## Abstract

Consider the discrete Schrodinger operator with Sturmian potential

$$
V(n)=\lambda \chi_{(1-\alpha, 1]}(n \alpha) .
$$

We denote the Hausdorff and box dimensions of the spectrum by $D_{H}(\alpha, \lambda)$ and $D_{B}(\alpha, \lambda)$. We denote the Hausdorff and packing dimensions of the density of states measure by $d_{H}(\alpha, \lambda)$ and $d_{P}(\alpha, \lambda)$. Assume $\lambda \geq 24$. We show that there exists $0<d(\lambda) \leq$ $D(\lambda)$ such that for Lebesgue a.e. $\alpha$,

$$
d(\lambda)=d_{H}(\alpha, \lambda)=d_{P}(\alpha, \lambda) ; D(\lambda)=D_{H}(\alpha, \lambda)=D_{B}(\alpha, \lambda) .
$$

In particular, for Lebesgue a.e. $\alpha$, the density of states measure is exact-dimensional. This is a joint work with Jie Cao.

