∏

l 6=i,j

x
kl−1

2
l√
2π

∫

Mg,n−1

ψki+kj−1 ∏
ψ

kl
l

−1

2

∑

k+l=ki−2

(2k + 1)!!(2l + 1)!!

2ki ki!
x

ki
i

∏

j 6=i

x
kj−1

2
j√
2π

[ ∫

Mg−1,n+1

ψk
1ψl

2

∏
ψ

kj
j +

∑

g1+g2=g,
ν1∪ν2=ν

∫

Mg1,n1

ψk
1

∏
ψ

kj
j

∫

Mg2,n2

ψl
1

∏
ψ

kj
j

]]
= 0

Performing Laplace transforms on the xi’s,

we get the recursion formula which implies

both the KdV equations and the Virasoro

constraints.



4’. Another Simple Proof of the Witten

Conjecture.

Direct expansions by using symmetric poly-

nomials and the cut-and-join equation.

Chen-Li-Liu: Localization, Hurwitz Numbers

and the Witten Conjecture, math.AG/0609263.

Φ(λ, p) =
∑
µ

∑

g≥0

Ig,µ
λ2g−2+|µ|+l(µ)

(2g − 2 + |µ|+ l(µ))!
pµ.

We have the following version of cut-and-join

equation

∂Φ

∂λ
=

1

2

∑

i.j≥1

[ijpi+j
∂2Φ

∂pi∂pj
+ ijpi+j

∂Φ

∂pi

∂Φ

∂pj
+

(i + j)pipj
∂Φ

∂pi+j
].

Introduce

Φg,n(z, p) =
∑

d≥1

∑

µ`d,l(α)=n

Ig,µ

(2g − 2 + |µ|+ l(µ))!
pµzd,



where pµ formal variables. By simple calcu-

lation, we can rewrite it in the following form

Φg,n(z; p) =
1

n!

∑

b1,··· ,bn≥0,0≤k≤g

(−1)k〈τb1 · · · τbnλk〉g

·
n∏

i=1

φbi
(z; p),

where

φi(z; p) =
∑

m≥0

mm+i

m!
pmzm, i ≥ 0.

Then apply the symmetrization operators and

direct expansions in symmetric polynomials

to get the recursions in the ψ-classes.

Cut-and-Join operator also has root in rep-

resentation theory of infinite dimensional Lie

algebras.



(5). Proof of the Mariño-Vafa Formula

Introduce the total Chern classes of the Hodge

bundle on the moduli space of curves:

Λ∨g (u) = ug − λ1ug−1 + · · ·+ (−1)gλg.

Mariño-Vafa formula: the generating series

over g of triple Hodge integrals

∫

Mg,h

Λ∨g (1)Λ∨g (τ)Λ∨g (−τ − 1)
∏h

i=1(1− µiψi)
,

can be expressed by close formulas of fi-

nite expression in terms of representations

of symmetric groups, or Chern-Simons knot

invariants. Here τ is a parameter.

Mariño-Vafa conjectured the formula from

large N duality between Chern-Simons and

string theory following Witten, Gopakumar-

Vafa, Ooguri-Vafa.



The Mariño-Vafa Formula:

Geometric side: For every partition µ =

(µ1 ≥ · · · ≥ µl(µ) ≥ 0), define triple Hodge

integral:

Gg,µ(τ) = A(τ)·
∫

Mg,l(µ)

Λ∨g (1)Λ∨g (−τ − 1)Λ∨g (τ)
∏l(µ)

i=1(1− µiψi)
,

with

A(τ) = −
√−1|µ|+l(µ)

|Aut(µ)| [τ(τ+1)]l(µ)−1 ∏l(µ)
i=1

∏µi−1
a=1 (µiτ+a)
(µi−1)! .

Introduce generating series

Gµ(λ; τ) =
∑

g≥0

λ2g−2+l(µ)Gg,µ(τ).

Special case when g = 0:

∫

M0,l(µ)

Λ∨0(1)Λ∨0(−τ − 1)Λ∨0(τ)
∏l(µ)

i=1(1− µiψi)

=
∫

M0,l(µ)

1
∏l(µ)

i=1(1− µiψi)
= |µ|l(µ)−3



for l(µ) ≥ 3, and we use this expression to

extend the definition to the case l(µ) < 3.

Introduce formal variables p = (p1, p2, . . . , pn, . . .),

and define

pµ = pµ1 · · · pµl(µ)

for any partition µ.

Generating series for all genera and all pos-

sible marked points:

G(λ; τ ; p) =
∑

|µ|≥1

Gµ(λ; τ)pµ.

Representation side: χµ: the character of

the irreducible representation of symmetric

group S|µ| indexed by µ with |µ| = ∑
j µj,

C(µ): the conjugacy class of S|µ| indexed by

µ.



Introduce:

Wµ(q) = qκµ/4 ∏

1≤i<j≤`(µ)

[µi − µj + j − i]

[j − i]

`(µ)∏

i=1

1
∏µi

v=1[v − i + `(µ)]

where

κµ = |µ|+
∑

i

(µ2
i −2iµi), [m] = qm/2− q−m/2

andq = e
√−1λ. The expression Wµ(q) has an

interpretation in terms of quantum dimen-

sion in Chern-Simons knot theory.

Define:

R(λ; τ ; p) =
∑

n≥1

(−1)n−1

n

∑
µ

[
∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))

zµi
e
√−1(τ+1

2)κνiλ/2Wνi(λ)]pµ



where µi are sub-partitions of µ, zµ =
∏

j µj!j
µj

for a partition µ: standard for representa-

tions of symmetric groups.

Theorem: Mariño-Vafa Conjecture is true:

G(λ; τ ; p) = R(λ; τ ; p).

Remark: (1). Equivalent expression:

G(λ; τ ; p)• = exp [G(λ; τ ; p)] =
∑
µ

G(λ; τ)•pµ =

∑

|µ|≥0

∑

|ν|=|µ|

χν(C(µ))

zµ
e
√−1(τ+1

2)κνλ/2Wν(λ)pµ



(2). Each Gµ(λ, τ) is given by a finite and

closed expression in terms of representations

of symmetric groups:

Gµ(λ, τ) =
∑

n≥1

(−1)n−1

n

∑

∪n
i=1µi=µ

n∏

i=1

∑

|νi|=|µi|

χνi(C(µi))

zµi
e
√−1(τ+1

2)κνiλ/2Wνi(λ).

Gµ(λ, τ) gives triple Hodge integrals for mod-

uli spaces of curves of all genera with l(µ)

marked points.

(3). Mariño-Vafa formula gives explicit val-

ues of many interesting Hodge integrals up

to three Hodge classes:

• Taking limit τ −→ 0 we get the λg conjec-

ture (Faber-Pandhripande),

∫

Mg,n

ψ
k1
1 · · ·ψkn

n λg =

(
2g + n− 3
k1, . . . , kn

)
22g−1 − 1

22g−1

|B2g|
(2g)!

,



for k1+· · ·+kn = 2g−3+n, and the following

identity for Hodge integrals:
∫

Mg

λ3
g−1 =

∫

Mg

λg−2λg−1λg

=
1

2(2g − 2)!

|B2g−2|
2g − 2

|B2g|
2g

,

B2g are Bernoulli numbers. And other iden-

tities.

• Taking limit τ −→ ∞, we get the ELSV

formula.

• Yi Li recently has derived more Hodge in-

tegral identities from the MV formula.

The idea to prove the Mariño-Vafa formula

is to prove that both G and R satisfy the

Cut-and-Join equation:



Theorem : Both R and G satisfy the fol-

lowing differential equation:

∂F

∂τ
=

1

2

√−1λ
∞∑

i,j=1

(
(i + j)pipj

∂F

∂pi+j

+ijpi+j

(
∂F

∂pi

∂F

∂pj
+

∂2F

∂pi∂pj

))

This is equivalent to linear systems of ODE.

They have the same initial value at τ = 0:

The solution is unique!

G(λ; τ ; p) = R(λ; τ ; p).

Cut-and-Join operator, denoted by (CJ), in

variables pj on the right hand side gives a

nice match of Combinatorics and Geometry

from collecting the following operations:



Combinatorics: Cut and join of cycles:

Cut: a k-cycle is cut into an i-cycle and a

j-cycle, denote the set by C(µ):

Join: an i-cycle and a j-cycle are joined to

an (i + j)-cycle, denote the set by J(µ):

Geometry: How curves stably vary,

Cut: One curve split into two lower degree

or lower genus curves.

Join: Two curves joined together to give a

higher genus or higher degree curve.

The proof of cut-and-join equation for R is

a direct computation in combinatorics.

The first proof of the cut-and-join equation

for G used functorial localization formula.



Label the isolated fixed points {p0, · · · , pr} of

Pr:

J0
g,µ : the fixed points contribution in Br−1(p0)

J1
g,µ : the fixed points contribution in Br−1(p1).

Then

J0
g,µ(τ) =

√−1|µ|−l(µ)Gg,µ(τ),

J1
g,µ(τ) =

√−1|µ|−l(µ)−1·



∑

ν∈J(µ)

I1(ν)Gg,ν(τ) +
∑

ν∈C(µ)

I2(ν)Gg−1,ν(τ)

+
∑

g1+g2=g,ν1∪ν2∈C(µ)

I3(ν
1, ν2)Gg1,ν1(τ)Gg2,ν2(τ)


 .

We proved the following identity by analyzing

equivariant cohomology classes on Pr:

d

dτ
J0

g,µ(τ) = −J1
g,µ(τ).



which is the cut-and-join equation we need.

In fact we have more higher order cut-and-

join equations:

(−1)k

k!

dk

dτk
J0

g,µ(τ) = Jk
g,µ(τ)

from comparing contributions from the first

and the k-th fixed point on Pr.

Remark: Cut-and-join equation is encoded

in the geometry of the moduli spaces of sta-

ble maps: convolution formula of the form:

G•µ(λ, τ) =
∑

|ν|=|µ|
Φ•

µ,ν(−
√−1τλ)zνK•

ν(λ)

where Φ•
µ,ν is series of double Hurwitz num-

bers. This gives the explicit solution of the

cut-and-join equation, with initial value K•(λ),

the integrals of Euler classes on moduli of

relative stable maps.

Another approach by Okounkov-Pandhripande

using ELSV formula and the λg conjecture.



(6). Work in Progress:

We note that asymptotic cut-and-join equa-

tion from the functorial localization formula

and moduli space of relative stable maps al-

ways holds. This gives an effective way to

derive recursive type formulas in Hodge inte-

grals and in GW invariants.

Applications may include:

(1) The recursion formula related to the gen-

eralized Witten conjecture for W -algebra con-

straints.

(2) Recursion formula for GW invariants of

general projective manifolds.

(3) Recursion formula for other Hodge inte-

grals.



(7). Mathematical Theory of Topologi-

cal Vertex

Mirror symmetry used periods and holomor-

phic anomaly to compute Gromov-Witten se-

ries, difficult for higher genera. Topologi-

cal vertex theory, as developed by Aganagic-

Klemm-Marino-Vafa from string duality and

geometric engineering, gives complete an-

swers for all genera and all degrees in the

toric Calabi-Yau cases in terms of Chern-

Simons knot invariants!

We developed the mathematical theory of

topological vertex by using localization tech-

nique, to first prove a three partition ana-

logue of the Mariño-Vafa formula. This for-

mula gives closed formula for the generating

series of the Hodge integrals involving three

partitions in terms of Chern-Simons knot in-

variants of Hopf links.



The corresponding cut-and-join equation has

the form:

∂

∂τ
F • = (CJ)1F •+ 1

τ2
(CJ)2F •+ 1

(τ + 1)2
(CJ)3F •

where (CJ) denotes the cut-and-join opera-

tor with respect to the three groups of infi-

nite numbers of variables associated to the

three partitions.

We derived the convolution formulas both

in combinatorics and in geometry. Then we

proved the identity of initial values at τ = 1.

We introduced the new notion of formal toric

Calabi-Yau manifolds to work out the gluing

of Calabi-Yau and the topological vertices.

We then derived all of the basic properties

of topological vertex, like the fundamental

gluing formula.



By using gluing formula of the topological

vertex, we can derive closed formulas for gen-

erating series of GW invariants, all genera

and all degrees, open or closed, for all toric

Calabi-Yau, in terms Chern-Simons invari-

ants, by simply looking at

The moment map graph of the toric Calabi-

Yau.

Each vertex of the moment map graph con-

tributes a closed expression to the generat-

ing series of the GW invariants in terms of

explicit combinatorial Chern-Simons knot in-

variants.

Let us look at an example to see the com-

putational power of topological vertex.



Let Ng,d denote the GW invariants of a toric

Calabi-Yau, total space of canonical bundle

on a toric surface S.

It is the Euler number of the obstruction bun-

dle on the moduli space Mg(S, d) of stable

maps of degree d ∈ H2(S,Z) from genus g

curve into the surface S:

Ng,d =
∫

[Mg(S,d)]v
e(Vg,d)

with Vg,d a vector bundle induced by the canon-

ical bundle KS.

At point (Σ; f) ∈Mg(S, d), its fiber is H1(Σ, f∗KS).

Write

Fg(t) =
∑

d

Ng,d e−d·t.



Example: Topological vertex formula of GW

generating series in terms of Chern-Simons

invariants. For the total space of canonical

bundle O(−3) on P2:

exp (
∞∑

g=0

λ2g−2Fg(t)) =
∑

ν1,ν2,ν3

Wν1,ν2Wν2,ν3Wν3,ν1·

(−1)|ν1|+|ν2|+|ν3|q
1
2

∑3
i=1 κνi et(|ν1|+|ν2|+|ν3|).

Here q = e
√−1λ, andWµ,ν are from the Chern-

Simons knot invariants of Hopf link. Sum

over three partitions ν1, ν2, ν3.

Three vertices of moment map graph of P2

↔ three Wµ,ν’s, explicit in Schur functions.

For general (formal) toric Calabi-Yau, the ex-

pressions are just similar: closed formulas.



8. Applications of Topological Vertex.

Recall the interesting:

Gopakumar-Vafa conjecture: There exists

expression:

∞∑

g=0

λ2g−2Fg(t) =
∞∑

k=1

∑

g,d

n
g
d

1

d
(2 sin

dλ

2
)2g−2e−kd·t,

such that n
g
d are integers, called instanton

numbers.

By using the explicit knot invariant expres-

sions from topological vertex in terms of the

Schur functions, we have the following ap-

plications:

(1). First motivated by the Nekrasov’s work,

by comparing with Atiyah-Bott localization

formulas on instanton moduli we have proved:

Theorem: For conifold and the toric Calabi-

Yau from the canonical line bundle of the



Hirzebruch surfaces, we can identify the n
g
d

as equivariant indices of twisted Dirac oper-

ators on moduli spaces of anti-self-dual con-

nections on C2.

A complicated change of variables like mirror

transformation is performed.

(2). The following theorem was first proved

by Pan Peng:

Theorem: The Gopakumar-Vafa conjecture

is true for all (formal) local toric Calabi-Yau

for all degree and all genera.

(3). The proof of the flop invariance of the

GW invariants of (toric) Calabi-Yau by Kon-

ishi and Minabe, with previous works of Li-

Ruan and Chien-Hao Liu-Yau.

More applications expected from the compu-

tational power of the topological vertex.



We have seen close connection between knot

invariants and Gromov-Witten invariants. There

should be a more interesting and grand du-

ality picture between Chern-Simons invari-

ants for real three dimensional manifolds and

Gromov-Witten invariants for complex three

dimensional toric Calabi-Yau.

General correspondence between the geom-

etry of real dimension 3 and complex dimen-

sion 3?!.

In any case String Duality has already in-

spired exciting duality and unification among

various mathematical subjects.



9. Recent Results.

We call the following generating function

F (x1, . . . , xn) =
∞∑

g=0

∑
∑

dj=3g−3+n

〈τd1
· · · τdn〉g

n∏

j=1

x
dj
j

the n-point function.

Consider the following “normalized” n-point
function

G(x1, . . . , xn) = exp


−

∑n
j=1 x3

j

24


·F (x1, . . . , xn).

Theorem: For n ≥ 2,

G(x1, . . . , xn) =
∑

r,s≥0

(2r + n− 3)!!

22s(2r + 2s + n− 1)!!

Pr(x1, . . . , xn) ·∆(x1, . . . , xn)
s,

where Pr and ∆ are homogeneous symmetric
polynomials defined by

∆(x1, . . . , xn) =
(
∑n

j=1 xj)
3 −∑n

j=1 x3
j

3
,



Pr(x1, . . . , xn) =
1

2 ·∑n
j=1 xj

∑

n=I
∐

J

(
∑

i∈I

xi)
2 · (

∑

i∈J

xi)
2 ·G(xI) ·G(xJ))3r+n−3

where Gg(xI) denotes the degree 3g + |I| −3

homogeneous component of the normalized

|I|-point function G(xk1
, . . . , xk|I|), where kj ∈

I. If I = ∅, then
∑

i∈I xi = 0.

This has many corollaries about the intersec-

tion numbers of the moduli spaces of Rie-

mann surfaces.

This is a field full of interesting problems!



Thank You Very Much!


