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X Fano Miyaoka-Mori, i.e. K)_(l > ()

By Miyaoka-Mori,
X is uniruled, i.e.

“filled up by rational curves”

By Kollar-Miyaoka-Mori

X 1is rationally connected

Differential-geometric criterion:

X Fano < 4 g Kahler, Ric (X,g) >0



Grothendieck Splitting Theorem (1956)

V — P! holomorphic vector bundle. Then
V=0(a)®- - ®O(a,) ,
where a1 < --- < a, are unique.

Formulation in terms of matrices

Let f: C— {0} — GL(n,C) be holomorphic.

Then there exist
g1 :C—GL(n,C), go:P'—{0} = GL(n,C)

such that

g1f93 ' (2) =

Hilbert (1905), Plemelj (1908), Birkhoff (1913),
Hasse (1895)



Deformation of Rational Curves
X complex mfld, f: P! — X, f(P}) =C
{C;} hol. family of P!, defined by
fi: Pl =X, fo=f, Cy=C.
Write F'(z,t) = fi(2)

OF
_‘t O—SEF(Pl fT)

Any section s € I'(PY, f*T'x) is a candidate for

infinitesimal deformation.

Use power series to construct
F(z,t) = fi(2)

Obstruction to construction given by
Hl (Pl, f*TX)

HY(PY, f*Tx) ZHl (P, 0

H (Pl,C’)(a)):O Va > —1.



Example of hol. vector bundles on P!
(A) ]P)l C ]Pﬁ; V = Tp2|[p>1
V/Tp1 = Np1p2, N = normal bundle.

Jhol. vector fields of P?, along P!, correspond-

ing to inf. deformation of lines in P?. Using s,
we have, s(P) =0

VZ2Tp & Np1|p2
= 02)e0(1) .

In general,

Tp | = O(2) @ [O(1)]" .




B)PLcPlxP, 22— (20)
Tpiypi|lpr 2012) 0O .

(C) Q™ c P**! hyperquadric, defined by 23 +

Tonlpr 2 O02)B [0 20O .

Trivial factor: Q% C Q"; Q? = P! x P!,

PP

S = nowhere zero section




X Fano, L >0, o5 =deg.

minimal rational curve C' attains

min{d; (C) : Tx|c >0} .

Deformation Theory of Rational Curves

—> For a very general point P € X,

Tx|lc >0 VCrat., PeC.

Consequence

JC = choice of irr. comp. of mrc
For P generic, [C]| € K generic
f:Pl—= X, C=f(P). Then,

f*Tx =20(2)® |[O)]P & O7.



E"""'-[}/ af curves ]axl:sj d 'Foi—n'f.‘s P, QeX
must break uf. Otherwse I -T_ =-T' .



Varieties of Minimal Rational Tangents

X uniruled,

JC = component of Chow space of minimal ra-
tional curves

t:U— X; p:U — K universal family

x € X generic; U, smooth

The tangent map 7 : U, — PT,(X) is given by

for C' smooth at x € X.

T is rational, generically finite,

a priori undefined for C singular at .




We call the strict transform
T(U;) =C, C PT,(X)

variety of minimal rational tangents.

For C standard, T,.(C') = Ca

Tlc = O2) & O(1)? & O
P, :=[0(2) & O(1)?], , positive part .

Then,

~

Toz(Ca:) — Pa 3
T14)(Cr) = P, mod Cao .

In other words,
dim(C;) =p,

and C, is infinitesimally determined by split-
ting types.
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Mi n%ma‘. Rationd  Curves

7%5

Var'-ej, of M;h\m‘, ’Ra‘lluomt Tﬁ\j’mtt (VMR T)

T,

VMRT at zeX
(7=




Characterization of [P" (Cho-Miyaoka-
Shepherd-Barron 2002)

X irr. normal variety, dim(X) = n.

Suppose there exists a minimal component
on X such that

C(K)=PTx .
Then, there exists
v:P"— X
étale over X — Sing(X) such that
members of K = images of lines in P".

In particular

X smooth = X = P" .
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Theorem (Kebekus 2002, JAG).
The tangent map
Ty : Uy — PT(X)

1S a morphism at a generic point x € X.

Theorem (Hwang-Mok 2004, AJM).
The tangent map
Ty Uy — Cp CPTL(X)

s a birational morphism at a generic point x €

X.
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Examples of VMRTs
Fermat hypersurface 1 < d <n —1

X={Z§+272%+. .-+ 272°=0}

T =|20,21y--- ,2n] € X.
FIND all (wq,w,,...,w,) such that V ¢t € C.

(20 + twg, 21 + twy, ..., 2y +tw,] € X
(20 + two)? 4 -+ (2 + twy,) =0
0= (25 +-++2)
+t(z8 twg + -+ 24 wy,) - d

d(d —1)

H(2g WG+ 2y W)

n

_|_..._|_td(wg_|_..._|_wg).

When (zg,21,...,2,) is fixed, we get d + 1
equations, and

Cr = complete intersection of d — 1 hypersur-
faces of degree 2,3,... ,d in PT,(X) = P!
Ifd<n—-1,dim(C;) =n+1)—(d+1)—1=
n—d—12>0.
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Examples of VMRT

X (generic) VMRT C,

P Pn—l

Qn Qn—Q

cubic codim 2 Cc P!

in Prtl — quadric N cubic, deg. 6
X3 cp? 6 points
X2 cCP deg. 6 curve of genus 4
X2 P K*® — surfaces

X7 cP*t | complete intersection C P
d<n of degrees 1,2,...,d

In these examples,

{mrc} = {lines in P" contained in X} .
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Type| G K G/K = S C, Embedding
I |SU@p+q)|SUp) xU(g) | Gpq |[PPHxPIt|  Segre
I1 SO(2n) U(n) G (n,n) | G(2,n—2) | Plicker
111 Sp(n) U(n) GHi(n,n) pr—1 Veronese
IV |SO(n+2)| SO(n) x SO(2) Q" Q"2 by O(1)
Vv Fs Spin(10) x U(1) | P2(Q) e C| G (5,5) by O(1)
VI E; Eg x U(1) exceptional | P?(Q) @g C |  Severi
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Scope

Mori theory
Algebraic Geometry< Hilbert schemes

projective geometry

. , distributions
Differential Geometry
GG-structures

Several { Hartogs phenomenon

Complex Variables | analytic continuation

. Hermitian symmetric spaces
Lie Theory .
rational homog. spaces G/P

17



Examples of G-structures

Riemannian Geometry

A Riemannian metric Xg;,;dz* @ dx’ gives a re-

duction of the structure group from GL(n,R)
to O(n,R); G = O(n,R).

Holomorphic Metrics

X complex manifold,
Z Gij dz' @ dz’
hol. symmetric 2-tensor,
det(gi;) # 0 ;

g a holomorphic metric;
Hol. G-structure with G = O(n;C).
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Theorem (Hwang-Mok, Crelle 1997)

V model vector space = C",

G reductive complex Lie group,

G & GL(V) irreducible faithful representa-

tion,
M Fano manifold with holomorphic G-structure.
Then, the G-structure is flat

M=S,

where S = irr. HSS, compact type of rank
> 2.
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Lazarsteld’s Problem

Theorem (Hwang-Mok, Invent. 1999).
(2nd proof: Asian J. Math. 2004)

Y = G/P rational homogeneous

P maximal parabolic, i.e. by(Y) =1
X projective manifold

f:Y — X finite holomorphic map

Then,

FEITHER
(a) X =P" ; OR
(b) f:Y =, X s a biholomorphism.
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Lazarsteld’s Problem

Principle of Proof:
f:Y—-X; Y=G/P, b(Y)=1.

Suppose X 2 P"; f not a biholomorphism. To

derive a contradiction let

o:U—V ,UVCY
such that fop = f.

C C PT(X) varieties of mrt

D:= f*C C PT(Y)
0« D]y = Dly tautologically.

Prove that ¢ = ®|y for some ® € Aut(Y) to

derive a contradiction!
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Varieties of distinguished tangents

N =irr. comp. of Chow space of curves on X

passing through z € X
N’ c N subset smooth of curves smooth at x

N = N'U-.-UN* decomposition in terms of

geometric genus
7 : N7 — PT,(X) tangent map

NI =M U---U M,Z T-stratification

Definition.

An irreducible subvariety D C PT,(X) is called
a variety of distinguished tangents (VMRT) if
D = 7(M?) for some choice of N, N7 and
M.

1
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Varieties of distinguished tangents

Properties

(i)

(iii)

Given an irreducible smooth projective va-
riety X and = € X, there are only count-

ably many varieties of distinguished tan-
gent in PT,(X).

Let D C PT,.(X) be a variety of distin-
guished tangents associated to some choice
of N, N7 and M/. Then for any tangent
vector v to D, we can find a family of curves
{l;,t € A} belonging to N smooth at x

so that the derivative of the tangent direc-
tions PT,(l;) € PT,(X) at t =0 is v.

Suppose a connected Lie group P acts on
X fixing . Then any variety of distin-
guished tangents in PT,. (X)) is invariant un-
der the isotropy action of P on PT,(X).
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Theorem. (Hwang-Mok, Invent. 2005)
G simple Lie group over C, g = Lie algebra
P C G maximal parabolic subgroup

S = rational homogeneous of type (G; «)

T: X —-A={teC: |t <1} regular family
such that

i) X; :=7"1(t)= S for t # 0 and

(i) Xg:= 7 1(0) is Kahler.

Then,

25






Deformation rigidity in the Kahler case
Scheme

(1) S Hermitian symmetric
[Hwang-Mok, Invent. Math 1998]

(2) S of type (G, ), a a long simple root
[Hwang, Crelle 1997] for the contact case
[Hwang-Mok, Ann. ENS 2002| in general

(3) S of type (Fy, )
[Hwang-Mok, Springer-Verlag 2004]

(4) S of type (Ch,ar), 1 <k <n;or (Fy,as)
[Hwang-Mok, Invent. Math 2005]
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Deformation rigidity in the Kahler case

Methods

(1) Distribution spanned by VMRT
Integrability

(2) Differential systems generated by distribu-
tions spanned by VMRT

(3) Methods of (2)

(4) Holomorphic vector fields on uniruled pro-
jective manifolds.

Uses also conditions on integrability of (1).

28



Distributions Spanned by MRT

X uniruled,

JC: component of Chow space of minimal ra-
tional curves

Cy: variety of mrt;

Co C PTo(X); Co C To(X);

~

W, = Span(C,) C T,(X).

Assume W # T'(X).

Q. Is W integrable?

Pic(X) =1 = W not integrable
Projective-geometric properties of C,

= W integrable

For C on Xo, W =T(Xy), i.e. C, lin. nondeg.

29



Integrability of Distributions

Proposition.
QcCcCr, W CTq hol. distribution. Then, W
is integrable iff

(*) Given x € 2, 3 hol. vector fields a;, 3,
def. on a nbd of z s.t.

(i) |aj, Bil(x) € W,.
(ii) Span{a; A B;} = AW,

30



Verification of Integrability
C' C Xy be a smooth standard mrec.

Tx,|lc =2 02)®|0O1)]F 0O

For x € C; T, (C') =2 Cay. Define

Proposition
C C Xy standard mrc; x € C. & € P,
s.t. (g, &) linearly independent. Then, there

exists a loc. smooth complex-analytic surface
Y. at x such that
(i) Tx(z) = Cay, + C&y;

(ii) at every y € X near z;

T,(X) Cc W, .

31



~ .é' y,

X

7;(2)-’([0:4—(3



Proposition.
C, C PW, VMRT at generic x
7. C P(A*W,) variety of tangents.
Then,
7. C P(A*W,) lin. nondeg.

= W integrable.

Proposition. 7, C P(A*W,,) is linearly
non-degenerate if
dimC, > codim C, in PW, ,
C, C PW.,. is smooth .
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Differential system

0£D1G DG G Dy C Ty

filtration of X by hol. distributions.

Weak derived system (X, D)

D! = D | meromorphic distribution

Dk _ Dk—l + [D,Dk_l].

e On a Fano manifold X, b3(X) =1, D™ =

Ty for some m.

Symbol algebra of a weak derived system:

s(X,D):=D*®eD*/D*@®-.-¢ D™/D™!

e On arational homogeneous space S = G/ P,
bo(S) = 1, with D = min. nontrivial G-inv.

hol. distribution,

nTi=g1 @ D g 2s(S, D).
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Serre relations

g simplie Lie algebra over C
¥ ={ai,...,qs} system of simple roots
n(i, j) = entries of Cartan matrix

Then, g is the universal Lie algebra generated
by {xi,y;, h; : 1 <1 < £} subject to the iden-

tities

o hi,hj]=0

o |x;,yi| = hi, |[Ti,y;] =01if i # j

® :hz',ili‘j] = n(i7j)xj7 [hiayj] — —n(z’,j)yj
o ad(z;) "I T(z) =0ifi#j

o ad(y;) "IN (y;) =0if i # j

35



Objective
For the regular family 7 : X — /A consider
D C Tx, spanned by VMRTs. Show that
5(Xo, D) =nt =g, ® - P gy, for the model
S=G/P.

Serre relations for n'

Write nt C g subalgebra generated by
{x1,22,...,2¢}. Then, n™ is the universal Lie

algebra generated by {z1,...,x,} subject to
ad(x;) " (25) = 0.

Note that

e When ¢; is a long simple root,

20, 0y) —=Qor —1.

I = T,

For us the crucial relations are

1z, |xi,z;]] = 01if n(e,5) # 0.
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Concluding arqument:

s(Xo, D) is a quotient of the universal Lie al-

gebra U gen. by {z1,...,xz,} subject to
ad(z;) BT (z;) = 0.
By Serre relations,
Ux~nt, sXg,D)=n"/J

If J # 0, the weak derived system (X, D)
would terminate at D™, dim D™ < n, giving
an integrable distribution W = D™ containing

VMRTSs, which contradicts with bs(Xg) = 1.
]
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Conjecture 1

X Fano, bo(X) =1
x € X generic point
Z el'(X,Tx).

Then,

ord,(Z)>3=272=0.

Conjecture 2
X Fano, b(X) =1, dimc X =n
= dimc(Aut(X)) < n? + 2n;

—n?4+2n< X 2P,

38



Remark:

(1) For X = P(O®0O(k)), the k-th Hirzebruch

surface,
dim(Aut(X;)) > dim (P, O(k)) = k + 1.

Bounds fail in general for projective uniruled

projective manifolds.

(2) If 3K on X such that dimC, = 0, Hwang

shows that there are no hol. v.f. vanishing at a
generic point € X. In that case, dim(Aut(X)) <

1.

(3)
dim{Z e I'(X,Tx) : ord,(Z) < 2}

- nn+1)(n+2) _n’
< > 5 -

39



Theorem 1 (Hwang-Mok)
X projective uniruled manifold

JC = minimal rational component

x € X generic point
C, CPPT,.(X), VMRT at z, dimC, =p >0

Assume C, C PT,(X)
nonsingular, irreducible,

linearly non-degenerate.

Then,

ZeT(X,Tx), ordg(Z2)>3=2=0.




Theorem 2

Assume C, C PT,(X), dim X =n
nonsingular, irreducible,
linearly non-degenerate,

linearly normal.

Then,

dim(Aut(X)) < n® + 2n
= n?+2n< X 2P

41



Corollary

X Fano, bo(X) =1,dim X =n

O(1) positive generator of Pic(X)

10

4.

Assume O(1) very ample.

Cl(X> >

n+1
2

, * € X generic. Then,

0£4Zecl'(X,Tx)=ord,(2) <3;

Cl(X) >

2(n + 2)

3

, X P

= dim(Aut(X)) < n* + 2n .
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Ideas of Prooft

(1) A holomorphic vector field Z vanishing at
x € X to the order > 2 gives by power series

expansion

Z = ;ﬂ A I 2 8—% + higher order terms

A€ SQT;Ck ® T, with the property that

(1) for any o € C,, for

:ZA’“ dz) ®8% c End(T,) ,
k

Aa|c~x is tangent to C,.

Here we identify vector fields on 7, with en-

domorphisms.
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(2) Taking «, 8 € Coi v, B+ 0
Aop = Aa(f) = Ap(a)
is tangent to C, both at « and 3, i.e.
Ao € PaNPs .

(3) The symmetry property on A forces (by
letting 6 — «) that A,. € Ker(o,) for the
second fundamental form o, on C, — {0}. If
C: & PT is smooth and non-linear, Ker(o,) =
Ca (Zak’s Thm.), and

A cT(Cp;Hom(L?, L)) =T(Cy, L)

for the tautological line bundle L.
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(4) We can get bounds for the dimension of Z
with ord,(Z) > 2 if we know that

() A=0=A=0.

Moreover, the latter is enough to prove the

nonexistence of nontrivial Z with
ord,(Z) > 3. If ord,(Z) > 3 start with

A€ S*T*®T, such that
Aopy € PoNPgN P, for a, 3,7 € C, — {0}.

Then, we get

Apory € Py NP, for any o,y € C, — {0}
= Aqay =0
= A =0 if (%) holds.
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Prolongation of infinitesimal auto-

morphisms of projective varieties

V complex vector space, dimV =n
g C End(V') Lie subalgebra

g c SHHV*eV, o c g o

Vovi,...,vp €V, writing

Ouy.. v, (V) =0(V301,... ,0k) ,

we have 0y, ., €9 .

g®) = k-th prolongation of g; g(®) = g.

hcg=bH" cgh

(k). o(0) (k+0)
g9 C g
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Y C PV projective subvariety, dimY = p
Y C V affine cone of Y. Define
aut(Y)={A € End(V):exp(tA)(Y) C Y,t € C}.
X complex manifold, dim X =n

C C PT(X) projective and flat over X

C. C PT,(X) irreducible, reduced

f := germs of C-preserving holomorphic vector
fields at x

For ¢ > —1, let

ff={Zecf:ordy(Z)>0+1} .
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Proposition. For k > 0, identify {* /{1 C
SEHT*(X) @ T,(X) by taking leading terms

of Taylor expansions of the vector fields at x.
Then

fF 1L aut(C, )P

the k-th prolongation of the Lie algebra of in-

finitestmal automorphisms of the projective va-
riety C,.

Proof. Z hol. vector field at x, defined on U C
X,ord,Z > k—+1

2t (Z) € S"MTH(X) ® To(X)
Z can be lifted canonically to Z' on PT(U):

7 = inf. generator of {f;}, germs of biholo-
morphism at x

fe U — X gives F; : T(U) — T(X),
where Fi(z,n) = (fe(z), dfe(x)(n)).
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neTl,(X),ord,(Z) >k,
jr €SP (T (X)) ® T,(T(X)) .
For k =0, 9 € T,(T(X)).
For k> 1, Z'|1 (x) = 0,
jr € SPN; @ T,(T(X)) ,

where N = normal bundle of T,,(X) in T(X),
N =2 7*T(X). Since ord,(Z) > k + 1,
T (G (1, ... o)) = 0 for vy, ... v € Tp(X).

Hence,
Ji(Z') € SPN;RT, (T, (X)) = SPTH(X) T, (X) .
Straightforward calculations give

i ZN (1, k) = e Z) (v, vt S vk)

where we write n and v for the same thing, n
when it is consider a point on the fiber T, (X),

v when it is considered a tangent vector at x.
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Leading Terms of Hol. Vector Fields
0e€ Q) CC™ Z = hol. vector field on

Ol“dQ(Z) =P >0

Z =3 Ak 2zt L4 O(|z|PH)

i1 1y Oz
Principal term p(Z) at o:
p(Z)=AecSPT; T, .

Lemma. Z, W = germs of hol. vector fields
ato, ord,(Z) = p, ord,(Z) = q. Then ord,|Z, W]
>p+q— 1. Suppose ord,[Z,W]|=p+q—1,
p+q>1. Then,

p(|Z, W) = bilinear expression in p(Z), p(W).
For p =1, so that p(Z) € End(T,),
p(1Z,W]) = p(Z)(p(W)) .
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Symbolic Lie algebra of leading terms

Hermitian symmetric case

g=9-1Dgo D o1
—m  ptpmT.

m~,m ] =[m",m"] =0

m- ={Z eIl'(5,Ts) :ord,Z > 2} .
All Lie brackets determined by principal terms:
k,m™], [k,m™], [k, K], [m™,m™] .

Deformation Rigidity
Givenm:X — A

g' = aut(Xy) for t #0
g’ = Limiting Lie algebra, .
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More precisely,
7T = relative tangent bundle
w7 = O(V), V hol. vector bundle on A

gt := V4, Lie alg. structure induced from

7.

Assume stability of C, ;) as ¢ — 0. Define

T = {Z e gt:ordyw)(2) > k)
L ={Zecg :Z(o(t)=0, Az € C-id} .

Fort # 0, any Z € E;, Az # 0 determines a
C*-action. Since C, (o) C PT,0)(Xo) is conju-
gate to C, C PT,(5)

dimE(gQ) <n, Eék) — 0 for k > 3
dim Iy > n + 1 (upper semicontinuity)
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Therefore, dim Ip = n + 1 and d a hol. vector
bundle I of rank n+ 1, Z = O(I).

17 € Iy such that Az #Z 0, and we have a hol.
family of C*-actions 1;.

Ty = {e*t}, period 27i.

ot E{Zeg B, 2 =iz}

g =g 199,99 .

For t # 0,

96 - {A - Enda(t)( o (t) ) A‘Ca(t)

is tangent to Ca(t)} .

Dimension count forces the same for ¢t = 0.
99,99 = [g°1,¢°,] = 0. Lie algebra structure
on g' completely determined by leading terms.
Hence Xog =G/P = S.
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Uniqueness of tautological foliation:

p:U— K, n:U — X universal family
m:C — X family of VMRT's

F =1 — dim. multi-foliation on C
defined by tautological liftings C of C,

F = tautological foliation

For C standard Tx|c = O(2) & O(1)P & O1.
Write T,C = Ca, P, = (O(2) & O(1)P),.

Pia) = {n € Ti(C) : dm(n) € Pa}.
As Ti1(C;) = P, /Ca, P is defined by C.
W = distribution on K defined by
Wiy = T'(C,0(1)?) c I'(C, Ngx) = Tie(K).
We have

P=p W, F=p (0)=[F,PICP.
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Proposition

Assume Gauss map on a generic VMRT C,
to be injective at a generic |a] € C,. Then,
v, Pl CP=wveCF,ie.,

Cauchy Char. (P) = F.

Corollary
Assume U C X, U’ C X', f:UiU’,
[df]*C" = C|y. Then,

f maps open pieces of mrc on X to

open pieces of mrc on X.

Proof. Write f*C’ for [df]*C’, etc. Then, f*C' =
C|y implies f*P’ = P|y. Thus,

[f*f/,P] — [f*f/,f*P/]
_ f*[]:/,P/] C f*P/ — P.

Proposition implies f*F' = F. 0O
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Theorem. (Hwang-Mok, JMPA 2001,
AJM 2004)

X projective uniruled, bo(X) =1,
JC minimal rational component on X.

Assume

(t) for a general point z € X, dimC, = ¢ > 0
and Gauss map on C, generically finite.

() more generally if C, is non-linear, i.e., not

a finite union of projective linear subspaces

Then,

(X, ) has the Cartan-Fubini

Extension Property

Examples:
(1) X = G/P # PV, G simple, P maximal

parabolic.

(2) X c P¥ smooth complete intersection, Fano
with dim(X) > 3, ¢1(X) > 3.
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Ideas of proof of CF under the assumption ()
(1) f: (X,K) — (X',K') gen. finite surj.
map, [*C' = C (i.e., VMRT-preserving).

Uniqueness of tautological foliation

= f preserves tautological foliation

(2) Analytic continuation along mrc, obtained

by passing to moduli spaces of mrc:

f: X — X' induces f# : ¥V — K’ on some
open subset V C K.

Now, interpret a point x € X as the intersec-
tion of C, [C] € K,, to do analytic continua-
tion.

(3) (X,K) is rationally  connected,
Analytic cont. along chains of mrc defines a
multi-valued map F : X — X'.
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(4) bo(X) = 1 = any mrc C intersects any
hypersurface H C X.
Analytic cont. along C forces univalence of F’,

viz., I 1s a birational map preserving VMRT's

(5) birational + VMRT-preserving
= biholomorphic

(a) VMRT-preserving
= R(F) =10, R:ramification divisor

(b) Embed X to PV by K3 *, X being Fano,
etc. R(F) = () gives hol. extension of F*s
for sections s of K)_(E,
F : X — X' is the restriction of some pro-

jective linear isomorphism of PV .
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Local rigidity of holomorphic maps

m: X — A regular family
Xt Fano, PlC(Xt) =7

X carries a rational curve C, with trivial nor-

mal bundle
X' projective manifold

fi + X' — X; holomorphic family of generi-

cally finite surjective holomorphic maps. Then,

There exist ¢ : Xg =, Xy
such that f; = ¢ o fo
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Application of Cartan-Fubini

Theorem (Hwang-Mok, AJM 2004)
X Fano manifold; by(X) =1

JC: minimal rational component

C.: VMRT of (X, ), z € X generic
Y projective manifold

fi : Y — X one-parameter family

of surjective finite holomorphic maps.

Assume dimC, :=p > 0, and
C. C PT,(X) is non-linear. Then,

1P, € Aut(X) such that
fi = ®P; 0 fo; Py = id.
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Theorem (Hwang-Mok 2004, AJM). Local

rigidity for f; 'Y — X; remains valid un-
der the assumption that Xy carries a minimal
component Ko whose general VMRT is non-

linear.

New solution of Lazarsfeld Problem

Y = G/P G simple, P maximal parabolic
Take X; =X, f:Y —- X.
Assume generic C,, C PT,(X) non-linear.

Local rigidity = Any holomorphic vector field
Z on Y descends to a holomorphic vector field
W on X such that f : Y — X is equivariant
w.r.t. l-parameter groups generated by Z and
wW.

R := ramification divisor of f

B = f(R)
Then, MV is tangent to B.
Hence, Z is tangent to R,
contradicting homogeneity of Y = G/ P!
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Bounding degrees of holomorphic maps

X' projective manifold

Fo = {X Fano: Pic(X) = Z; J rat. curve
C' C X with trivial normal bundle}

Then,

There exists a constant C'(X’) such that
Vi X' = X, X e€¢F
generically finite, surjective hol. map

deg(f) < C(X").

Finiteness Theorem

Given X', there exists at most finitely many
pairs (X, f) of such maps f: X' — X.
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Finiteness Theorem in 3 dimensions

Y Fano manifold, Pic(Y) 2 Z, dimY = 3.

Then, there are at most finitely many projec-
tive manifolds X for which there exists a sur-

jective holomorphic map
f:Yy—X.

Proof.
From sol’n to Lazarsteld’s Problem,

Y 2P’ = X 2P
Y 2@’ = X =Q° or P°.
Otherwise, Y carries a rational curve with triv-

ial normal bundle, from Iskovskih’s classifica-
tion. Then,

X =P Q° or

a finite no. of possibilities in Fy.
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Webs on a Fano manifold

Fo = {X Fano: Pic(X) = Z;3 a rat. curve
C' C X with trivial normal bundle}

X e Fy,CCX, Nox 20!
JC = minimal rational component, [C] € K.
.U — X, p:U — K universal family

XeFgsForm:C— Xof VMRT's, dimC,, =

0 for x generic.

R C U ramification divisor,
M = u(R) C X branching divisor

M = discriminantal divisor of K.
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L C X smallest hypersurface such that
7w :C — X is unramified over X — L — Z

tor some Z C X of codim. > 2, M C L.
L := extended discriminantal divisor of KC

Principal properties on webs

¢ /: X' — X gen. finite surj. hol. map, K
web of rational curves on X

= f —1K finite union of webs of rational curves
on X'.

¢ Kk =K'=K,U---UK,,
L = L, U---ULk _, etc.
Then,
fY(L)ycrL.
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Solution to the Frankel Conjecture:

Theorem (Siu-Yau 1980).
(X, g) compact Kdihler, Bisect (X, g) > 0
= X = P".

Solution to the Generalized Frankel Conjecture:

Theorem (Mok 1988).
(X,g) compact Kdihler, Bisect (X,g) > 0
= X =~ C™x Hermitian symmetric space of

compact type.

For X Fano, we have

X = Hermitian symmetric space of com-

pact type.
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Solution to the Harshorne Conjecture:

Theorem (Mori 1979).
X projective manifold, T'x ample
= X = P,

How about a “Generalized Hartshorne Conjec-

ture”?

Conjecture (Campana-Peternell 1991).
X Fano manifold, T'x numerically effective

= X = rational homogeneous space

Solved for dim < 3 independently by Campana-
Peternell and Fangyuan Zheng:

Case of 3 dimensions:

X =P Q°, P xP?, P! xP' xP' or P(Tpe)
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Theorem (Mok 2002, Trans. AMS).
X projective manifold

ba(X) = ba(X) =1,

Tx > 0 (numerically effective).

Suppose dimC, = 1 for x generic.

Then,
X2P? Q° or K(G,),

where K(G3) = 5-dimenstonal Fano contact
homogeneous manifold associated to the excep-

tional Lie group Gs.

Theorem (Hwang 2004).

The condition by = 1 can be dropped.
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Campana-Peternell 1993

Their conjecture is valid in dimension 4 except
for the possible exception of a Fano manifold
X of Picard number 1 with nef tangent bundle

such that ¢;(X) =1 (i.e. positive generator of
Pic(X) &£ 7).

Elimination of the exceptional case ¢; = 1

p = 0 implies the existence of a 1-dim (hence
integrable) distribution spanned by
VMRTSs, contradicting by = 1

p =1 ruled out by Mok + Hwang’s improve-

ment

p = 2 would contradict Miyaoka’s characteri-

zation of the hyperquadric

p =3 ruled out by the characterization of
projective spaces of Cho-Miyaoka-Shepherd-
Barron, Kebekus
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Theorem (Mok 2006, Hong-Hwang 2007).

Let S = G/ P be a rational homogeneous man-
ifold of Picard number 1 corresponding to a

long simple root a. (We say that S is of type
(9,a)), S P

Let X be a Fano manifold of Picard number 1
admitting a component IC of minimal rational

tangents. Write

Co(S) CPT,(S), o€S reference point ;
C.(K) CPT.(X), xe&X general point

for varieties of minimal tangents. Then,

C.(K) CPT,(X) congruent to
Co(S) C PT,(S)
= | X

(
(

10

S
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Ideas of proot
e parallel transport along tautological lift-

ings C' of minimal rational tangents

e behavior of second fundamental forms o
of C, C PT,(X) invariant under paral-
lel transport, hence kernels, images, etc.

are invariant.

e C, C PT,(S) are quadratic or cubic Her-
mitian symmetric subspaces. If irreducible
and of rank > 1 the G-structure on C, is
determined by second and third funda-

mental forms o and x, which determine

Cia (Co).

e In the reducible case transversal folia-

tions are preserved by parallel transport.

e The special case of the second Veronese
embedding of a projective space can be
recovered from the surjectivity of the

second fundamental form o.
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Theorem (Hwang-Mok 2004, JAG).

X Fano manifold, Pic(X) = Z.

M an irreducible component of the space of
mainimal rational curves.

M?* C M subset of members of M passing
through a general point x € X.

If M* is irreducible, and dim(M*) > 2.

Then, Auty(X) = Auty(M).

Remarks. Theorem fails when dim(M?) =

0, 1.

Examples:
(a) dim(M?*) = 0. Take X = codim —
general linear section of G(2,3), M
IP)Z

10 o

Autg(X) 2 PSL(2,C);
Autg(M) = PSL(3,C).

(b) dim(M?®) = 1. Take X = Q3, M = P3
Auto(X) ZPSO(5,C);
Autg(X) = PSL(4,C).
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Most recent results:

Holomorphic Lagrangian fibrations
(Hwang 2007)

Let Z be a projective irreducible symplectic
manifold and 7 : Z — X a surjective holomor-
phic map onto a projective manifold with con-

nected and positive-dimensional fibers. Then
X =P,

Remark

By the work of Matsushita a general fiber is
an Abelian variety, the underlying subvariety
of every fiber of f is Lagrangian, and X s a
Fano manifold of Picard number 1. In partic-
ular, X can be studied by means of geometric
structures associated to VMRTs.
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Generalized Lazarsfeld Problem
(Lau, to appear in J. Alg. Geom.)
Resolution of the generalized Lazarsfeld Prob-

lem for surjective holomorphic maps 7 : G/Q —

X, X smooth, G any semisimple complex Lie
groups, () C GG any parabolic subgroup.

(Currently generalized also to semisimple G.)

Non-equidimensional Cartan-Fubini
extension (Hong-Mok 2008)

(a) Analytic continuation for germs of holo-
morphic maps f : (Z,29) — (X, x) for unir-
uled projective manfiolds equipped with VM-
RT's such that

df (Cz,2) = Cx p(z) N Ty (X)
for z on some neighborhood U of z;. We say
that f respects VMRTS.

(b) Application of non-equidimensional Car-
tan Fubini to the characterization of certain
holomorphic embeddings G/P — G'/P’ in
terms of the VMRT-respecting property.
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Open Problems
(1) Irreducibility of VMRTs
Conjecture: X uniruled, projective

JC minimal rational component, p(X, ) > 0.
Then, C, is irreducible for generic in X.

Special case:

If C, is a union of projective linear subspaces
and p(X, ) > 0, then C, is irreducible.

COHSGQUGHCG of special case

f : X" — X a generically finite map onto a
Fano manifold X of Picard number 1, X 2 P™.

Then f is locally rigid when X' is fixed and X
is allowed to vary.

(2) Contact Fano manifolds
Conjecture: X Fano, Pic(X) =2 Z, equipped

with a contact structure
= X rational homogeneous.

(3) Finite holomorphic maps
Conjecture: X, Y n-dim. Fano manifolds of Pi-
card number 1, X, Y 2 P". f: X — Y finite
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holomorphic map. Then, deg(f) < Const(X,Y).

Consequence
X 2P Pic(X)=2Z = End(X)=Aut(X)

(4) Vector Fields

Conjecture: X Fano, Pic(X) = Z. Then,

(a) At a general point A holomorphic vector
fields vanishing to the order > 3.

(b) dim (Aut(X)) < n® 4+ 2n unless X = P".

(5) Moduli space of minimal rational curves
X Fano manifold of Picard number 1, K a min-
imal rational component, x € X general point,

p : U — K universal family, C, = VMRT at x.

Conjecture (on pseudoconcavity):

Suppose every KC-curve through z is standard
and embedded. Write Q.. := p(C,) C K. Then,
every meromorphic function defined on some
open neighborhood U D 9O, extends meromor-
phically to K.
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