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Index and secondary index theory
for flat bundles with duality

Ulrich Bunke and Xjaonan Ma

ABSTRACT. We discuss some aspects of index and secondary index theory for
flat bundles with duality. This theory was first developed by Lott. Our main
purpose in the present paper is provide a modification with better functorial
properties.

1. Introduction to the paper

This article has its origin in the work of J. Lott [21], where he develops two
versions of secondary index theory for flat vector bundles.

The basic relation in the first version is the transition from a complex of flat
real vector bundles to its cohomology. The primary characteristic classes in this
case are the Bott-Chern classes. The secondary analytic information is given by the
analytic torsion forms. The main building block of the theory is the construction
of a push-forward operation (primary and secondary index map) for fibre bundles
with closed fibres. In a sense it is given by considering the fibre-wise de Rham
complex twisted by a flat bundle as an infinite-dimensional object of the theory.
Then one applies the equivalence relation (take the cohomology) to reduce to finite-
dimensional vector bundles again. As shown in [14] (based on the analytic results
of [24]) this first version of secondary index theory has the expected functorial
properties with respect to iterated fibre bundles.

Lott’s second version of secondary index theory involves flat real vector bundles
with parallel non-degenerate quadratic or symplectic forms (flat duality bundles).
The basic relation in Lott’s approach was that hyperbolic forms were considered
to be trivial. The primary characteristic classes in this case are Chern classes and
the secondary information is given by eta-forms. Again, the main building block
of the theory was the construction of a push-forward for fibre bundles with closed
oriented even-dimensional fibres. The infinite-dimensional object in this case is
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266 U. BUNKE AND X. MA

the signature operator twisted by the flat vector bundle. By applying the relation
one again reduces to cohomology and therefore to the finite-dimensional world.
It turns out that Lott’s definition is not functorial with respect to iterated fibre
bundles already on the primary level. In order to repair this defect one must enlarge
the equivalence relation. We replace triviality of hyperbolic bundles by lagrangian
reduction. Note that a hyperbolic bundle admits an lagrangian sub-bundle which
has a complementary lagrangian sub-bundle. It is the existence of a complementary
lagrangian sub-bundle that we must give up.

The set of flat duality bundles together with the secondary information and
taken modulo equivalence is now organized in primary L- and secondary L-groups.
These are quotients of the corresponding groups introduced by Lott. For maps out
of these groups we are going to use the same formulas involving generators as
in Lott’s work. One of the achievement of the present paper is the verification
that these constructions are still well-defined, i.e., they factor over the enlarged
equivalence relation. The other main result is that our version now also enjoys
functoriality with respect to iterated fibres bundles.

In Section 2 we define the L-functor on spaces. It only depends on the funda-
mental group of the space. If the representation theory of the fundamental group
is sufficiently well-known then we can explicitely compute the L-group. Then we
study certain relations between flat duality bundles which hold in L-theory. This
information is needed later in the proof of functoriality with respect to iterated
fibre bundles. We also discuss a natural transformation from L- to K-theory.

In Section 3 we introduce the secondary counterpart L. We relate it with
secondary K-theory (K /1Z in Lott’s notation). Then we show how the relations
which were already investigated in the primary case now extend to the secondary
situation. In fact, the knowledge of many relations in I helps in arguments showing
well-definedness and functoriality for maps with values in L.

In Section 4 we study an n-homomorphism from I to R/Z (“n” since its
analytic definition involves n-invariants) and its lift to R. The homomorphism to
R/Z comes from the natural transformation to Ky /1Z—theory and the usual pairing
with K-homology. In Lott’s version it has a lift to R. Unfortunately this lift does
not factor over our enlarged equivalence relation. In order to repair this defect
we introduce an extended version of I and L-theory. This extended version now
admits a real-valued n-homomorphism. It is possible to define a push-forward for
the extended L and L-groups, but note that these are not contravariant functors
of the underlying space. The properties of the extended L-groups deserve further
study.

In Section 5 we define the secondary index map. The verification of well-
definedness and functoriality is based on the behavior of n-forms under adiabatic
limits. So we first state these results without proof and then turn to the details
of the secondary index map. The results of this section were the main goal of the
present paper.
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The last Section 6 is devoted to the proof of the adiabatic limits result needed
and stated in Section 5. In contrast to the preceeding sections, where we tried to
give complete proofs, in this last section we will only sketch the main steps. It
should be clear that keeping the level of depth also across the last section would
expand the paper by a factor of three. The arguments in the last sections are
in fact very similar to the corresponding proofs for analytic torsion forms. For
a specialist it should not be too complicated (but by the experience of the first
author it is also not easy) to take the stated theorems, find their counterparts for
analytic torsion forms together with the proof in the indicated literature, and then
correspondingly modify this proof to show the statements for the eta-forms.

2. The functor L.

2.1. Introduction and summary. The main object of this section is func-
tor L. from the category Top of topological spaces and continuous maps to the
category of Zo-graded rings and ring homomorphisms. For a space X the elements
of the ring L.(X) are locally constant sheaves of (anti-)symmetric forms over R
considered up to isotropic reduction. The ring operations are induced by the direct
sum and the tensor product.

It turns out that the functor L. factors over the homotopy category hTop.
For a path-connected space X the ring L.(X) only depends on the fundamental
group of X (see Subsection 2.3 for more details).

On nice spaces a locally constant sheaf of finite-dimensional R-modules gives
rise to a real vector bundle. The form on the sheaf induces a form on the bundle.
This observation leads to a natural transformation from L. to the complex K-
theory functor K. In this way we consider L. as a refinement of K°.

Given a K-oriented morphism 7: X — B in Top, say a locally trivial fi-
bre bundle with fibre a closed even-dimensional manifold which admits a vertical
Spin_-structure, there is a wrong-way homomorphism of groups ﬂ!Spm" cKY(X) —
K°(B). Analytically, it is given by the index of the twisted fibrewise Spin, -Dirac
operator.

If the fibres are merely oriented, then we can use the twisted fibrewise signature
operator to define the wrong-way homomorphism 7,"¢": K°(X) — K°(B). The
interesting point about the functor L is now that m'®" can be lifted to a group
homomorphism 7% : L. (X) — L (B). It is essentially given by taking the fibrewise
cohomology of the locally constant sheaf on X. This yields a locally constant sheaf
on B. Using fibrewise Poincaré duality, we define the (anti-)symmetric form on the
cohomology sheaf.

It turns out that this wrong-way map is functorial with respect to iterated fibre
bundles and natural with respect to pull-back of fibre bundles. A similar functor
L% was previously defined by Lott [21] using a smaller equivalence relation so
that L.(X) is a quotient of LX°%(X). The corresponding wrong-way maps """
are not functorial with respect to iterated fibre bundles.
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In the first three sections we will denote by X a topological space and by M
a manifold.

2.2. Definition and first properties.

2.2.1. Definition of L.. We now give details of the definition of the contravari-
ant functor L. from the category Top of topological spaces and continuous maps
to Zo-graded rings.

Let X be a topological space. If R is a ring and F is a R-module, then the
constant sheaf of R-modules E 5 with stalk E is the associated sheaf to the presheaf
which is associates to any non-empty open subset U C X the space of sections F
such that the restriction to subsets is given by the identity. A sheaf 7 of R-modules
over X is called locally constant, if there is an open covering {Uy} of X such that
F IUA is a constant sheaf for all \.

If R is a field, then we say that F is a locally constant sheaf of finite-
dimensional R-modules if there is a suitable open covering such that F }UA is the
constant sheaf with the stalk being a finite-dimensional vector space over R. If
F is a locally constant sheaf of finite-dimensional R-modules over X, then let
F* := Hompg(F, Rx) be its dual. If g: 7 — £ is a homomorphism between two
such sheaves, then we have an adjoint ¢*: F* — £*.

From now on we consider the case R := R. Let € € Zy = {—1,1}. An e-
symmetric duality structure on F is an isomorphism of sheaves g: F = F* satis-
fying ¢* = €q.

To define the group L(X) we first consider an abelian semigroup L.(X) with
zero element. Then we construct L.(X) by introducing a relation. An element
of the semigroup L.(X) is an isomorphism class of a pair (F,q) consisting of a
locally constant sheaf of finite-dimensional R-modules and an e-symmetric duality
structure ¢. The operation in I:E(X ) is given by direct sum of representatives

(F.)+(F.¢)=(FoF,q0q).

The relation on ﬁe(X ) is generated by lagrangian reduction. If i: L — F
is an inclusion of a locally constant subsheaf, then we can consider the sheaf
L1 := ker(i* o q). This sheaf is again a locally constant subsheaf of F. The sheaf
L is called lagrangian if it is isotropic, i.e., £ C £, and coisotropic, i.e., L+ C L.

We say that the element (F,q) is equivalent to zero by lagrangian reduction,
(F,q) ~ 0, if it admits a locally constant lagrangian subsheaf. The equivalence
relation on .(X) is now the minimal equivalence relation which is compatible
with the semigroup structure and contains lagrangian reductions.

DEFINITION 2.1. We define L¢(X) := Le(X)/ ~.
The class of (F,q) in L.(X) will be denoted by [F, g].

LEMMA 2.2. L.(X) is a group.
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PRrROOF. We have [F, ¢]+[F, —g] = 0. Indeed, consider the diagonal embedding
F — F @& F. Its image is a locally constant lagrangian subsheaf of (F & F,q ®
~q). O

The Zg-graded ring structure L (X) ® Lo (X) — Lee(X) is induced by the
tensor product:

Veve
Vee
The sign-convention is made such that later we have a natural transformation of

rings from L to complex K-theory K°.

If f: Y — X is a morphism in Top, then f*: L. (X) — L.(Y) is defined by
f*IF,ql = [f*F, f*q]. Tt is easy to check that f* is well-defined. Furthermore, it
follows from the fact that we work with locally constant sheaves that the map f*
only depends on the homotopy class of f. Therefore, L factors over the homotopy
category hTop in which maps are considered up to homotopy.

(7o allF . q] =

FQF,q®q.

REMARK 2.3. A version LU°"(X) of this ring was first introduced by Lott
[21]. His definition differs from ours since our relation ”"lagrangian reduction” is
replaced by "hyperbolic reduction” in the definition of Lott. Here a pair (F,q) is
called hyperbolic if there is an lagrangian subsheaf £ C F such that this embedding
extends to an isomorphism (£ & £*, ¢can) = (F, q), where

. 0 idg
qcan-—(ﬁidﬁ 0 )

In particular, L.(X) is a quotient of LL°%"(X).

2.2.2. Some simple properties. In the definition of the functor L. we tried to
generate the equivalence relation in a certain minimal way. This simplifies the
check of the well-definedness of a transformation out of L.(X) which is given on
representatives. To check the well-definedness of a transformation with values in
L(X) it is useful to know some list of further relations which hold in L.(X).

For (F,q) as above, we also denote ¢(x,y) := ¢(z)(y). If N € End(F), then
we define its adjoint with respect to ¢ by N’ := g~ ' o N* og.

DEFINITION 2.4. A Z-grading of (F, q) of length n € Z is a semisimple element
N € End(F) such that N has integral eigenvalues in {0, ...,n} and N = n—N. We
set F* := ker(N — k). An element v € End(F) is called a compatible differential
if it is of degree one with respect to the grading, v = 0, and v/ = —v, i.e,
q(vz,y) + q(z,vy) =0 for z,y € F.

If (F,q) has a Z-grading of length n, then it is the sum of the subsheaves F*.
The duality pairs F* with "% If it has in addition a compatible differential
v, then we can consider the cohomology H := ker(v)/im(v). It is again a locally
constant sheaf of finite-dimensional R-modules with an induced duality structure
gn and Z-grading of length n.
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LEMMA 2.5. (1) If (F,q) admits a Z-grading of length n, then in L.(X) we

have
0 n odd
ya _ >
1dl { [f"/z,ql}_n/z] n even.

(2) If (F,q) admits in addition a compatible differential, then in L.(X) we have
Proor. To show the first assertion note that for k < n/2 we can take off
summands of the form (FX@Fn—F g e s« )- These summands represent trivial

elements of L.(X), since they contain the lagrangian subsheaves F* c F*k@F"—F,

To show the second assertion first note that — [H,qn| = [H, —qn|. Hence
[Foql — H,qn] = [F ®H,q D (—gn)]- Let i: ker(v) — F & H be given by i(z) =
z® [z]. Then im(z) is a locally constant lagrangian subsheaf of (F &H, ¢ (—qx)).
Therefore, [F & H,q D (—gxn)] = 0. O

Let (F*F),_, ... be a decreasing filtration of F with FOF = F and
FrtlF = 0. We obtain a dual filtration (Fl]:*)l:O,...n+1 by setting F'F* =
Amn(FH=LF) = {z € F* | z(y) =0 for any y € F**17LF}. Let Gr*(F) =
F*F/F¥*1F. We have a natural isomorphism Gr(F*) = Gr(F)* which identi-
fies Gr¥(F)* with Gr™" % (F*).

DEFINITION 2.6. A compatible decreasing filtration of (F,q) of length n is

,,,,,

q: F — F* preserves the filtrations.

Given a compatible filtration of (F,¢) we obtain an induced e-symmetric
duality structure Gr(q): Gr(F) — Gr(F*) S Gr(F)*.

LEMMA 2.7. In L.(X) we have [F,q| ~ [Gr(F), Gr(q)].

PrOOF. Note that [Gr(F),Gr(q)] has a Z-grading of length n. In view of
Lemma 2.5 (1), it suffices to show that

F.q) 0 n odd,
4] = n/:
[Gr /2(-7:)7 Gr(q)lGr"/Q(]:)] T even.

By the following procedure we can decrease the length of the filtration by two.
Note that

[F.q) = [F & (Gr°(F) & Gr"(F)),q D g,

We introduce the Z-grading of length 2 on (F & (Gr°(F) & G1™(F)),q @ q‘Gro(}.)

oG (r)) such that Gr™(F) sits in degree zero, F is in degree one, and Gr”(F) is in
degree two. There is a compatible differential v given by the inclusion Gr”*(F) — F
and the negative of the projection F — Gr’(F). Using Lemma 2.5 (2), we have

[,7:@ (GrO(].‘) @Grn(]:)),(]@qurQ(}_)®Grn(}_)] = []:/7(],],

O(}')@Gr”(}')] :
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where F/ = F1F/F"F and ¢ is the induced e-symmetric duality structure. Note
that (F',¢') has an induced decreasing filtration of length n — 2.
Now we iterate this procedure. If n is odd, then it terminates at 0 € L.(X),

and if n is even, then we finally obtain (Gr™/?(F), Gr(q)‘Grn/z(f)). O

Let Z C F be an isotropic subsheaf. Then we can consider the locally constant

sheaf F7 := Z1 /7. Furthermore, we let qr: Fz — F; be given by I+ Az, F* -
(Z1)*. Then gz is an e-symmetric duality structure on Fr.

DEFINITION 2.8. We call (F7,qz) the isotropic reduction of (F,q) by Z.
LEMMA 2.9. In L. (M) we have [F,q] = [Fz, gz}

PROOF. We consider the filtration of length two on F such that 7 := F2F,
T+ := F'F. Then we can identify (Grl(}'),Gr(q)lGrl(ﬂ) >~ (Fzr,qz). We now
apply the Lemmas 2.7 and 2.5 (1). O

2.3. Computation of L.(X).

2.3.1. Definition of L.(G). Let G be any group. We define a Zs-graded ring
L(G). First we define the abelian semigroups L.(G), € € Z,, which consists of
isomorphism classes of tuples (F,q, p). Here F is a finite-dimensional real vector
space, g: F' — F* is an e-symmetric duality structure, and p: G — Aut(F,q) is a
representation of G which is compatible with ¢, i.e., ¢: F — F* is G-equivariant,
where G acts on F* by the adjoint representation p* given by p*(g) = p(¢~1)*.
The operation in L.(G) is induced by the direct sum of representatives.

We obtain L.(G) as the quotient of L.(G) with respect to the equivalence
relation generated by lagrangian reduction. First we declare that (F,q,p) ~ 0 if
there exists a G-invariant lagrangian subspace L C F, i.e., a G-invariant isotropic
subspace such that L+ = L. Then we extend ~ to the minimal equivalence relation
on L.(G) which contains lagrangian reduction and which is compatible with the
semigroup structure. Let [F, g, p|] denote the class in L.(G) represented by (F, g, p).

Let (F,q,p) be a generator of L (G) and i: L — F be the inclusion of a G-
invariant isotropic subspace. Then L= is G-invariant and the quotient L+ /L =:Fp
carries an induced e-symmetric form ¢;, and a representation py,.

DEFINITION 2.10. We say that (FL, qr, pr.) is the isotropic reduction of (F, g, p)
with respect to L.

LEmMMA 2.11. In L.(G) we have [F,q, p| = [FL,qL, p1]-

ProoOF. We consider (F & Fr,q ® (—q),p @ pr). This tuple represents the
zero element in L.(G), since it contains the invariant lagrangian subspace which
is the image of Lt — F & Fp, z+— z & [z]. Thus [F,q,p| — [Fr,q5,p2] =0. O

The ring structure is given by

Ve
[F,q,p] o [F',q,p] = ve [FRF.q0q,p®p).

Vee
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If X is path-connected, then L.(X) = L.(m1(X,z)) for any base point z € X.
Furthermore, if f: G’ — G is a homomorphism of groups, then there is a natural
ring homomorphism f*: L.(G) — L.(G’) given by f*[F,q,p] = [F,q,po f].

2.3.2. Classification of irreducible e-symmetric forms. Let (F, p) be an irre-
ducible representation of G. In the following we classify the invariant e-symmetric
duality structures on (F,p). We distinguish various cases, and in each case we
define a Zo-graded group A(F, p) by the following rule. A°(F, p) is trivial if (F, p)
does not admit an e-symmetric form. If it admits one isomorphism class of such
forms, then we set A*(F, p) := Zs. In the remaining case it admits two isomorphism
classes, and we set A¢(F, p) := Z. The group A*(F, p) can naturally be interpreted
as the part of L.(G) which is generated by triples with underlying representation
of the form (F @ W,p® 1), where W a finite-dimensional real vector space.

If g, p are two G-equivariant duality structures on F, then p~oq € Autg(F).
Thus there exists A € Autg(F) such that p = ¢*, where ¢*(z,y) = ¢()\z,y).

We call (F, p)

o regl if Endg(F) 2R,
o complez if Endg(F) = C and
e quarternionic if Endg(F) 2 H

as algebras over R. By Schur’s lemma, every non-zero element in Endg(F) is
invertible and hence Endg (F) is a division algebra over R. By Frobenius’ Theorem,
Endg(F) must be one of the above three possibilities.

The real case. In this case A € R*. If A > 0, then ¢ and p are isomorphic,
namely p(z,y) = q¢(v/Az,vAy). If A < 0, then p and ¢ are not isomorphic. Thus
given a real representation (F, p) which admits an e-symmetric duality structure
q, then ¢ is determined, and there are two isomorphism classes represented by
(Fa q, p) and (F) —4q, P)

We define the Zs-graded groups

Z&0 ife=1,

A(F, p) :=
(F.p) {O@Z ife=—1.

If G is compact, by [13, §2.6, Prop.6.5], € must be 1.

The complex case. In this case there is a unique up to sign I € Autg(F)
satisfying I2 = —1. For X € Endg(F) we define X9 := ¢7! 0 X* 0 ¢. Then
(I9)? = —1, and therefore we distinguish two subcases:

e Case C4: I9=1

e Case C_: I" = —1I.
CasE C,.. In this case g(uz,y) = q(z, py) for all 4 € Endg(F'). There exists a root
VA € Autg(F) and we can write p(z,y) = ¢(v/ Az, vAy). Thus p and ¢ are isomor-
phic. We conclude that given (F, p) in case C admitting an e-symmetric duality
structure g, then € is determined and there is one isomorphism class represented

by (F,q,p).
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We define the Zs-graded groups

A(F,p) = {22@0 ife=1,

0pZy ife=—-1.

Case C_. In this case g({z,y) = —q(z,ly) = —eq({y,x). Thus if ¢ is e
symmetric, then ¢ is —e-symmetric. If p and ¢ are e-symmetric, then we write
A =a+bl and p = ag + bg’ and conclude that b = 0. Moreover, q is isomorphic
to p exactly if a > 0. If (F,p) admits an e-symmetric duality structure ¢, then
it also admits an —e-symmetric duality structure. The isomorphism classes are
represented by (F,q, p), (F,—q, p) for ¢ and (F,q’, p) and (F, —q!, p) for —¢.

We define the Zs-graded group

A(F,p) =ZDZ.

The quarternionic case. Let S? C Im(H) be the unit sphere of complex
structures. The R-linear involution X +— X9 acts on Im(H) and restricts to an
involution of $2. We distinguish the following three cases

o Case Hy: The involution is trivial.
e Case H,: The involution is non-trivial, but has a fixed point on S2.
o Case H_: The involution has no fixed points on S2.

CASE H_. In this case X% = —X for any X € Im(H). We write A = a + bI
for some I € S2. Then the same discussion as in the case C_ shows the following:
If (F, p) admits an e-symmetric duality structure g in case H_, then it also admits
an —e—symmetric duality structure. The isomorphism classes are represented by
(F,q,p), (F,—q,p) for € and (F,q’, p) and (F,—¢’, p) for —e.

We define the Z,-graded group

A(F,p)=Z&ZL.

CaASE Hy. We can write A = a + bl with I? = I. The same discussion as in
case C, shows the following: If (F, p) admits an e-duality structure ¢ in case Hy,
then ¢ is determined. There is one isomorphism class represented by (F, ¢, p).

We define the Z,-graded groups

AR {2200 He=1,
P Yoez, ife=—1.

CAsE H, . In this case we can write A = a + bl + ¢J, where I? = I and
J1 = —J. Writing p = aq + bg! + cq’, as ¢/ is a —e symmetric duality structure,
we see that ¢ = 0. On the one hand we argue as in the case C. that p and ¢
are isomorphic. On the other hand (F, p) also admits the —e-symmetric duality
structure q”. If (F, p) admits an e-symmetric duality structure g in case H, then
it also admits an —e-symmetric duality structure. The isomorphism classes are
represented by (F, g, p) for € and (F,q”, p) for —e.

We define the Zy-graded groups

A(F,p) =7y @ Zo.
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2.3.3. Computation of L(G). Let Rep(G) be the set isomorphism classes of
finite-dimensional irreducible representations (F, p) of G on real vector spaces. For
each (F, p) € Rep(G) and € = +1 we fix one e-symmetric form ¢ if it exists.

THEOREM 2.12. We have an isomorphism of Zo-graded groups

LG)eLa(G) = @  AFp).
(F,p)€Rep(G)

PROOF. Fix ¢ € Z, and let Rep®(G) C Rep(G) denote the set of classes
admitting an e-symmetric form. We consider a generator (V, p, o) of L.(G).

LEMMA 2.13. If (V,p, o) has no invariant isotropic subspace, then it is isomor-
phic to a direct sum EB(F,p)eRepe(G) n(F, p)(F,q, p), where n(F,p) € Z is non-zero
for at most finitely many (F, p). Furthermore, n(F,p) € {0,1} if A*(F,p) = Zy,
while in case A*(F,p) = Z we use the convention that —n(F,q,p) stands for
n(F, —q,p).

PROOF. Leti: W — V be a minimal G-invariant subspace. Then there is a G-
invariant decomposition V. = W@ W+ In fact, WNWL = 0, since W was assumed
to be minimal and it cannot be isotropic by assumption. Iterating this argument
replacing V by W+ we obtain the required decomposition into irreducibles.

The multiplicity of (F, p) with A¢(F, p) = Z, cannot be greater than 1. If there
were two summands, then (F, g, p) ® (F,q, p) would admit an invariant isotropic
subspace W = {z® I(z) |z € F} C F@® F, where I € Aut(F') is an isomorphism
such that q(Iz, Iy) = —¢(z,y) for any z,y € F.

If AS(F,p) = Z, then either (F,q,p) or (F,—gq,p) can occur with positive
multiplicity. If they occurred both, then the sum (F, g, p) & (F, —q, p) would admit
the invariant isotropic subspace W := {:v b x | T € F} CFaF. O

LEMMA 2.14. If (V,p, o) does not admit an invariant isotropic subspace, then
the multiplicities n(F, p) are uniquely determined.

PROOF. Assume that

Vipo)2 P nFpFEG)E P nEp)(Fep
(F,p)€Rep*(G) (F,p)ERep*(G)

are two decompositions. Consider (F, p) € Rep(G) with n(F, p) # 0 and the in-
clusion i: sign{n(F, p))(F,q,p) — (V,p,0) given by the first decomposition. Then
one can check that there is a summand (F’,q’,p’) of the second decomposition
such that the composition of ¢ with the projection onto this summand is an iso-
morphism. Therefore we can take off a summand sign(n(F, p))(F,q, p) from both
decompositions. Repeating this argument finitely many times we obtain the asser-
tion of the lemma. a

LEMMA 2.15. Isotropic reduction in stages can be combined to a single isotropic
reduction.
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ProoF. Fix a generator (F,q, p). Given an invariant isotropic subspace L C
F, we form the reduction (F1,qr, pr). If N C Fy, is an invariant isotropic subspace,
then we further form ((F)n, (q1)n, (pr)n)- The preimage N of N under L+ —
Fry, is isotropic and G-invariant. There is a natural isomorphism

(Fgrag:p5) = ((FL)N, (an)w, (pL)n)-
O

So given (F,q, p) the possible maximal isotropic reductions are parameterized
by maximal invariant isotropic subspaces.

LEMMA 2.16. Let L,N C F be two maximal isotropic invariant subspaces.
Then the corresponding reductions (Fr,qr,pr) and (Fn,qn,pn) are isomorphic.

PrOOF. First of all LN N is an invariant isotropic. After reduction by LN N
we can assume that LN N = 0.

We now show that (L + N)* N (L + N) =0.

We claim that N N L+ = 0. In fact, L + (N N L1) is isotropic and invariant.
Since L is maximal, we conclude L + (NN L*Y) = L. Thus NNL* C NNL=0.

We have (L+ N)* =L*NN+. Letl+n€ (L+N)N(L+N)*. Fromle Lt
we conclude n € L*. By the claim above n = 0. Interchanging the roles of L and
N, we also conclude [ = 0.

Thus (L+N)@®(L+N)*+ = Fand Lt = L&(L+N)*. Therefore, we can decom-
pose (F,q,p) = (L+N,qryn, pr+n) ®(L+N)*, g nyLs pir+n)+ ). The second
summand is now naturally isomorphic to both, (Fr,qr,pr) and (Fn,qn,pn). O

Given a generator (V,p, o), we have well-defined multiplicities n(y,p o) (F, p) €
A(F, p) given by any maximal isotropic reduction of (V,p,a). One easily checks
that these multiplicities are additive and satisfy nv,_p, o)(F, p) = —nwv,p.0)(F, p)
and n(vp.o)(F, p) = nvy py o) (F p) for any isotropic reduction. They therefore
define the isomorphism

LG — @ AFp.

(F,p)€Rep*(G)
This finishes the proof of the theorem. O

2.4. The natural transformation to K-theory.

2.4.1. The bundle-construction. By Top,.. we denote the full subcategory
of Top of paracompact metrizable topological spaces. Let K°(X) be the complex
K-theory functor. We construct a natural transformation b: L. — K° of functors
from Top,,. to rings.

A locally constant sheaf of finite-dimensional R-modules on X gives rise to a
locally trivial real vector bundle bundle(F) in a natural way. We will describe
bundle(F) by providing the local trivializations and the transition maps. Let
z € X and U C X be a neighborhood of z such that the restriction F | y I8

isomorphic to the constant sheaf F, ,, where 7, denotes the stalk of F at x. Then
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we have a local trivialization bundle(F)| v & U x F;. Consider another point
z’ € X and the corresponding local trivialization bundle(F) g 2 U x Fpr of this
type such that U N U’ # @. The isomorphism

Ee)lvnwr = Flyny = Far

u'nu U’)lUﬂU’

by
ey

induces an isomorphism F, F» which we consider as the (constant} transition
map ¢yys: UNU' — Hom(F,, F,/) between the two local trivializations.

The correspondence bundle is functorial with respect to morphisms of sheaves
and compatible with the linear operations direct sum, tensor product, and duality
on sheaves and vector bundles. Thus applying the bundle construction to (F,q)
we obtain a pair (F, Q) consisting of a finite-dimensional real vector bundle and
an isomorphism @: F — F*. The bundle-construction is also compatible with
pull-back, ie., if f: Y — X is a morphism in Top,,.;, then there is a natural
isomorphism f*bundle(F) = bundle(f*F).

2.4.2. Metric structures. Fix € € Zy. Let (F, Q) be areal vector bundle with an
isomorphism Q: F — F* such that Q* = €Q. Following the language introduced
by Lott [21] we define the notion of a metric structure.

DEFINITION 2.17. An isomorphism J: F — F'is called a metric structure if
(1) J* o Q defines a scalar product on F,
(2) J? = €idp,
(3) J*oQ =¢€Qo J,ie, Qz,Jy) = eQ(Jz,y).

Since we assume that X is metrizable and paracompact, it admits partitions
of unity. This implies that metric structures exist and that the space of all metric
structures is contractible.

Given (F, Q) as above, we choose a metric structure J. Let F¢ be the complex-

ification of F. Then 27 := ﬁ.] is a Zy-grading of F¢, and Fy = {z € Fg, 272 =
+z} are sub-bundles of Fg, thus the pair (Fg, z7) represents an element F — F_

of K9(X) which does not depend on the choice of .J.

DEFINITION 2.18. We define the natural transformation b: L. — K° by com-
posing the latter construction with bundle.

2.5. Push-forward for L..

2.5.1. Definition of L. Let m: X — B be a locally trivial fibre bundle where
the fibre is a closed topological n-dimensional manifold Z. There is an open cov-
ering U = {Uy} of B such that ¢y : X|UA > Uy x Z.IfUyNU, # 0, then we have
an isomorphism

UsNU, x 2 20 2 U\ AU, x Z,

X|U)\ﬂUu

which is of the form (b, 2) +— (b, $1,(b)(2)), where ¢y,: Uy NU, — Aut(Z) is a
continuous family of homeomorphisms of Z.
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A fibrewise orientation of the bundle w: X — B is a choice of an orientation
of Z and of an atlas of local trivializations such that the ¢,, are orientation
preserving.

n(nt1) nt1

Set e, := (—1)" 2~ = ()", /& := (V=D)I"3"]. To define
ki LX) — Le, (B),

we assume that the bundle comes equipped with a fibrewise orientation. Let
[F,q] € L(X). Then we construct a representative of 2 ([, q]) as follows. Note
that 7(F) :== HRm,F := @, R'm.(F) is a locally constant sheaf of finite dimen-
sional R-modules. In fact, let b € Uy and Z, = m~1({b}). Then we have

T(F)|y, = H(Zb,]-'|Zb)U :
————— U

By Poincaré duality over Z;, we have an isomorphism such that H*(Z,, F |*Zb) =
H %2y, F | Zb)* for all k € N. This isomorphism is preserved by the transition

maps so that we obtain an isomorphism 7(F*) = w(F)*. If we compose this
isomorphism with the sum of the isomorphisms Rir,(q): Rm,F — Rim,F*, then
we obtain an ee,—symmetric duality structure 7(g) on 7(F) (cf. Subsections 2.5.2,

5.2.2).
DEFINITION 2.19. We define w/([F, q]) := [x(F),n(q)].
LEMMA 2.20. 7L is well-defined.

PROOF. By construction m(g) is an isomorphism with the correct symme-
try properties. Thus our prescription (F,q) — [7(F), 7(q)] provides a homomor-
phism of semigroups #X: L. (X) — Le, (B). We must show that it factors over
ﬁE(X ) — L(X). Let £ C F be a lagrangian subsheaf. It leads to a compatible
(see Definition 2.6) filtration (F"']-")i:()’1 of length 1 by FOF := F, F'F := L.

We obtain an induced filtration (F'm(F ))Z.:OY1 such that Flw(F) = im(HRm.L
— HRm,F) of length 1 which is compatible with 7(q). Here one has to check that
Fl7(F) is a lagrangian subsheaf. This can be verified either directly by looking
at the long exact cohomology sequence associated to 0 — L — F — F/L — 0, or
by invoking the spectral sequence induced by the filtration and the discussion in
Subsection 4.4.1 below.

By a combination of Lemmas 2.5 (1) and 2.7, we have [7(F),n(¢)] =0. O

Note that (n(F),n(g)) comes with a natural Z-grading of length n. Thus we
can apply Lemma 2.5 to reduce to the middle term. In particular, we have 72 = 0
if n is odd.

REMARK 2.21. In [21], Lott defines mi""**: LLo%(X) — LLo%(B) which in-
duces 7% by passing to quotients.
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2.5.2. Functoriality. Here we will show that 7% is functorial with respect to
iterated fibre bundles. Let m;: W — V and m: V — S be locally trivial fibre
bundles where the fibres are closed topological manifolds. We assume that both
bundles come equipped with fibrewise orientations. We set 73 := 72 o m1. We fur-
thermore assume that m3: W — § is a locally trivial fibre bundle with fibrewise
orientation with fiber Z. The fibre Z; (s € S) is itself a fibre bundle. We assume
that this bundle structure is preserved by the transition maps between local triv-
ializations of 73. We assume that the orientation of the fibres Z; are induced by
the orientations of the fibres of m; and 9. We will call this situation an iterated
fibre bundle with compatible fibrewise orientations.

In the smooth category, i.e., if W, V, and S are smooth manifolds and if 7y, 7o,
and 73 are smooth maps, to give a locally trivial fibre bundle is the same as to give
a proper submersion. Furthermore, to give a fibrewise orientation is the same as to
give an orientation of the vertical bundle. The composition of proper submersion
is again a proper submersion. Thus if m;: W — V and 72: V — S are locally
trivial fibre bundles in the smooth category with fibre X, Y, then automatically
m3: W — S is a locally trivial fibre bundle with fiber Z. Using the existence
of connections and parallel transport on can produce local trivializations of m3
preserving the bundle structure of the fibres. The compatible fibrewise orientation
is obtained by the orientation of the vertical bundle T'Z, which can be identified
with the sum of oriented vertical bundles TX @ n{TY .

We now turn back to the general situation.

THEOREM 2.22. We have equality of homomorphisms L.(W) — L., (S),

L _ ., L L
T3 = Moy O Ty

PrOOF. Let (F,q) be a generator of L.(W). We show that the equality
[m3(F), m3(q)] = [r2{m1(F)), m2(m1(q))] using the fibrewise Leray-Serre spectral
sequence (rsFr,psd.) (r > 2) associated to the composition of functors i,
and my, applied to F {cf. [18, Thm. 3.7.3], [17, p. 464]). The term sFE> is
given by 1sED? = RPma, (RI71,.F). Furthermore, there are decreasing filtrations
(F'RF73.F); on RFms, F, k € N, such that Gr(RFma, F) =y |, ERA.

One checks that the filtration (Fm3(F)), is compatible with m3(q). To do so
we can restrict to the fibre over some s € S. Let n be the dimension of the base
Y of the bundle Z;. The length of the filtration is n. One has to show that

(2.1)  m3(¢)(z)(y) =0 whenever z € FPm3(F)s, y € Fins(F)s, p+q>n.
If one computes the cohomology m3(F)s = H(Zs, F| ) using the chain com-

plexes U Z,, F | Zs) which are functorial in sheaves, and on which one can imple-
ment Poincaré duality st : QU Zs, .7-"[25 INQ(Zs, F* 'Zs) — R as well as the filtration
(FiY(Z,, F| Zs))i leading to the Leray-Serre spectral sequence (cf. [25]), then one
checks on this level that [, wAw'=0ifw € FPQ(Zs, .7-'|Z5), W' € FPQ(Z,, F* ’Zs)’
and p+p’ > n. It follows that the filtration is compatible with the form Q given by
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Qw,w’) = \/_i;:_n fZ N(@_l)“\]dimzq(w)) AN, w,w € ﬁ(Zs,f‘ZS), where

N is the Z-grading of Q(Z,, F ’ Zs)' The form Q induces 73(g) in cohomology. This
immediately implies (2.1).

To be more explicit in the smooth case we can take for ﬁ(Zs,f*| Zs) as
QZ,, F| 2. ) the smooth F-valued forms so that the symbols above aquire their
usual meaning. In this case, FZQ(ZQ,}'|Z ) = Tz, QY )X .7-'|X (also cf.
24, 52.1)).

By Lemma 2.7 we have [73(F), m3(q)] = [Gr(ns(F)), Gr(ms(q))]-

Now ma(m1(F)) can be identified with the term ;gF2(F) of the spectral se-
quence and my(m(q)) is the induced form ;sF>(q) (see Subsection 4.4.1 below).
The same model as above can be used to check that the n-th term ;6 E,(F), n > 2,
is a locally constant sheaf on S with an induced form rsE,(g), which carries a
compatible Z-grading and a compatible differential. We obtain the (n + 1)th stage
of the spectral sequence by taking cohomology. Thus, by Lemma 2.5 (2). we have
(LsEn(F), LsEn(q)] = LsEnt1(F), LsEnt1(q)]- We conclude with

[ma(m1(F)), ma(m1()] = [LsE2(F), LsE2(q)] = [LsEoo(F), L5 Eeo(q)]
= [Gr(m3(F)), Gr(ms(q))] = [m3(F), ms(q)]-
O

REMARK 2.23. Note that this functoriality does not hold in general for rlbott,

2.5.3. Compatibility and naturality. In the present subsection we work in the
smooth category. Let m: M — B be a locally trivial fibre bundle over a compact
base B such that the fibres are compact even-dimensional smooth manifolds. We
further assume that the fibrewise tangent bundle TM/B is oriented. Then the
bundle has a fibrewise orientation. We have the following maps:

o 58" H*(M,R) — H*(B,R) defined by m,(w) = fM/Bw UL(TM/B),
where [, s Is integration over the fibre and L(TM/B) denotes the Hirze-
bruch L-class of the fibrewise tangent bundle.

o 78 KO(M) — K°(B) defined by 7*¢"([E]) = ind(D5"), where D38"
is the fibrewise signature operator twisted by the complex vector bundle
E — M and ind(D3®") € K°(B) denotes the class of the index bundle.

o 7l L (M) — L, (B) given in Definition 2.19.

Let ch: K° — H®(,R) denote the natural transformation of ring-valued
functors given by the Chern character.

THEOREM 2.24. The following diagram commutes:
L(M) —— K°(M) —=— H®(M,R)

Le,(B) —2— K°(B) —2 H*(B,R)
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PROOF. Recall that the map b is defined in Definition 2.18. Commutativity
of the right square is the assertion of the index theorem for families applied to
the family of twisted fibrewise signature operators. The commutativity of the left
square is a consequence of Hodge theory by which we can identify bundle(n(F))
with the bundle ker(Dyyngie(7)c)- O

The following proposition is an immediate consequence of the definition.

PROPOSITION 2.25. The push-forward wL is natural with respect to pull-back
of fibre bundles, i.e., given f: B’ — B we consider the pull back

f*MLM

ra | o

B —I

and we then have (f*m)E off=f" onl.

3. The functor L.

3.1. Introduction and summary. This subsection shall be considered as
an introduction to both, the present section and Section 5. Our purpose here is to
motivate the introduction of L..

If we compose the natural transformation b: L. — K° with the Chern char-
acter ch: K° — H®(.,R), then we obtain a natural transformation ch o b: L, —
H*e(.,R). In the present section we study the kernel of this map in detail.

Note that L. is given by a topological construction. Staying in the topological
framework we first define a functor LR/ from topological spaces to Zy-graded
groups together with a surjective natural transformation to ker(ch o b). We can
consider ch: K — H(.,R) as a map between classifying spaces. Its homotopy
fibre is again a classifying space of a cohomology theory Kg/z. The functor LR/Z
is defined by a pull-back of K /IZ — KO via b: L, — K. Using the geometric
description of K,z given in [20], one could also obtain a geometric description of
LR/,

As a cohomology theory Kg,z admits wrong-way maps for suitably oriented
fibre bundles. The topic of secondary index theory [20] is to relate these topological
secondary index maps with their analytic counterparts. The main constituent of
the construction of the secondary analytic index is the n-form of a family of Dirac
operators. The well-definedness and functoriality of the wrong-way maps in the
geometric picture encode properties of 7-forms. As a formal consequence of its
definition we have wrong-way maps for L®/% with nice functorial properties.

The functor L®/% fits into an exact sequence

0 — H°Y(X,R)/im(ch: K'(X) — H°(X,R)) — LF%(X) —
— ker(chob: K%(X) — H®(X,R)) — 0.
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It turns out that, working in the smooth category, we can define a refinement
L. — L®/Z which fits into the sequence

0 — HOdd(XJR) . EG(X) — ker(ch o b: KO(X) — H%(X,R)) — 0.

The definition of L. is geometric and not (obviously) related to a cohomology
theory. So it can be considered as a nontrivial fact that L. still admits wrong-way
maps with nice functorial properties. It is in fact the main purpose of the present
paper to construct these maps and verify their functorial properties. These results
thus encode some finer properties of the n-forms of families of signature operators
twisted with flat vector bundles.

In the present section we give the definition of the secondary L-functors and
discuss their simplest properties and relations to other functors. The wrong-way
maps are introduced in Section 5 after a digression to n-forms and 7-invariants.

3.2. Secondary K-theory.
3.2.1. Definition of Ky /12. We are going to recall the definition of the 2-
periodic cohomology theory Kg,z introduced in [19], [20]. Let BU be the classi-
fying space of complex K-theory. The Chern character (with real coefficients) is
induced by a map ch: BU — []>°; K(R,2n). The homotopy fibre of this map
classifies Kg,z. In particular, for any space X there is a natural exact sequence of
K%(X)-modules
C— KTHX) B HOM(X,R) — Kl (X) 5 KO(X) < HY(X,R) — ...

where K°(X) acts on cohomology via the Chern character.

3.2.2. A geometric description. For a manifold M we recall the definition of
Ky /IZ(M ) in terms of generators and relations as given in [20, Defs. 5, 6]. We
form the abelian semigroup K /1Z(M ) consisting of isomorphism classes of tuples

(E,hP,VE p), where E = E, ® E_ is a Zo-graded complex vector bundle, A%
is a hermitian metric and V¥ = VF+ @ VP~ is a metric connection, both being
compatible with the grading, and p € Q°44(M)/im(d) satisfies dp = ch(VEF) :=
ch(VE+) — ch(V¥-). The semigroup operation is induced by the direct sum of
generators. On R'ug /IZ(M ) we consider the minimal equivalence relation ~ which is
compatible with the semigroup structure and such that the following holds:

(1) (Change of connections) We have (E,h,V,p) ~ (E,hE', V', p') if and
only if p' = p + ch(V’, V). (See Section 3.6 for a definition of the trans-
gression Chern form.)

(2) (Trivial elements) If (E, h¥ VF) is a Z,-graded hermitean vector bundle
with connection, then (E @ E°P,hF®E VE ¢ VE 0) ~ 0, where E°P
denotes E with the opposite grading.

The group KH;/IZ(M) is the quotient of IA{H{;Z(M) by ~. By [E, h¥, V¥, p] we denote

the class of (E,h¥, V¥ p)in Kn{/lz(M)'
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It was shown by Lott [20, §2] that the group given by this geometric definition
is naturally isomorphic to the topological defined object of Subsection 3.2.1.

3.3. The functor L®/Z,
3.3.1. The definition.

DEFINITION 3.1. We define the functor X +— L*/%(X) from T'op,ars t0 grOUPS
by the following pull-back diagram:

IRZ(X) —— L(X)

! s

Kgh(X) —2— K°(X)
Especially, LR/%(X) = {(u,v) € KR/Z( ) x L(X) } Pu = bv}.

On morphisms the functor L®/Z only depends on homotopy classes. Note that
K°(X)and Kg /1Z (X) are L(X)-modules via b. This induces an L(X)-module struc-
ture on L®/%(X). We have the following natural exact sequence of L(X )-modules

chob

K-H(X) < gedd(x R) — IR/Z(X) — L(X) <% H*Y(X,R).

3.3.2. Secondary push-forwards. Let m: X — B be a smooth locally trivial
fibre bundle with closed even n-dimensional fibres and equipped with an orienta-
tion of the vertical tangent bundle 7X/B. In order to define an index map for
Kpg,z we need the further assumption that m is K-oriented. Thus assume that
TX/B has a Spin_-structure. Then there are maps WSPmC' K%X) — K°B) and

poPine R/Z, Ky Z(X) — R/Z(B) (the topological secondary index, cf. e.g. [20]),

such that the followmg diagram commutes:
Ho(X,R) —— Kg}y(X) —— KO(X) —— H™(X,R)

ﬂ_spincl WSpinC.IR/Zl W§pincl TrSpincl

HOdd(B,]R) _— K}R/Z(B) _— KO(B) _ Hev(B’R)
where Wfpin fX/B (TX/B)Ue/?2 Uw and ¢, is the first Chern class
determined by the Spin,-structure. There is an unique element Eggn € Ko(X)

such that 758" (z) = 17" (Eugn ® z). Note that ch(Esgn) U A(TX/B) Uet/2 =
L(TX/B).

DEFINITION 3.2, (1) The secondary signature index map
ign,R Z
7rs gn,R/ R/Z(X) N K]R/Z(B)
is defined by

msig“*R/Z(:L‘) = mspmc‘R/Z(Esign ° ).
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(2) The push-forward rLRIZ, LR/Z(X) — LR/?(B) is defined as the map induced
by &% and nL.
COROLLARY 3.3. The following diagrams commute:

HoY(X,R) —— Kgp(X) —— K%(X) —— HY(X,R)

HY(B,R) —— Kg4(B) — K°B) —— H"(B,R),

Hod(X R) — I®Z(X) —— L(X) —— HY(X,R)

- e | | |
HY(B R) —— I[¥%(B) - L(B) —— H*(B,R).

All push-forward maps are natural with respect to the pull-back of fibre bun-
dles. Moreover, they are functorial with respect to iterated fibre bundles. In greater
detail we have the following: Let my: W — V and m: V — S be locally trivial
smooth fibre bundles with closed even-dimensional fibres X, Y. Further assume
that the vertical bundles TX and T'Y are oriented and carry Spin -structures.
Then the composition 73 = my o7 : W — S is a locally trivial fibre bundle with
closed even-dimensional fibres Z and the vertical bundle T'Z carries an induced
orientation and Spin -structure. In this situation the index maps on complex K-
theory, Kg /1Z-theory, L-theory (Theorem 2.22), and in cohomology behave functo-
rially with respect to the iterated fibre bundle. It now follows immediately from
the definition that

LR/Z-_ LR/Z
ﬂ-2*

L
COROLLARY 3.4. 7, = s *’R/Z-

o

3.4. The functor L.

3.4.1. Definition of L. The functor X +— LR/Z(X) from Top,., to L(X)-
modules was defined by a purely homotopy-theoretic construction as an extension
of the functor

X — ker{chob: L(X) —» H"(X,R))

by X — H°U(X,R)/ch(K~}(X)).

Let Top,ootn denote the full subcategory of paracompact metrizable spaces
Top,,e Which are homotopy equivalent to smooth manifolds. In the present sub-
section we use a differential geometric construction to define on Top . o, @
functor X — L(X) to graded L(X)-modules which extends X — ker(ch o b)
by X — H°Y (X R).

It suffices to define L as a homotopy invariant functor on the category of
smooth manifolds and smooth maps. Again we start with defining a abelian semi-
groups L. (M), € = +1, with identity and obtain the group L.(M) as the quotient
of L.(M) by an equivalence relation.
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Let (F,q) be a representative of an element of L.(M). Then we have a real
vector bundle F' := bundle(F) which carries a natural flat connection V¥ such
that ker(VF) = F. The form Q € Hom(F, F*) which is induced by g is parallel
with respect to V. Let J be a smooth metric structure on (F, Q). It induces a
Zo-grading 27 := ﬁJ of the complexification Fg. In general, since J is not parallel
with respect to V7, this grading is not preserved by the connection V¢ induced by
V¥, The even part of VI with respect to z” is a connection on F¢ which preserves
the Zy-grading. It will be denoted by V¥¢:/. Then V&) = Ve 4 LJ=1(V ).
Let (2*(M), d) be the real de Rham complex of M. We can use this connection to
define a characteristic form which represents the Chern class of Fg.

DEFINITION 3.5. We define p(VF, J) € Q¥*~<1(M) by
(3.1) p(VF,J) := ch(VFeT) := Tr, [exp(—(VFe7)?/2mi))
i= Tr [27 exp(— (V72 /2ni)] .

An element of L.(M) is an isomorphism class of tuples (F,q,J,p), where
(F,q) is a representative of an element of L (M), J is a metric structure on
F :=bundle(F), and p € Q**~¢(M)/im(d) satisfies dp = p(VF', J). The semigroup
operation is induced by direct sum of representatives:

(Foq, Jop)+ (F, ¢, J.p)=(FeF.qod,Jat p+/).

Before introducing the equivalence relation we recall the definition of the trans-
gression Chern form. Let F — M be a Z,-graded complex vector bundle and let
V, V' be two connections on £ preserving the grading. Then we consider the bun-
dle E := pr*E — [0,1] x M with connection V which is given by Vg, 1= 8, (tis
the coordinate in [0,1]) and Vx = (1 —t)Vx 4tV for X € TM. We decompose
ch(V) = dt A~y -+, where 7 does not contain dt and v: [0, 1] — Q(M) is a smooth
family of forms.

DEFINITION 3.6. The transgression Chern form is defined by

ch(E, V', V) = / Lo,

It satisfies
dch(E,V',V) = ch(V') — ch(V).

We now introduce the equivalence relation which is again generated by la-
grangian reduction. We consider (F, q) and a metric structure J on F'. Let L C F
be a locally constant lagrangian subsheaf and L := bundle(L). Then we have a
decomposition F = L® J(L). Let V¥ denote be the part of V¥¢/ which preserves
this decomposition.

DEFINITION 3.7. We define
ﬁ(f7 q, J7 L) = (iil(p"c7 VG??ch,J)'
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We require that the equivalence relation contains the relation
(F.q,J,p) ~(0,0,0,p+ p(F,q,J, L)).

Note that (0,0,0, p+p(F, g, J, L)) is a generator of iE(M), since ch(V®) = *\}? Tr[J
exp(—V®2/27i)] = 0 and hence
dp + d5(F, 4,7, £) = ch(V7) + ch(V®) — ch(VFe) = 0.

Then we extend ~ to the minimal equivalence relation on ig(M ) which contains
lagrangian reduction and which is compatible with the semigroup structure.

DEFINITION 3.8. We define the semigroup L (M) := iE(M)/ ~.
By [F,q, J, p] we denote the class in L.(M) represented by (F,q, J, p).
LEMMA 3.9. L. (M) is a group.

PROOF. We have [F,q,J, p] + [F,~q,—J,—p] = 0. Indeed, we consider the
locally constant lagrangian subsheaf £ C F @& F which is the image of the diagonal
embedding F — F & F = .7? Let J := J @ (—J) be the metric structure on
F := bundle(F). Then V7e:/ already preserves the decomposition F' = L & JL.
Hence p(F,§,J, L) = 0, where § := ¢® —q. Therefore, we have (F,q,J,0) ~0. O

3.4.2. Change of the metric structure. We consider (F,g¢) and two metric
structures J, J' on the associated bundle F. We define the transgression form

B(VE, T, J) := ch(Fg, Ve vie)
such that we have
dp(VE,J',J) = p(VE,J) —p(VE, ).
LeMMA 3.10. In L.(M) we have
[F.q,0, 0] = [Fra,J,p] = [0,0,0,p' — p = H(V", J', J)].

PROOF. Let M be the space of all metric structures on M and pr: M x M —
M be the projection. Let F := pr*F, § := = pr*g. On the associated bundle F we
consider the tautological metric structure J which over M x {J'} restricts to J'.

Furthermore, we consider the sheaf F := F @ F with the form ¢ = ¢ ® (—q)
and the metric structure J = J @ (—J) on the associated bundle FE.

Finally, we define F := pr*F and ¢ = pr*§. As metric structure on F we take
J=J @ (—pr*J). We set Jy := pr*J & (—pr*J).

Let £ C F be the image of the diagonal 7 — F & F. Furthermore, we set
L = pr*L. We define the form w := p(VF, J,pr*J) + p(F,q,J, L) on M x M. It
is closed, since

dw = p(V7,J) = p(VF,pr*J) — ch(VFe)
:p(VF ) (VF,pr J) —p(VF,j) +p(VF,pr*J) =0.



286 U. BUNKE AND X. MA

The metric structure J’ induces an embedding i;: M — M x {J'} - M x M.
We have

BVE, T, J) = 55(VE, J,prJ)
B4, J,0) = 58(F, 4,7, L),
Therefore,
BVE, T T) + B, §,J, L) = ifw.
Since w is closed, i, is homotopic to i;, and
i55(9F, pr*J, J) = 0 = i35(F,q,J, L),
we conclude that p(VE, J', J)+p(F, 4, J, L) is exact. In L.(M) we have the identity

[fa‘LJIaPI]*[]:yq,-LP]:[ﬁaéyj,f)/_ﬂ]
:[070707pl_p+p(ﬁ17(j7j’£)]:[090707pl_p—ﬁ(vFﬂ]/>J)]-
O

REMARK 3.11. In [21, Def. 23], Lott defined a similar functor L% (M). Tt is

also obtained as a quotient of L.(M) by an equivalence relation ~“°t*. This relation

is the minimal equivalence relation which is compatible with the semigroup opera-
tion and which contains (F, q, J', ') ~ (F,q, J, p) +(0,0,0,0' — p— B(VE, T J)),
and “lagrangian reduction” in the special case that the lagrangian subsheaf ad-
mits a lagrangian complement. As a consequence of Lemma 3.10 the relation ~ is
coarser than ~L°% so that we have a natural surjective map L% (M) — L (M).

3.4.3. The module structure.

DEFINITION 3.12. The graded module structure of L(M) = @, ¢z, L (M)
over L(M) is defined by

[F.q,J,p] ¢ [€,p] := ‘{;f [F@&q@p,J®J7 pAch(VEeT),
€€

where J¥ is any metric structure on bundle(E).

LEMMA 3.13. The L(M)-module structure of L(M) is well-defined.

PRrROOF. Let JZ, i = 0,1 be two choices of metric structures on (£, ). Then
we must show that

[F®EqP,J®JE, pAch(VEI)] = [FRE q0p,J®JE, pAch(VEIT)].
In view of Lemma 3.10 we must show that

p Ach(VETY = p A ch(VEIT) — 5(VE®E & JE ] & JF)
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is exact. We compute

p Ach(VESIT) — p A ch(VEIT) — 5(VFCE T I, J  JF)
= p A deh(VFeIS | GEIT) _ ch(VFe®Ee JRIS Fe@le JOIL)
= —d(p A ch(V"75 ,VEIT)) +dp A eh(V5 s, eI
_ ch(VFC,J) A ch(VEC,J(f’VEC,JlE)
= —d(p A ch(VEI5  WEeIT)).
O

3.4.4. Compleres and n-forms. We consider a pair (F,q) together with a Z-
grading N of length n and a compatible differential v (cf. Definition 2.4).

DEFINITION 3.14. A metric structure J is called compatible with N if JN +
NJ =nd.

Equivalently, one could require that the decomposition F = @,_, F* of F
into eigenspaces of N is orthogonal with respect to the metric induced by J.

The adjoint of v with respect to the metric induced by J is given by v*/ =
—eJovolJ. Set V = v* + v. By Hodge theory we can canonically identify the
cohomology bundle H = bundle(H) with ker(v) N ker(v*7). Since the latter is
J-invariant we obtain an induced metric structure J¥ := J ] y for (H, gn)-

The theory of characteristic classes and forms extends to superconnections
(cf. [27], {3, §1.4]). Since we consider several Zy-gradings at the same time we will
speak of z-superconnection in order to indicate that z is the relevant grading. In
particular, given a z-superconnection A we set

ch(4) := <pTr[ z exp(—Az)],

where ¢ multiplies a p-form by (27i) /2. Furthermore, if A’ is a (—1)"-supercon-
nection on F', then the odd part A with respect to 27/ = iJ is a z”/-superconnec-
tion. In this case we define p(A’, J) := ch(A).

Let M := (0,00) x M and pr: M — M be the projection. We consider
(F,VE) = pr*(F,VF) and § := pr*q on M. It has the Z-grading N := pr*N of
length n and the compatible differential ¢ := pr*v. We further consider the com-
patible metric structure J which restricts to t~¥/2+7/40 JotN/2=n/4 on {t} x M. We
have a (—1)"-superconnection A’ := VF +@. Let us decompose p(A’, J) = dtAy+r,
where r does not contain dt. Here v: (0,00) — Q(M) is a smooth family of forms
on M. More precisely,

/i

Remark that JV = —VJ. Thus V is odd with respect to the Z,-grading z”’. By
[21, Prop. 28 and Prop. 29], (also cf. [8, (2.26)]) the following integral exists.
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DEFINITION 3.15. {21, Def. 32]. The n-form 7(F, N, J,v) € (M) is defined
by

(F, N, J,v) := —/Ooo ~(t)dt.

It was shown in [21, (216)] (cf. [7, Thm. 2.8]) that
(3.2) di(F, N, J,v) = p(VF,J) - p(VH, J").
PROPOSITION 3.16. In L.(M) we have
(F.q,J,0) = M, a1, 7, p = )(F, N, J, ).

PRrOOF. We consider (G, qg) := (F®H, qg® —gx). It admits a locally constant
lagrangian subsheaf £ given by the image of ker(v) < F @& H, = — z @ [z]. We
consider the metric structure JC := J @ —J. Then we have

[-F7Q7']7p] - [qu'Hy']H7p_ ﬁ(]:)NaJv,U)]
= [qugv‘]caﬁ(fan'Lv)]
=10,0,0,7(F, N, J,v) + (G, 49, J°, L)].

It remains to show that 7(F,N,J,v) + #(G,qg, JC, L) is exact. This will be a
consequence of the following general result.

LEMMA 3.17. Let Eta be a construction which associates to a tuple (F, VY, Q,
N, J,v) (a real vector bundle with flat connection, parallel e-symmetric form, com-
patible parallel Z-grading, a metric structure (not necessarily parallel), and compat-
ible parallel differential) over a manifold M a form Eta(F, V¥, Q, N, J,v) € Q(M)
such that
(1) dEta(F7 vF’ Qa N, J, U) = p(vF’ J) - p(vH, JH)
(2) For a smooth map f: M’ — M we have

f*Eta(F,VF,Q, N, J,v) = Eta(f*F, f*V", f*Q, f*N, f*J, f*v).

(3) Eta(F,VF,Q, N, J,v) depends smoothly on the data V¥, Q,J (note that we
fiz N and v).

(4) If (F,VF,Q,N,J,v) splits, then Eta(F,V¥ Q,N,J,v) = 0. Here (F,VF,
Q, N, J,v)} splits if and only if the complex (F, N,v) is of the form

0— E°@H® - E'oH'®E' — ...... Er?oH" 'oE™! 5 @E" '@H” >0

with flat vector bundles E', H', where the differential v is given by the obvious
maps. Furthermore, E"~"1 = (E")*, H' = (H"™")*, and this identification gives
(with the suitable signs) the form Q. The metric structure J shall induce a metric
such that this splitting is orthogonal and the identifications E*~'~! = (E*)*, H* =
(H™)* are isometries.

Then Eta(F, V¥, Q, N, J,v) — i(F, N, J,v) is ezxact.
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PRrOOF. The proof is very similar to the axiomatic characterizations of ana-
lytic torsion forms [12, A 1.2] (in the acyclic case) and its extension to the case
with cohomology [24, Lemma 3.1].

First one shows that the n-form 7(F, N, J,v) has the four properties above.
Given another construction Eta(F, VE,Q, N, J,v) with these properties one con-
siders the difference A(F, VF,Q, N, J,v) := Eta(F, V¥, Q, N, J,v) — 7(F, N, J, v).
Then one applies the argument of [12, A1.2] to show that A(F, V¥, ,Q, N, J,v)
is exact. First observe by property (1) that A(F,V¥,Q, N, J,v) is closed. Then
the idea is that we can deform V,Q,J to approximate the split case. Using the
properties (2), (3), and (4), we see that A(F, V¥, Q, N, J,v) can be smoothly de-
formed to zero without changing its cohomology class. This implies exactness of

A(F,V¥,Q,N, J,v). O

We now finish the proof of Lemma 3.16. Given (F,V¥ Q,N,J,v) we can
construct (G, gg, J¢, L) as above. Let Eta(F, V', Q, N, J,v) := —p(G,qg,JC, L).
One checks that it satisfies the four conditions of the lemma. We conclude that
A(F, N, J,v) + 5(G,qg, J, L) is exact. O

3.4.5. Filtration. Let (F,q,J, p) be given with a compatible filtration (F'F),
of length 1. We assume that we have chosen a metric structure J Gr(%) on (Gr(]—' ),
Gr(q)) which is compatible with the Z-grading. For i < n/2 we consider the
following sheaves

& =F'F/F"H'F @ Gr"'(F) © Gr'(F).

We introduce forms ¢; and metric structures J; by induction on <. A

The sheaf &; admits a Z-grading N; of length 2 such that EY = G YT,
&} = FIF/Fr="1, and £7 = Gr'(F). The differential v; is given by the embedding
Gr""'(F) < F*F/F"~"*1F and the negative of the projection FiF/Fn—lE
Gr*(F). For i = 0 we have an obvious form ¢y = ¢r @ Gr(q)'GrO(F)@Grn(ﬂ and
a compatible metric structure Jy := JE @ JGr(F){GrO(]—')EBGr"(]—') such that vy is
compatible.

Assume that we already have defined g; such that the grading and the differen-
tial are compatible. We identify F*+!F/F"~¢F with the cohomology of v;. There-
fore, we have an induced form gpit+17/pn—iz. We now define gi 1 := grivip/pn-iF
@Gr(q)|Grn,i41 (F)@Cr+1 ()" The grading and the differential of &, are again
compatible with ¢;41.

Assume that we have already defined J; such that it is compatible with the Z-
grading. Then we have an induced metric structure J¥ TIF/FTTF  We now define

i+ 1 n—i . . .
Jig1:=JETFIF f@JGr(F)‘Grn_l_l(ﬂ@GrlH(}_). Then J; 1 is again compatible
with the Z-grading.
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DEFINITION 3.18. We define the n-form 7(F, Gr(F), J, J&'F)) € Q(M) of the
filtration by

7(F, Gr(F), J, J&))
[(n—1)/2]
= Z ﬁ(giaNivjiavi)+ﬁ(Grn/2Fa Jn/27JGr(F)|Gr"/2(]:)) .
=0
Then
d,i(F, Gr(F), J, &) = p(VF, J) — p(vEP), J&),

LEMMA 319 ]n EE(M) we have
[F.q,J,0] = [Gr(f ), Gr(g), IS5, p — §(F, Gr(F), J, JP) |

[Gr[%](f)» Gr(‘])'(}r[%}(f)?JGr(f)IGr[%l(f)’p_ ﬁ(f, GI‘(]'-),J, JGr(}-))]
n=0(2),

[0,0,0, p — 7(F, Gr(F), J, JE()]
n=1(2).

PrOOF. We reduce the length of the filtration by two as in the proof of
Lemma 2.7. Note that

|G (F) @ Gr'(F), Gr(g) |, JEr)]

n=i(F)@Gri(F)’ Gr"""(f)@Gr"(ﬂ’O} =0

by lagrangian reduction along the lagrangian subsheaf Gr™*(F). In fact, in this
case
n—i(j_—)G)Gri(]_—))C’Jcr(}_)

v ar-i(Reeri(F) = VO

so that by Definition 3.7

5 (Grn—i(}') © Gr'(F), Gr(q)l(}rn-i(f)@Gri(f)’

Gr(F) n—1 _
J IGr"*’(T)GBGri(}')’Gr (7:)) =0.

Therefore, we obtain by Lemma 3.16

[Fi}—/Fn_iH]:, qriz/pn-ig, JUEITTT g > i€ N, Jiﬂh’)}
j<i
= [5i»Qi7JiaP_Z'fl(&,NiaJiin)
j<i
i i i1 n—i N
= [F +1‘7:/F f7qu+1f/F"“1f7JF FIF f7p— Z n(SHNhJHvl)]
j<itl

The assertion of the lemma now follows by induction on . O
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3.4.6. Isotropic reduction. Assume that we are given a tuple (F,q,J, p) and
an isotropic locally constant subsheaf 7, i.e., T C Z1. We consider the filtration
of length two of F such that 7 := F?F, I+ := F'F so that we can identify
(Grl(}'),Gr(q)|Gr,(ﬂ) & (Fz,qz). We choose any metric structure JE* ). Let

JFz .= jGr(F) IGrl(f)' Then we have the form 7(F, Gr(F), J, J&F)). The follow-
ing assertion is an immediate consequence of Lemma 3.19.

COROLLARY 3.20. In L.(M) we have
17,9, J.0) = [Fr,az, T, p = i(F, Cr(F), J, TP,

Sometimes we would like to work with easier transgressed characteristic classes
than n-forms. It is an interesting observation that one can do isotropic reduction
without appealing to n-forms.

Assume again that we are given a tuple (F,q, J,p) and an isotropic locally
constant subsheaf Z. Then we obtain an orthogonal decomposition F = I & (I*+ ©
I)® (F © I'*), here we denote by F' © I+ the orthogonal complement sub-bundle
of I+ in F with respect to the metric J* o g. Note that J induces an isomorphism
I = FoTL. There is a natural identification of bundles It © I = Fr. The metric
structure J restricts to I+ & I and therefore defines a metric structure JZ on Fr.

We consider the Z-grading on F' which is given with respect to the decom-
position above by N = diag(0, 1,2). The connection V¥ is upper-triangular with
respect to this decomposition. Therefore,

(3.3) VE =y NuF

is regular at u = 0. In fact, V& = V! @ V7 @ V"/7" The tuple (F,V{,J) is thus
isomorphic to the tuple obtained as follows: We consider the sum Fz & (Z®F/I1)
with associated bundle F7 & (I @ I), metric structure

r 0 1
JI@(E 0 )’

and connection V77 @ V! @ (V1)*.

We now consider M = [0,1] x M. Let pr: M — M be the projection, F =
pr*F, ¢ := pr*q. On the corresponding bundle we consider the metric structure J
which on {1} x M restricts to J, := u™ Ju=". We decompose p(VF, J) = dury+r,
where 7 does not contain du and where v: [0,1] — (M) is a smooth family
of forms. By the discussion above, after shifting the rescaling from the metric
structure to the connection we see that v is regular at u = 0 so that we can make
the following definition.

DEFINITION 3.21. We define

ﬁ(f7q’J>Z) = _L ’y(u)du
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If 7 is lagrangian, then it is easy to check that this definition coincides with
the former Def. 3.7. Furthermore, note that

dp(F,q,J,Z) = p(V'*, J7*) — p(VF, J).
Next we consider isotropic reduction in stages. Assume that £ is a locally

constant lagrangian subsheaf of F such that Z C £. Then we obtain an induced
lagrangian subsheaf L7 C Fr.

LEMMA 3.22. Modulo exact forms we have
B(F,q,J, L) = 5(Fz,42,J7%, L1) + B(F, 0, J, T).
ProoOF. We consider the orthogonal decompositions
F=Is(LeDho(ItcL)e(ForItl)

and the commuting Z-gradings M := diag(0,1,1,2) and K := diag(0,0,1,1).
Note that VT is upper triangular with respect to these gradings. Thus, if we
define V,, = u My KVFuXyM then this family of connections extends to
(u,v) € [0,1] x [0,1]. We identify F = I & Fz & I such that Fr & I+ © T and the
last component is identified with FOI+ by J. Furthermore, let V7 be constructed
as in (3.3) using £7 C Fr and J7Z. In this identification, we can write

Voo =VieVize (V)"
We decompose L := I @ (L ©I) and set N := diag(0,1). Then we define VL :=

u"NVEuN. We now identify F = L @ L such that the second component goes to
F © L via J. Then we can write

Vuo = Vie (V).
Let us now consider the manifold M := [0,1] x [0,1] x M. Let F := pr*F and

g = pr*q. We consider the metric structure J on F which restricts on {(u,v)} x M
to uMuE Ju=Ey~M This works for uv # 0. Nevertheless, it follows from the
discussion above after shifting the rescaling from the metric structure to the con-
nection that p(F,J) is a closed smooth form on M. We decompose p(F,J) =
dundvAo+r, where r contains at most one of du, dv, and ¢: [0,1]x[0,1] — Q(M)
is a smooth family of forms. It follows from Stokes’ theorem and the structure of

Vo,» and V, o that
d / o (u,v)dudv = §(Fz, qz, J°F, L1) + $(F, ¢, J,T) — (F, q,J, L),
[0,1]x]0,1]

where the contributions come from the boundary components {uv = 0}, {v = 1},
and {u = 1}, respectively. This proves the assertion. O

LEMMA 3.23. In L.(M) we have [F,q,J, p| = [F1,q9z,J"%, p + p(F,q,J, I)).

Proor. We consider the sheaf G := F @ Fr together with the form gg =
q @ (—qz). We have the lagrangian subsheaf £ of G which is the image of the



SECONDARY INDEX 293

diagonal map Z+ — F @ Fz. It contains the isotropic subsheaf Z & 0. We consider
the metric structure J¢ := J @ —J7. Then we have by Lemma 3.22

(7.0, .0 = [Fr,02, 7", p + B(F, ¢, J, T)]
=G,90, 7%, ~B(F,q,J,T)]
=1[0,0,0,5(¢, 49, /%, £) — (¥, 4, J, T)]
=[0,0,0,5(G, 46, 7%, T) + (91, (a9)7, J %, L1) — B(F, 4, J, T)]
Now note that #(G,qg,J¢,T) = p(F,q,J,T) and $(Gr, (9¢)1, J7,L1) = 0. The
reason for the first equality is that VC and J¢ preserve the decomposition G =

F @ Fr and that I C F & 0. The second identity can be seen by noting that V=
preserves the decomposition Gz = Lt ® J GrL;. O

3.5. Functorial properties.

3.5.1. Homotopy invariance of pull-back. If f: M — N is a smooth map of
manifolds, then we obtain an induced map f*: L.(N) — L.(M), which is given
on generators by pull-back of structures.

LEMMA 3.24. f* only depends on the smooth homotopy class of f.

PROOF. Consider a generator (F,q, J, p). Let (fi)te[0,1] be a smooth homotopy
of maps from M to N. Then we have an isomorphism ¢: (f3 7, fiq) — (fi F, fiq)-
Let M :=[0,1] x M and H: M — N be induced by (f;). We compute

fop— Fip—BVEE 0 6t fr0) = fap— fio— /M/ p(VHF HE )
M

zfd/ H*p+/ dH*p—/ p(VEF H*J)
M/M M/M M/M

- / (p(VHF HT) (VT HAT)) =0,

N /M

where = means equality modulo exact forms. It now follows from Lemma 3.10 that

(foF. foa. 57, fopl = [f1 F i, £ 0, fip)-
g

One can also check that the pull-back f* is compatible with the L(M) (resp.
L(N))-module structures.

3.5.2. Ezact sequences. We define natural maps H°4(M,R) — L(M) and
L(M) — L(M) by [p] + [0,0,0,p] and [F,q,J,p] — [F,ql, respectively. We
consider H°%(M,R) as an L(M)-module such that every element of L(M) acts
trivially. H®V(M,R) becomes an L(M )-module via the ring structure of H*V(M, R)
and the homomorphism ch o b: L(M) — H*(M,R).



294 U. BUNKE AND X. MA

LEMMA 3.25. We have the ezact sequence of L(M)-modules
HOY(M,R) — L(M) — L(M) — H*(M,R).

ProoF. It is obvious from the definition of the maps that the composition
of two of them vanishes. Therefore, it remains to check exactness. We have the
following commutative diagram

Hodd (M, R) ELott(M) LLott(M) I{ev(‘[\47 R)

!l ! ! H

HOY(MR) —— L(M) —— L(M) ——— H®(M,R).

The upper sequence is exact by [21, Prop. 21]. The vertical maps are all surjective.
It follows by diagram chasing that the lower sequence is exact at L(M).

We now show exactness at L(M). Let (F,q,J,p) be given such that [F,q] =
0. Then there exists (Fi,q:) which admits a lagrangian subsheaf £; such that
(F @ Fi,q @ q1) also admits a lagrangian subsheaf £. We choose a metric struc-
ture J; and define p; such that [Fy,q1,J1,p1] = 0. In fact we must take p; :=
—p(F1,q1,J1, L1). Lagrangian reduction by £ shows that [F & F1,q & q1,J
Ji,p+ p1] =[0,0,0,w] for the form w:=p+p1 + H(F S F1,¢® q1,J & J1,L). It
follows that [F, ¢, J, p] = [0,0,0,w] comes from H°(M,R). O

3.5.3. Injectivity of H°4(M,R) — L(M).
PROPOSITION 3.26. The map H°Y(M,R) — L(M) is injective.

PROOF. Let w € 2°44(M) be a closed form. If [0,0,0,w] = 0 in L(M), then,
by Definition 3.8, there exists (F, ¢, J, p) together with two lagrangian subsheaves
Ly, £, such that

[w] = [ﬁ(}-v q,J, EO) - p~(-7:7 q,J, ‘Cl)] .

We claim that [~(.7-‘ 4,J, Lo)—~B(F,q,J, L1)] is independent of J. To show this
we consider the space M of all metric structures and M := M x M. Furthermore,
let (F,4,p) := pr*(F,q,p). We define the metric structure J on F such that it
restricts to J' on M x {J'}. Using the two lagrangian subspaces £; := pr*L; we
define the closed form

a:=p(F,q,J,Lo) — p(F, 4, J, L1).

The metric structure J provides an embedding i;: M — M, and we have
iha = p(F,q,J,Lo) — B(F,q,J,L1). Since the embeddings I; and I, for two
metric structures J, J' are homotopic, the classes [i%a] and [i%,a] coincide. This
proves the claim.

We next claim that we can assume that LoNL; = {0}. Note that Z := LoN L,y

is an isotropic subsheaf. The reduction (Fz,¢z) admits two induced lagrangian
subsheaves (£;)z. We have by Lemma 3.22 that

[ﬁ(f,q,J,ﬁo) _15(]:7‘]7 J)‘Cl)J = [ﬁ(fIsQI»JFI’(['O)I) _f)<-7:qu17JFT>([’1)I)]'
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Thus we can replace (F,q, J, p) by (Fz,q7,J%, p+p(F,q,J,T)) and L; by (L;)z1.

Let us now assume that Lo N Ly = {0}. Then (cf. e.g. [26, Prop. 2.50]) we
can choose J such that JL; = Li_;, ¢ = 0,1. With this choice p(F,q,J, Lo) —
p(F,q,J,L1) = 0 so that [w] = 0. O

3.5.4. The transformation to Kg /lz—theory. We construct a natural transfor-
mation y: L — Ky /12. Let M be a manifold. Note that K /1Z(M ) is a module over
the ring K%(M) and, therefore, by b: L(M) — K°(M), a L(M)-module. We in
fact construct morphism of L(M )-modules yas: L(M) — Ky /lZ(M } which depends
naturally on M.

To define this morphism on generators (F,q, J, p) we use the geometric def-
inition of Kp /1Z(M ) in terms of generators and relations which was recalled in
Subsection 3.2.2.

We define 4pr: L(M) — u{/lz<M) by | F.q,J,p] = [Fe, hFe, vFed g,

where R is the hermitian extension of the metric J* o Q on F.

LEMMA 3.27. s is well-defined and has the properties as stated above.

PROOF. Since 5 is induced by an obvious homomorphism Ay : Z(M ) —

Kz L (M) of semigroups (which is natural in M) it suffices to show that 7y is
R/Z

compatible with lagrangian reduction and that it induces a L(M )-module isomor-

phism. The latter property we leave as an exercise.

Let £ C F be a locally constant lagrangian subsheaf. Then [F,q,J,p] =
[0,0,0,0 + B(F,q,J, £)]. In Kg (M) we have (using "¢ = A" @ b, V® = V' o
V1) that

[Fe, e, vFer ol = [Fe, h'e,V®, p + ch(V®, V7))
=[L® L h*oh",VEa VL, p+B(F,q,7,L)]
= [07070,/"*‘15(]'-7(1,«]: ‘C)]
This shows that v, is well-defined. O

As an immediate consequence of the definition we get:

COROLLARY 3.28. The following diagram commutes:
L(M) —— L(M)

l !

Ky (M) —— K°(M)

It follows from Definition 3.1 of L®/%(M) as a pull-back that:
COROLLARY 3.29. There is a natural surjective map
L(M) — L¥2(M).
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4. Eta homomorphisms

4.1. Introduction and summary. It is an interesting problem to detect
non-trivial elements of L.(M) for a manifold M.
From the homotopy theoretic definition of K /12 there is a natural pairing

Kg 7(M) ® K (M) — R/Z,

where K7 (M) denotes K-homology of M. In [20], Lott gave an analytic description
of this pairing. If M is odd-dimensional and the K-homology class is represented by
a Dirac operator, then its pairing with a class in Kp /1Z(M } given in the geometric
picture can be expressed through spectral invariants of the corresponding twisted
Dirac operator, in particular through the 7-invariant. In the present section we
consider the K-homology class given by the signature operator, which leads to a
homomorphism

Moz Kgjg(M) — R/Z.
The latter pulls back to

n®/Z. [R2(M) — R/Z.

It further induces a homomorphism from L(M) to R/Z.

The main objective of the present section is to refine the homomorphism to
an R-valued one. From the analytic definition of nﬂg/lz it is quite obvious that it
cannot be lifted to R since the relevant n-invariants jump by integers if the kernels
of the corresponding operators change. But the dimension of the kernel is not an
invariant of the data given by the classes K /IZ(M ) and K (M).

However, in our special case we work with the signature operator and with
flat vector bundles. The kernels are tied to cohomology and thus have stronger
invariance properties. Lott has defined a lift n™°t*: Lt (M) — R. Unfortunately,
this homomorphism does not factor over L(M). But we can analyze this failure in
detail. These considerations lead to the definition of the extended groups L&(M),
€ = +1, fitting into exact sequences

0—>Z— L™(M)— L.(M) — 0.

The homomorphism from L(M) — R/Z lifts to a homomorphism 7: L*(M) — R.

The extended groups are only defined for closed odd-dimensional oriented
manifolds M. Note that they are not functorial with respect to smooth maps (only
with respect to homotopy equivalences). But they admit extended secondary index
maps.

4.2 mgry: Kpp(M) — R/Z.

4.2.1. The definition. Let M be an oriented n-dimensional closed manifold. If
we choose a Riemannian metric, then we can define the signature operator Ds'e".
Assume now that n is odd. Then D" is a self-adjoint operator which induces a

class [M*¢"] € K;(M), and which is independent of the choice of the metric.
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DEFINITION 4.1. We deﬁnewni/lz: KH;;Z(M) — R/Zby n]RT/lz(x) = (z, [M®8]).
Furthermore, we define n®/%: L®/%2(M) — R/Z as the composition of nﬂ{/lz with

the natural transformation L®/Z — Ky /12.

4.2.2. Geometric description of n, -,. We fix a Riemannian metric g7 on M.
r/z

Let [E,h",VE p] € KHQ/IZ(M). Then one can express n]}{/lz(w) in analytic terms.

Let D3 : (M, E) — Q(M, E) be the odd signature operator of M twisted by
the bundle E. Then its 7-invariant is given by

ign 1 > i _ signy2 dt
A0 = /0 v [DjEne PE]

Let L(VTM) ¢ Q(M) be the L-form of the tangent bundle TM equipped with
the Levi-Civita connection V™. Then we have

*%(B, K, V¥, p]) = [n(D3E") —2/ L(V™M) A,
M

where [.] on the right-hand side takes the class in R/Z. Using the local variation
formula for the n-invariant we see that this combination indeed is independent of
the Riemannian metric and only depends on the class of [E, h®, VE, p]. For details
we refer to Lott [20, Prop. 3].

Note that this homomorphisms cannot be refined to have values in R, since
the dimension of the kernel of D%gn depends on the choice of the connection for
the representative [E, hE, VE pl.

4.3. R-valued n-homomorphisms. Since the L.-groups involve flat bun-
dles F = bundle(F), the kernel of the twisted signature operator D5" defined
in (4.2) is isomorphic to the sheaf cohomology H*(M, F). In particular, it is in-
dependent of the choice of a metric structure. This eventually allows us to define
R-valued n-homomorphisms.

4.3.1. ptot*. We start with describing the homomorphism 5% Lot (A1) —
R which has been defined by Lott in [21, §3.3]. Let M be a closed smooth m-
dimensional oriented manifold. The Z-graded vector space of real differential forms
Q(M) carries the €,, = (—1)l"™2" | —symmetric duality structure (cf. (4.4))

1Ny —1)
q(w’w/) — /jw <(‘1)N1» Y 1 +mNMUJ)/\w,7

. m+l]

where N); denotes the Z-grading on Q(M). We fix the convention /&, := il™2 .
A choice of a Riemannian metric ¢/™ and of the orientation on M induces
the Hodge-* operator which is characterized by

wA ' = (w,w’) gravol.
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Here vol is the Riemannian volume element of (M, g™ ). We define the Ny;-
compatible metric structure

P (1)

Let now (F, q) be e-symmetric. By Q(M, F) we denote the space of F-valued
smooth forms on M, where F' := bundle(F). If w € Q(M) and ¢ € C*(M, F),
then we have a product w ® ¢ € Q(M, F). The space Q(M, F) carries the €,,¢e-
duality structure

4.1 ’ = _VEm 1 ul (IZM_I)+mNM Aw' N
(1) auplw@ o/ ®¢) i= S22 | () PEHTw) Al g9, )
It further has a natural Z-grading N of length m. If J¥ is a metric structure
on F, then JMF(w® ¢) := NG iZLJMw ® JF¢ is a N-compatible metric struc-
ture on Q(M, F) (cf. Definition 3.14). Let dF be the twisted de Rham differ-
ential on (M, F) induced by the flat connection V¥ on F. Let (d”')* be the
adjoint of d¥" with respect to this metric on Q(M, F). Then we have (d¥)* =
(—1)m+1€€mJZ\/I’FdFJM’F,

We now assume that m = —e mod 4, then €€, = 1. Then we define the self-
adjoint operator (cf. [2, (4.6)], [7, (1.38)])

(4.2) DyE = JMFGE 4 gf JMF,

DEFINITION 4.2. The homomorphism nt*: LLo%(M) — R is defined by
1 F 0T p) = (D) <2 [ TV g

By the argument in [21, Prop. 24], nt" is well-defined and independent of
the choice of the Riemannian metric g7 of M. It also follows from the definitions
that the following diagram commutes:

Lott

Lott(M) 1— R

l l

/Z

R,
Kg/s(M) —— R/Z

4.3.2. Motivation of extended L-groups. A natural problem is now to lift the
composition

T —1 WR/Z
Lo(M) — Ky}, (M) " R/Z

to a R-valued homomorphism “” : L (M) — R. This problem could be solved by
factoring nL°% over the quotient LL°"(M) — L (M). Unfortunately, this factor-
ization does not exist in general. For this reason we will define modified L- and
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L-groups which will be denoted by L¢* and L¢*. They fit into the diagram

(4.3)
H4*_E(M,]R) f]?ott(M) N LEOtt(M) - H4*+176(M7R)

H ! ! |

H*(M,R) —— LXM) —— LXM) ——— HY"75(M,R)

il | !

H¥*=¢(M,R) —— L(M) —— LJ(M) —— H*"'~¢(M,R).

The advantage of L°* is that we can extend the homomorphism 7% to an
homomorphism r: L&*(M) — R. The draw-back of the extended L.-groups is that
they are not functors on the category of manifolds.

4.4. Definition of the extended L-groups.
4.4.1. Some linear algebra. Let V be a real vector space with a non-degenerate
form 7: V — V*. We will call (V,r) a duality space.

DEFINITION 4.3. A Z-graded duality space of length n € Z is a triple (V,r, N),
where (V,r) is a duality space and N is a Z-grading operator such that r~loN*or =
n— N.

If (Vi,ri,Ni), i = 1,2, are Z-graded duality spaces of length n;, then their
tensor product is a Z-graded duality space of length ny + nag.
Let (V,r,N) be a Z-graded duality space of length n. Assume further that
r is graded symmetric, i.e., r(v,w) = (=1)Il*lr(w,v). Then we can define an
i

€n := (=1)*7"1-duality structure on V by
(4.4) g(v,w) :==r((-1) N(l\;”)*'"NU,w).

Let R[—n] be the graded vector space which has R in degree n and 0 in all
remaining degrees. The duality structure r induces a map of graded vector spaces
7F: VOV — R[-n] by v®w — r(v,w).

We now consider a differential d: V' — V of degree one. It induces a differential
on VeV by dv®@w) = dv@w + (—1)"lv ® dw, where v is homogeneous of degree
|v]. On R[—n] we consider the trivial differential.

DEFINITION 4.4. The differential d is called compatible with r if #: V@V —
R[—n] is a map of complexes. Equivalently, 7(dv,w) + (=1)I’lr(v,dw) = 0 for all
v, w € V with v homogeneous of degree |v].

We now assume that d is compatible with r. Let H (V') denote the cohomology
of (V,d). It is a Z-graded vector space. The map H(7): H(V®V) — H(R[-n]) =
R[—n] together with the Kinneth formula H(V) ® H(V) S H(V ® V) induces a

graded-symmetric duality structure rg on H(V). In order to see that this pairing
is non-degenerate, note that im(d)* = ker(d) and hence ker(d)* = im(d).
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Let (V,r,N) be a Z-graded duality space of length n with compatible differ-
ential d, where r is graded symmetric. Then we have a (—1)"t!l¢,—symmetric
form

Qv,w) == r((-1) HE ANy, dw) = q(v, dw).
In particular, if V is finite-dimensional and (~1)"*!¢, = 1, then we can consider
the signature of the quadratic form Q.

DEFINITION 4.5. 7(V,r, N,d) := 2sign(Q).

Let J be a metric structure on (V,q). Let d*/ denote the adjoint of d with
respect to the scalar product ¢{., J.) induced by J. We have d*’ = (—-1)"*l¢,JdJ.
Assume that (—1)"*!¢, = 1. Then we can form the self-adjoint operator D :=
Jd+ (-1)"*dJ = J(d + d*).

LEMMA 4.6. We have sign(D) = 3 (1 + (=1)"*") 7(V,r, N, d).

PROOF. By Hodge theory we can identify H (V') with H := ker(d) Nker(d*’).
We decompose V into D-invariant subspaces V' = im(d) @im(d*/) &H. The metric
structure J maps im(d) isomorphically to im(d*’). Furthermore, for z,y € im(d)
we have q¢(DJz,JJy) = (-1)""lq(JdJz,y) = q(dJz,Jy) = (—1)"*l¢(Dz, Jy).
Let P be the projection to im(d*/). Then sign(D) = (1+ (—1)"*!) sign(DP).
For all z,y we have q(z, JDPy) = (—1)"T1q(z,dy). Thus we have sign(DP) =
(=)™t 7(V,r,N, d). O

Let (V,r) be a duality space with grading N of length n and compatible dif-
ferential d. Furthermore, let ... C FPY1V C FPV C ... be a decreasing filtration
of the complex (V,d, N) by subcomplexes. Further we assume that there exists
np such that r(FPV,FiV)=0if p+ ¢ > np. On V ® V we consider the induced
filtration F*(V®V) =37 . _ FPV ® F1V. Let ER9(V) be the corresponding
spectral sequence (cf. [17, §3.5]).

We filter R[—n] such that F*R[—n] = R[-n] if s < ng and F*R[—n] = 0 for
s > npg. The map 7 is then a map of filtered complexes. We therefore obtain a
morphism of associated spectral sequences, which we also denote by 7. The target
EP2(R[—n]) is easy to describe. We have EP¢(R[—n]) = 0 for all s > 0, p, ¢ except
for p+ ¢ =n and p = np, where EP? 2 R. All differentials vanish.

The Kiinneth formula for spectral sequences yields a map

E(V)® Ey'(V) - ELF 1T (Ve V).

If we compose this with the morphism of spectral sequences induced by 7 we
obtain pairings r,: EE4(V)Q ES'(V) > Rifp+q+s+t=nand p+s=ng. In
particular, we obtain a pairing on E, (V) which is compatible with the Z-grading
Ng, (induced by N) of length n and has the same symmetry properties as r.

The differential d,, is compatible with the duality structure r, on F, and the
duality structure 7,4+; on E,; is obtained from r, by considering F,; as the
cohomology of F, as described above. If ry is non-degenerate, then so are the r,,
for all u > 0.
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Assume now that = is graded symmetric and (—1)"*!¢, = 1. Then the form
., induced on E, (V) is graded symmetric as well. If E, (V) is finite-dimensional
for u > 7, then we define

DEFINITION 4.7. 7i(Ey) := 3" 5, T(Eu(V), 74, NE,, du).

4.4.2. Hypercohomology and spectral sequences. Let M be a smooth manifold.
Let F be a locally constant sheaf of finite-dimensional real vector spaces and
(F, VT be the associated flat vector bundle. We further assume that F is Z-graded
by Nr and has a differential v (cf. Definition 2.4). We use the same symbols in
order to denote the corresponding parallel endomorphisms of F'. The cohomology
H of (F,v) is again a locally constant sheaf of real vector spaces with Z-grading
Ny.

There are two spectral sequences which converge to the hypercohomology
H(M, (F, Np,v)) of this complex, the local-global spectral sequence and the hyper-
cohomology spectral sequence. Let us take the soft resolution of (F, N,v) given
by the twisted de Rham complex (Q(M, F),d" + v) with the total Z-grading
Nurr = Np + Np. Its cohomology is naturally isomorphic to H(M, (F, Np,v)).
The two spectral sequences are associated to the two natural filtrations of this
complex.

We first describe the local-global spectral sequence which is associated to the
filtration

FPQ(M, F) = > QI(M,F).

q=p

We have ;,E'? = QP(M, F9) and 13dg = v: 1 ED? — lgEg’QH. The first term
is given by ;,EP? = QP(M, HY) and 14d; = d7: ,EP? — | ,EPT19. We obtain
,gEqu = HP(M,H?). The local-global spectral sequences is natural and finite-
dimensional starting with its second term.

We now describe the hypercohomology spectral sequence which is associated
to the filtration

FPQ(M,F) = Q(M,F9).

q=p

We have p.E5? = QI(M, FP) and pedo = dF: p E5? — thg’QH. The first term
is given by pcEP? = HY(M,F?) and pedy := H(v): poEV? — pEPT9) where
H(v) is induced by v. The hypercohomology spectral sequence is natural and
finite-dimensional starting with its first term.

Now assume that ¢ is an e-duality structure on F such that Nr and v are
compatible with g (cf. Definition 2.4). Let M be closed and oriented, and set
m = dim M. On Q(M, F) we define the ee,,,—duality structure gps p by (4.1). The
differential d = d* 4+ v and the total grading N M, F = Ny + Np are compatible
with gar,r. As explained in Subsection 4.4.1. we obtain induced pairings on the
spectral sequences.
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We first consider the local-global spectral sequence. We put ng := m and

obtain pairings
199t 1 EPT @ EY — R

for p+q+s+t =m+nand p+s=m. On ;,E'®;,,Ey" = QP(M, F1)®Q° (M, F?)
this pairing is just gas #. In particular, it is non-degenerate. As in Subsection 4.4.1,
the (—1)™"lee,,—symmetric form gus r(x, (4 + v)y) induces the corresponding
(—=1)™*lee,,~symmetric forms on 1gEr. If €6, = 1, and m is odd, then we can
define

DEFINITION 4.8. 1372(F, ¢, Nr,v) 1= 72(14Ex).

In the case of the hypercohomology spectral sequence we put ng = n. We
have parings
hedr - thqu X lgE'f’t —R
for p+q+s+t = m+nand p+s = n. On 4 EL 1@, Ey' = QI(M, FP)@QH (M, F*)
this pairing is again just g r. In particular, it is non-degenerate. If ee,,, = 1, and
m is odd, then we can define

DEFINITION 4.9. p.71(F,q, Np,v) := 71 (neEy).
Finally, we define
DEFINITION 4.10.
T(F,q,Np,v) == pe11(F,q, Np,v) — 1y72(F,q, Np,v).

4.4.3. Definition of L&(M) and L(M). We fix closed odd-dimensional ori-
ented manifold M. We assume that ¢ € Zy is such that ee,, = 1, where ¢, =
(=)™ € Z, and m = dim M.

Let (F,q) be esymmetric and L be a locally constant lagrangian subsheaf of
F. Then we define an integer 7(F, g, £) by the following construction.

We consider the sheaf G := L& F & F/L. It carries a natural e-symmetric
duality structure gg. Note that g induces maps q.: £ — (F/L)* and qr/z: F/L —
L*. Then qg: G — G* is given by

0 0 gr/
0 ¢ 0
qr 0 0

A compatible Z-grading is given by Ng = diag(0, 1,2). We define a differential on
G by

0 0 0
Vg = iL 0 0 )
0 —pr O

where iz : L — Fis the inclusion and pr: F — F/L is the projection. We introduce
the sign to make the differential compatible with gg. We now define the following
integer.
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DerINITION 4.11. 7(F,q,L) := 7(G, qg, Ng, vg).
LEMMA 4.12. If L has a lagrangian complement, then we have 7(F,q, L) = 0.

PROOF. In this case the spectral sequences degenerate. O

We now define the group L¢* (note that ee,, = 1). First we define the semi-
group ﬁiX(M ) of isomorphism classes of tuples (F,gq, z), where (F,q) is locally
constant sheaf of real vector spaces with e-symmetric duality structure ¢ and
z € Z. The semigroup operation is given by the sum of the entries. Next we define
an equivalence relation ~ generated by lagrangian reduction. Let (F, g, z) as above
and £ C F a locally constant lagrangian subsheaf. Then we require that

(‘7:7q72) ~ (01072 + T(]:7q7[’))
We extend ~ to the minimal equivalence relation which contains lagrangian re-
duction and which is compatible with the sum.
DEFINITION 4.13. We define L&*(M) := L&(M)/ ~.

The semigroup L&*(M) is in fact a group. Let [F, ¢, z] denote the class rep-
resented by (F,q, z). Its inverse is given by [F, —q, —z], since by Lemma 4.12 we
have

T(FOF,q®—q,F)=0.

There is a surjective homomorphism L*(M) — L.(M) induced by (F, ¢, z) —
(F,q). Furthermore, there is homomorphism Z — L& (M) induced by z — (0,0, z).

LEMMA 4.14. The following sequence is exact:
0—Z— L¥ (M) — L (M) —0.

Proor. We must show that Z — L&(M) is injective. This will be a conse-
quence of the fact that n: L&(M) — R is well-defined which will be proved below
(cf. Lemma 4.19). O

Of course, there should be a purely algebraic proof of Lemma 4.14. Another
open problem is to turn M — L& (M) into a functor.
Using Lemma 4.12 we see that (F, q) +— (F,q,0) defines a homomorphism

LI (M) — L (M).
DEFINITION 4.15. We define L&(M) by the following pull-back diagram:
L(M) —— L(M)
L(M) —— L(M)

An element of L(M) can be written as [F, g, J, p, z]. The following assertions
follow immediately from the definition, Lemma 3.25, and Proposition 3.26.
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COROLLARY 4.16. We have the exact sequences
0—7Z— L™(M) — L (M) —0
and
0 — HY ¢(M,R) — L™*(M) — L™(M) — H™**1~¢(M,R).
By (F,q,J,p) — (F,q, J, p,0) we define a morphism
LIt (M) — LX(M).

It is now easy to check that the diagram (4.3) commutes.

4.5. Construction of n: L™(M) — R.

4.5.1. The n-invariant of a complex. Let € € Zs. We assume that M is a
smooth closed oriented manifold of dimension m such that m is odd and ¢¢,, =
1, equivalently m = —e mod 4. Let (F,q) be a locally constant sheaf of finite
dimensional real vector spaces with e-symmetric form. Let furthermore Ng be a
compatible Z-grading and v be a compatible differential. By (H, ¢x) we denote
the associated cohomology. We choose a Riemannian metric g7, a compatible
metric structure J¥, and let J¥ be the induced metric structure. Then we can
define the operators D3#" and D" as in (4.2). The following theorem is the main
ingredient in the construction of 7. Recall Definitions 3.15 and 4.10 of the n-form
7(F, Nr, JE,v) and of the integer 7(F,q, Np,v).

THEOREM 4.17. We have
n(D;l‘gn) - T](D;-‘Ign) = 2/ L(VTM) A ﬁ(]_-v NF7 JF7 U) - T(J‘-, q, NFa ’U).
M
PROOF. A sketch of the proof is given in Subsection 6.2. |
4.5.2. Definition and well-definedness of n. Let [F,q,J, p,z] € L(M). We
choose a Riemannian metric g7

DEFINITION 4.18. We define
nF,q,J,0,2) = n°F,q,J%,p) -2z

= p(D}E") — z/M L(VIMyAp — 2.

LEMMA 4.19. The map (F,q,J,p,2) = n(F,q,J,p,2) induces a well-defined
homomorphism n: L=*(M) — R.

PRrROOF. It follows from the well-definedness of n“°t* [21, Prop.24] that 7 is
independent of the choice of the Riemannian metric on M. It therefore suffices to
show that (F,q,J,p,z) ~ 0 implies that n(F,q,J,p,z) = 0. Thus let £ C F be
a locally constant lagrangian subsheaf of F such that p + 5(F,q,J, £} = 0 and
z4+7(F,q,L)=0.
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We construct the complex (G, qg, Ng,vg) as in Subsection 4.4.3. Using the
compositions Jp: L — F Sy RN F/L and Jp/1,: F/L — FOS L -, L, we
define the metric structure ‘

0o 0 J
J9 =10 J 0
Jej, 00

As in the proof of Proposition 3.16, we see that modulo exact forms
ﬁ(g,Ng, Jg,’Ug) = 7ﬁ(‘7:7q7*]7 £)
By definition we have
T(}-,q,ﬁ) = T(g,qg,Ng,’Ug).

The complex G is exact. By Theorem 4.17, we have
WD) =2 [ LTH) (G, N, I ) = (G5, Novo).
Thus
WFadp2) = D) =2 [ L™ np-
=2 [ LV A (G, No, 1%, v6) (6.5, N o)
—2/ L(VTMyAp - 2
M

. / LYY A G0, 9.£) 4 5) = (2 +7(0, 06, Nou o)
=0.

5. The secondary index map

5.1. Introduction and summary. In this section we consider the secondary
index map (i.e., the wrong-way or push-forward map) for L. associated to fibre
bundles. It is constructed by refining the geometric construction of ﬂfign’R/ Z This
construction naturally involves n-forms for fibre bundles. The proofs of the facts
that 7L is well-defined, and that it has nice functorial properties, are all based on
the study of various adiabatic limits of these n-forms. We start this section with
the introduction of the n-form associated to a fibre bundle and the statements of
the adiabatic limit results. Then we introduce the secondary index maps and dis-
cuss their functorial properties. We give the algebraic parts of the proofs in detail
using the corresponding adiabatic limit results.
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5.2. Adiabatic limits of eta invariants, the eta form.

5.2.1. Generalized connections. Let M be a smooth manifold and ' — M be
a smooth real vector bundle. Let V be a connection on F'. Using the Leibniz rule
we extend V to Q(M, F) (cf. [3, Def. 1.14]).

DEFINITION 5.1. A generalized connection on F' is an operator A: Q(M, F) —
Q(M, F) of the form A =V + 5 with S € Q(M, End(F)).

Let g: F — F™* be a duality structure on F. We extend ¢ to a form ¢: Q(M, F)
@M, F) — QM) by q(u @ z,w ®y) = u Awg(z,y).

DEFINITION 5.2. We say that a generalized connection A on Q(M, F') is com-
patible with ¢ if dg(¢,¢) = q(44,%) + ¢(¢, AY).

5.2.2. The n-form of a fibre bundle. Let m: M — B be a smooth locally trivial
n+1

fibre bundle with closed fibres Z;, b € B, of dimension n. Set ¢, = (—=1)!"2", Ven =

(\/—_1)["—;‘1]. We assume that the vertical bundle T'Z := ker(dn) C T'M is oriented.
Let (F, qr) be alocally constant sheaf of finite dimensional real vector spaces over
M with a e-symmetric duality structure gz and let F' be the corresponding flat
vector bundle (cf. Subsection 2.4.1).

We consider the infinite-dimensional Z-graded vector bundle Q(Z,F) — B
(with grading Nz by form degree) with fibre Q(Z, F), = Q(Zs, F|z,) such that its
space of smooth sections on B is C°°(M, A*(T*Z) ® F). The space Q(Z, F) carries
an ee,—duality structure gz p induced by g as in (4.1). Then the Z-grading Ny
on (Z, F) is a compatible Z-grading of length n.

Our next goal is the interpretation of the twisted de Rham differential d*" on
Q(M, F) induced by the flat connection V¥ on F as a superconnection (cf. [12,
§IIT (a)]). We choose a horizontal distribution 7#M C TM, i.e., a complement
to TZ. This choice induces an identification Q(M, F) = Q(B,Q(Z, F)). Then d*
can be viewed as a generalized connection (see Def. 5.2) on Q(Z, F). For a vector
field X € C*°(B,TB) we denote by X¥ € C*(M,TH M) its horizontal lift. If
w®¢e C(B,UZ, F)) C QUM,F), then we set

Vifw®¢:=Lynw®¢+we® Vs,

where Lyu denotes the Lie derivative. In this way we define a connection on
Q(Z,F). We extend V&I to Q(B,Q(Z, F)) by using the Leibniz rule. Now we
decompose (cf. [12, Prop. 3.4])

dF =dZ,F+vZ,F+,£T’

where d% ¥ is the fibrewise twisted de Rham differential along the fiber Z and ir
is the insertion of a tensor field T € C(M,A*(T" M)* ® TZ). To be precise,
A?(THM)* is considered here as a subspace of A?(T*M) and i is interpreted as
an element of C®°(B, A2(T* B) ® End(2(Z, F))). It turns out that dF is a (—1)Vz-
superconnection of Nz-degree one (cf. Subsection 3.4.4) which is flat because of
df odf = 0.
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We can form the (finite-dimensional) cohomology H(Z, F) of d%-¥ which comes
equipped with a flat connection VH(Z:F) (cf. [12, §III (f)]) and a parallel ee,—
duality structure gy (z ). The sheaf of parallel sections of H(Z, F) is naturally
isomorphic to H(Z, F) := m(F) so that qy(z r) corresponds to the form Gz, F) =
7(qz,r) on H(Z,F) (cf. Subsection 2.5.1 for notation).

We now choose a vertical Riemannian metric g% on TZ and a metric structure
JE on F. The vertical metric and orientation on T'Z together induce a Hodge *-
operator x: Q(Z) — Q(Z) as in Subsection 4.3.1. We define a metric structure on
QUZ, F) by

Z2F ._ Ven NzWNz- D 4 nny, F

(5.1) JOH = \/E\/a(*( )= = Y J5.
This metric structure is compatible with the Z-grading Nz. On the cohomology
H(Z, F) we obtain a metric structure J# (%) induced by J%*. Let (dF)*, (d%F)*,
(ir)*, (V%T)* be the adjoints of d¥', d%1', iy, V# T, respectively, with respect to

the scalar product gz ¢(, J% ") on Q(Z, F) defined by JZ'.
e If n is even, by an easy computation we see that d¥ is compatible with
gz r in the sense of Def. 5.2. This in particular implies that the differential d%*
is compatible with ¢z . Though (Z, F) is infinite-dimensional, the theory of
characteristic classes and forms extends to certain nice superconnections. In par-
ticular, p(d”,J?F) € Q(B) is well-defined. We consider the grading z/~ " :=
L_jZF Then the odd part of d with respect to this grading is given by

Veen

A=1(d"+(@d")*). Itisa 27%" _superconnection and we have
Z,F

(5.2) p(d", I = gaTr[zJ exp(—AQ)],

here ¢ multiplies a p-form by (27i)~?/2.

We now introduce the rescaling. Let B := (0,0) x B and pr: B — B be
the projection. We consider the bundle M := pr*M over B together with the
canonical projection Pr: M — M. We define (F, G, THEM,JF) := Pr*(F, qr,
THM,J¥). We obtain the Z-graded ¢e,—duality bundle Q(Z, F) over B with
(—1)]\7 z_superconnection A’ := df, which is the twisted de Rham differential on
Q(M, F) induced by V. We fix the vertical metric §7% which restricts to t~1g%Z
over {t} x M. It induces the metric structure .J on Q(Z, F). The form p(A’,J) €
Q(B) is now well-defined as in (5.2). Let us decompose p(A4’, J) = dt Ay +7, where
r does not contain di. Here v: (0,00) — Q(B) is a smooth family of forms on B.
More precisely, for t > 0 we set

(5.3) C, = % ( Nz/2gF =Nz /2 +t—NZ/2(dF)*th/2) .
Then

(5.4) A(t) = —(2mi)" 2 Tx [zJZ’F(%coexp(—cf)} |
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By [21, Prop. 31], we have y(t) = O(t=3/?) as t — oo and v(t) = O(1) as
t — 0 so that we can define ([21, Def. 33|, [8, Def. 4.33])

DEFINITION 5.3. 7(Q(Z, F), Nz, J#¥,d") := — [[* ~(t)dt.

Note that g”# and 7" M induce a canonical connection V% on TZ (cf. [5,
Thm. 1.9], [3, Prop. 10.2)). Let L(V'%) € Q(M) be the L-form of TZ as in
Subsection 4.2.2. We have

(5.5) dA(QUZ,F),Nz, JZF dF) =
| ETTH) Ap(TF ) = @, )
VA

e If n is odd, then 4, AV = L(VZ! 4 (VZF)*) commute with J%*. To
stay in the superconnection formalism we introduce an extra odd variable o such
that 0% = 1. We multiply all components of A with even form degree of A(T*B)
by this variable and denote the result still A. This modified A is then again a
superconnection (cf. [9, §II (f)]).

If By, B; are trace class in End(Q(Z, F)), wo,w; € A(T*B), we put

(5.6) Tr, [woBy +wiBio] :=wo Tr[Bo), Tr, [woBo + wiB10] :=w; Tr[By].
By [9, Thm. 2.10], the form

(5.7) P, ) = (20) 0 Tro[27"" exp(—A%)]

is a closed odd form. Let us decompose p(A’,j ) = dt Ay + r, where 7 does not
contain dt. Then

0

_ 1 JZ,F
(5.8) 1) =——=¢Tr |27 (5

NZa
By the same argument as in [10, Thm. 2.11], we have v(t) = O(1) as t — 0 as well
as y(t) = O(t™*/?) as t — oo as in [3, Thm. 9.23]. So we can define (cf. [8, Def.
4.93]):

Ct) eXp(—Cf) .

DEFINITION 5.4. 7j(QZ, F),Ng, JZF dF) := ~ [ y(t)dt.

Then the degree zero part 70 of 7 is %n(D;g;) for the fibrewise operator in
(4.2). By the argument in [9, Thm. 2.10], as in [8, Thm. 4.95] we have

(5.9) di(QUZ,F), Nz, J%F df') = / L(VTZ) A p(VE, J5).

z
Since the fibres Z are odd-dimensional, we must specify our sign conventions when
integrating differential form along the fibres Z. If o € §2(B), 8 a section of A(T*Z)
on M with compact support, then [, 7*(a) A 8 = « [, . This sign convention is
compatible with the sign convention of Tr in Subsection 3.4.4 and (5.7).
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REMARK 5.5. Assume that n is odd. In [21, (233)], Lott defined also an even
form ptott(A’, JW(t)). Actually, ptt*(4’, JW (t)) = 0. In fact, we only need to
show plott(A’, JW (1)) = 0. Set A = AD) 4277

P (AT (1) = Ven 9Ty [0 (<)Y exp(- 47)]
= Ven oI, [2777 (-1)"% exp(- 47)].
Now A preserves the parity of the Nz-grading, while 27 7 changes the parity

of the Nz-grading. Thus the above trace must be zero. It also follows from this
observation that the eta form in {21, (238)] is zero if n is odd.

(A— AM). If we use our notation,

We now describe how ﬁ(Q(Z, F),Nz,J%F dFf ) depends on its arguments.
Let (THM, gT%, JF), (T'F M,g'T%,.J'F) be two triples of geometric data. We will
mark the objects associated to the second triple by ’.

Let L(TZ,VT% V'T7) be the transgression of the L-form such that

dL(TZ,Vv"7 V' T2 = L(VT?) - L(V'T?).
THEOREM 5.6. Modulo exact forms on B, we have
(U2, F), Nz, %7, d") = (U2, F), Nz, 7, d")

= / L(TZ, V"% N T2 A p(VE, JF) + / L(TZ, V' T2 Ap(VE, JF, JF)
z z
_ﬁ(vH(Z,F)’JH(Z,F)7J’H(Z,F)).
PrOOF. Note that if n is odd, J?(%F) changes the parity of the Nz-grading
on H(Z, F), thus p(VH(Z ) JH(ZE)) 5(7H(ZF) ) are zero. Now this equation
is a formal consequence of (5.5) and (5.9). O

5.2.3. Adiabatic limits and the formula of Dai. We keep the notation which
was introduced in Subsection 5.2.2. Furthermore, we assume that dim Z := n is
even and that B is closed, oriented, and of odd dimension ng such that ee,yp, = 1.
We choose a Riemannian metric g7 2 on the base B. Using the horizontal distribu-
tion TH M, we define the family of Riemannian metrics g7M := n*¢"F @ £ ¢7%,
T > 0. The orientations of B and T'Z induce an orientation of M. Let DE := DS
be defined as in (4.2) using the metric g2 and let n(D¥) be its n-invariant. On
the base B we consider the twisted signature operator D(%F) .= Diif(:}’ ry and
its n-invariant n(D¥(%F)) with respect to g7Z, JH(ZF),

There is a decreasing filtration of the cohomological group H{(M,F) and a
Leray spectral sequence (s Er, Lsdr) (r > 2) with 1 s EY'? = HP(B,H%(Z, F)) con-
verging to GrH*(M, F). In the present smooth model this spectral sequence is asso-
ciated to the filtration of Q(M, F') given by FFQ(M, F) = @4>,7*QY(B, U Z, F))
(cf. [17, §3.5]). Then s E&? = QP(B,Q4(Z, F)). The induced 1-symmetric pairing
1sEY @ sEyY - R, p+g+s+t=dimM, p+s= N =dimB, is given
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by (4.1). In particular, it is non-degenerate. This spectral sequence with duality
structure gives rise to the integer 572(Z, F) := m2(p5FE«) as in Definition 4.8.

Let VTP be the Levi-Civita connection on TB. Let L(VTF) be the corre-
sponding L-form on T'B. We can now state the main result of [16].

THEOREM 5.7 (Dai [16, Thm. 0.3]).

. Fy _
Jim n(Dr) =

n(DHEF) 4 2/ L(VTBYAG(UZ, F), Ny, J?F dF) + 15 po(Z, F).
B

5.2.4. The n-form and complezes. We make the same assumptions as in Sub-
section 5.2.2. In addition we assume that F admits a Z-grading Nr of length np
and a compatible differential v. Let H be the cohomology of v. Let H be the flat
vector bundle corresponding to H.

We choose a metric structure J¥ on F such that it is compatible with Np.
Then we obtain an induced metric structure J¥ on H.

We modify the construction of the eta form in Subsection 5.2.2 by replacing
d¥ by d := d¥ + v. This differential is now a flat (—1)N-superconnection, where
N := Nz + Nr is the total grading. Here N is a grading of length n 4+ nr which
is compatible with the form ¢z p.

The cohomology of the zero part d%F +v of d is the fibrewise hypercohomology
‘HH of the complex (F,v) along the fibre Z. By HH we denote the corresponding
bundle which acquires an metric structure J?¥ induced by J%¥.

We now introduce the rescaling. Let again B := (0,00) x B and pr: B — B
be the projection. We consider the bundle M := pr* M over B together with the
canonical projection Pr: M — M. We define (F,§r, T M,9, Np) := Pr*(F, qz,
THM, v, Nr). We obtain the (by N = N; + NF) Z-graded ee,—duality bun-
dle Q(Z, F) over B with the (—1)"-superconnection A’ := d = df + 5. We fix
the vertical metric g4 which restricts to t~'¢7% over {t} x M. Furthermore,
we consider the metric structure J* which restricts to ¢~ Nr/2+nr/4 JF¢Np/2=nr/4
= JFtNr=nr/2 (¢f. Definition 3.14) on {t} x M. These choices induce the metric
structure J on Q(Z, F). The form p(4’,J) € Q(B) is now well-defined as in Sub-
section 5.2.2. Let us decompose p(A’, J ) = dt Ay +r, where r does not contain dt.
Here «: (0,00) — Q(B) is a smooth family of forms on B.

LEMMA 5.8. We have v(t) = O(t™%/%) ast — oo and vy = O(1) ast — 0. The
form

#A(Q(Z, F),N,J?F d) := — /Oo y(t)dt
0
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satisfies
di((Z, F),N, J#F, d)

_ [z LVTZ) Ap(VE, JE) — p(VHH  JHH) if n is even,
[z LVT?) A p(VE, JT) if n is odd.

PRrRoOOF. This lemma can be shown using the techniques of the proof of [12,
Thm. 3.21], [9, Thm. 2.10]. O

There are two spectral sequences of locally constant sheaves of finite-dimen-
sional real vector spaces which converge to the hypercohomology HH of (F,v)
along the fibre Z, namely the fibrewise hypercohomology spectral sequence
(he€ry hedy) and the fibrewise local-global spectral sequence {;4&y, ;4d,). Both are
obtained from filtrations of {2(Z, F) which are compatible with the duality. There-
fore, we obtain e, duality structures g, g, and g,, g, induced by gz r. Let N, g,
N, g, be the Z-gradings on p.E,, 4 E, induced by N. We further obtain corre-
sponding metric structures J neBr gnd JiwBr Let hedy be the adjoint of j.d, with
respect to JreEr. We identify p.Gr(HH) = € and ;;Gr(HH) = ;€4 (cf. Sub-
section 4.4.2).

To consider the case of even and odd n in parallel we adopt the following
convention. If n is even, then the eta form of a complex or a filtration was defined
in Subsections 3.4.4 and 3.4.5, respectively.

If n is odd, then we proceed as in (5.7). Note that ,.d, + r.df commutes with
JrePr We form ped i= VreBrd"™ 4 () d, + pd?)o. By [7, Prop. 2.12], [27, §5],
the form

(5.10) PIVIET 4 ody, JHE7) 1= (20) /20 Try [277 exp(—1cA%)

is an exact odd form. To define the n-form #A(n.&r, N, &, Jo=P" ped.) we now
employ the usual rescaling induced by the Z-grading N, g,. As in [8, Thm. 2.43],
[7, Thm. 2.17], it is a closed form on B, and its cohomology class is %[ch(thr,w) -
ch(;.Er <0)], where p.E, -0 and p.Er <o are the sub-bundles of ,.E, associated
to positive or negative eigenvalues of z”7 netfr (hedr + ned?). In a similar manner we
define 7(;o&, N, ¢, , Jisér,.d,) associated to the local-global spectral sequence.
We do not change the definition of the n-forms of the filtrations.

The following theorems are the main ingredients of the proof of well-defined-
ness of the secondary index map.

THEOREM 5.9. Modulo ezact forms on B we have
A(UZ, F),N,J%",d) = 7(UZ, F), Nz, J**, d")
+ Z ﬁ(hcgr’ thEr’ ‘]hCET’ hcdr) - ﬁ(HH, thr(HH)7 JHHa JhCGr(HH>)'

r>1
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THEOREM 5.10. Modulo exact forms on B we have
H(Z, F),N,J%F,d) = #(Z, H), Nz, !, d")
+ D 7itgEr Ny, 05 1gdy) — 7i(HH, 1gGr(HH), JHH, s

r>2
+/L(VTZ)/\7?(F,NF,JF,U).
VA

The proof of both results will be sketched in Section 6. Note that if ng is odd,
then 7#(Q(Z,F), Nz, J%F dF) = 0 and 4(Q(Z, H), Nz, J%H d) = 0, as J5F
changes the parity of Np-grading.

5.2.5. The n-form of an iterated fibre bundle. Let W,V,S be smooth man-
ifolds. Let my: W — V, my: V. — S be smooth fibrations with compact fibres
X and Y, respectively. Then m3 = mp om: W — S is a smooth fibration with
compact fiber Z of dimension n. Let ng = dim X, mg = dimY. Let TX,TY, TZ
be the corresponding vertical tangent bundles. We assume that TX,TY,TZ are
compatibly oriented such that we have an iterated fibre bundle with compatible
orientation as in Subsection 2.5.2.

Let F be a locally constant sheaf of finite dimensional real vector spaces over
W with a e-symmetric duality structure gr. We choose a metric structure J on
F := bundle(F).

By taking fibrewise cohomology we obtain locally constant sheaves of finite-
dimensional real vector spaces H(X, F) over V, and H(Y, H(X,F)) and H(Z,F)
over S. These come with induced duality structures g (x, ), 9H(z,7)> Ty, H(X,F))-

We choose horizontal sub-bundles 7# W, THV , THW, i.e., complements in
TW, TV, TW to TX, TY, TZ. Furthermore, we choose vertical metrics g7%,
g%, g™ on TZ, TX, TY. Then we obtain induced metric structures J#(X:7),
JH(ZF)  JHHXF))

Let VTX, VY VT2 he the connections on TX, TY, TZ which are induced
by the choice of horizontal subspaces and vertical metrics (cf. [5, Def. 1.6], |3,

Prop. 10.2]). We get a further connection °V' 7 = miVTY @ VIX on TZ =
TX & (TEW NTZ). Let L(VTX), L(VTY), L(VTZ), L(°V"?) be the associated
L-forms as in Subsection 5.2.2. By E(TZ, vTZz, OVTZ) we denote the transgression
L-form such that

(5.11) dL(T2,v7% V"% = L(vT%) — L(OV" 7).

Since the fibre Z has the structure of a fibre bundle, we have a fibrewise
Leray spectral sequence (1€, sd,) (r > 2) of locally constant sheaves on S (cf.
also [24, Prop. 2.1]). All terms have ee,—duality structures g, ¢, induced by gz r
on Q(Z,F). The Z-gradings N, ¢, (induced by Nz) and the differentials rgd,
are compatible with the duality. In particular, we bave p g€ = H(Y,H(X,F)).
Hence, we have an induced compatible metric structure Jrséz := JHYH(X.F)
Since the other terms are obtained by taking cohomology successively, we get
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induced metric structures JLsér on g€ for all » > 2. Thus we can define
(1sEr, N, se,, J25E sd,) (with the usual modifications if one or two of the
dimensions ng, mg are odd, see the remark below).

There is a filtration on H(Z,F) and a natural isomorphism GrH(Z,F) =
1.5Es- Therefore, we have the form J(H(Z, F), € JHZF) JrsEe) ag in Def-
inition 3.18.

The following theorem provides the relation of the n-forms of the total fibration
73 with the n-forms of the partial fibrations m; and mp. It is the main ingredient
in the proof of the fact that the secondary index map is functorial with respect to
iterated fibre bundles.

THEOREM 5.11. The following identity holds modulo exact forms on S:

A2, F), Ny, J7F dF) = / L(VTY) AR(QUX, F), Nx, JXF, dF)
Y

+ (Y, H(X, F)), Ny, JOHEXF) gHX.F))
— HH(Z, F), 1,500, JHET) | Jrstioo)

+ Z ﬁ(LSgT‘y N[,sgm JLSFJrv LSdr)

r=2

+ / L(T2,9V"% 99" 7Y A p(VF, JF).
Z

PRrROOF. The proof of this theorem will be sketched in Subsection 6.5. The for-
mula above arrises from a detailed investigation of the adiabatic limit of (S Z, F),
Nz, J5F dF). O

REMARK 5.12. Theorem 5.11 has four cases. Assume first that n is even. Then
7(UZ, F),...) and 7(s&r, - . .) are defined as in Definitions 5.3, 3.15. If ng is even,
then A(Q(Y, H(X,F)),...), n(§«X, F),...) are defined as in Definition 5.3. If ng
is odd, then 7(Q(Y, H{(X,F)),...), i{QX, F),...) are defined as in Definition 5.4
and 7(Q(Y, H(X,F)), ...) is zero by the remark following Theorem 5.10.

Assume now that n is odd. Then 7(Q(Z, F'),...) and 7j(1s&r, . . .) are defined as
in Definition 5.4 and Subsection 5.2.4. If ng is odd, then #(Q(Y, H(X, F)),...) and
A(Q(X, F),...) are defined as in Definitions 5.3 and 5.4 and #(Q(Y, H(X, F)),-) is
zero by the remark following Theorem 5.10. If ng is even, then (X, F),...) is
defined as in Definition 5.3 and 7(Q(Y, H(X, F)), . ..) is defined as in Definition 5.4.
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5.3. Definition of the secondary index maps.

5.3.1. The map rlle® Let M — B be a smooth locally trivial fibre bundle
with even-dimensional closed fibres Z over a compact base B such that the vertical
bundle TZ is oriented. We set n := dim Z, €, = (—1)["3°].

In [21, §3.6], Lott constructed a secondary index map

mEsert Lo (0) — L1 (B)
which fits into the commutative diagram

HY*=¢(M,R) —— LF"(M) —— LY%(M) —— Kg},(M)

sign L,Lott L,R/Z sign,R/Z
o | s | | o

HY=(B,R) —— LI(B) —— LX(B) —— Kg}(B).
We recall the definition of 72"“*" We choose a metric g7% and a horizontal
distribution TH M. This fixes a canonical connection V72 on the vertical bundle
TZ.

DEFINITION 5.13. Given a class [F,qr,JF, p] Lott € L% (M), its secondary
index is defined by

WE,LOM []:) qr, JF7 p]Lott =

(M. F) iy, 775, [ LOV72) N (U2, F), N, 720
4

Lott

By [21, Prop. 32], 7r*L Lot i well-defined. In particular, it is independent of

the additional choices.

5.3.2. Construction of wf. We can now define the secondary analytic index
map )
7l L(M) — L., (B).
Recall that we have surjective homomorphisms
L (M) — L(M), Lg&*(B) = Lec,(B).

DEFINITION 5.14. We define 775 by the condition that the following diagram
commutes:

ﬂ,f,Lott

e

! l

L

Z’e(M) _'ﬂ}_’ Eesn (B)

THEOREM 5.15. The index map Wf’b‘m induces a well-defined secondary index

map i
ﬂf: L{(M) — L, (B).
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PROOF. Let [F,qr,J",p] € L{(M) and L C F be a locally constant la-
grangian subsheaf. We must show that

(6:12) [HZ.F) iz, U7, [ LTT2) A p = QU2 F), Ny, T )]

= [o,o,o,/ZL(vTZ)/\(p+ﬁ(f,qf,JF,£))]

We repeat the construction of G, g.qr, J°C, vg, etc. from Subsection 4.5.2 to write
(513) ——ﬁ(]:aqfaJF7E) =T~I(g,Ng7Jg7Ug)-

We consider the sum G° @ G? together with the corresponding form and metric
structure. Note that

0 2
[H(Z,6°) & H(Z,G%), ar(z,g0)0m(z,g2), JTEIIPHZG) o] = 0.
Moreover, we have 7((Z, G® & G?), Ny, JE°®CG* 424G ®G*) = 0. Thus
[H(Z7 -7:)7 q’H(Z,f)v ']H(Z7f), / L(VTZ) A p— ﬁ(Q(Z7 F)7 NZ: JZ’F7 dF)]
A
= [P anizr, 1D, [ LVT2) 7 p = (U, F), Nz, 555, d")]
z
+ [H(Z,6°) e H(Z, 92),qH(Z,QO)e;H(z,g%JH(Z’QO)$H(Z’92)70]
= [H(Z7 g)a qH(Z,G)» JH(Z’g)v / L(VTZ) ANp— ﬁ(Q(Zz G)> NZa JZ’Ga dG)] .
Z
Next observe that we have H(Z,G) = n.&1. This relation respects the other struc-

tures. Let HH be the fibrewise hypercohomology of the complex G along the fibre
Z. Using Lemma 3.16 repeatedly and finally Lemma 3.19, we get

(M2, 5) i 4D, [ LIT2) N p = QU F), Nz, 70
= [hch,th&, Jhez /Z L(VTZY A p — (U Z,G), Nz, J%C , d%)
— i(he€1s Nyogys I, hcdl)]
- [hcé'oo,thgw,Jthm,/ZL(VTZ) Ap—i(QZ,G), Nz, J5C d%)

- Z ﬁ(hcgm NhCE'ry Jthr’ hcdr)j|
r>1
= [HH,QHH,JHH:/ L(VTZ) /\p_ ﬁ(Q(Zva)’NZ7JZ7G,dG)
A
- Z ﬁ(hcgﬁ N;LCEM JhCET7 hcdr) + f](HH, thI'(HH), JHH, JGr(HH) )] .

r>1
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(Note that in fact HH = 0.) We now apply first Theorem 5.9 and then Theo-
rem 5.10 to conclude that

[H(Z:]:),QH(Z,J-')JH(Z’F),/ L(VTZ)/\P—ﬁ(Q(Z,F%NZ,JZ’Fde)]

zZ
_ [HH, . J”H,/ L(VT%) A p— #(Z, G), N, JZ*G,d)]
zZ

= [Mt,awn, 377, [ L(977) A (o= (6, N, %, v0)

= 3 g€ Nyyines 55 1gde) + (M, 1 Gr(HH), JHH, o Cr(HID) ]
r>2
Remark that in this case, jo£, = 0 for r > 2 and HH = 0, as § is a short
exact sequence. By (5.13) and the above equation, we get (5.12). The proof of
Theorem 5.15 is complete. O

5.4. Functorial properties.
5.4.1. Compatibility and naturality. The following two propositions are imme-
diate consequences of the definition of the secondary index map.

PROPOSITION 5.16. The following diagram commutes:

HY¢(M,R) —— L(M) —— L(M)

| ]
HY¥~¢n(B,R) —— L, (B) — L, (B).

PROPOSITION 5.17. The secondary index map is natural with respect to pull-
back of fibre bundles, i.e., given f: B’ — B we consider the pull back

a3V LNV

S

B ! B,

where f*M — B’ has the induced fibrewise orientation, and we have (f*m)E off =
f*o 7r£ .

5.4.2. Functoriality. We adopt the notation of Subsection 5.2.5. In particular,
we have smooth fibre bundles m1: W — V, my: V. — S with closed fibres X, Y.
The composition 73 = mp om1: W — S is a fibre bundle with closed fibre Z. Let
n =dim Z,ng = dim X, mg = dimY such that n = ng+mgy. We assume that n,ng
are even. Furthermore, we assume that the relative tangent bundles TX, TY, TZ
are compatibly oriented.
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Note that €, = €,€m,- We have well-defined secondary index maps

15t Le(W) = Lee, (8),
7k, L(W) = L., (V)
ﬂ-QE’*: E(Cng (V) - Eccn (S)

THEOREM 5.18. We have the equality of homomorphisms L. (W) — L., (S):

L
3

_ L L
T kT 7T2,* © //Tl,*‘

PROOF. Let (F,qr,J ¥ p) represent some element of L.(W). Then the ele-
ment WBI; JAF,ar, JE, p] is represented by

[H(Z’ F), aH(Z,F)> JH(Z’J:)’/ L(VTZ) Ap—1(QZ, F), Nz, JZ’F7 dF) .
z
There is a filtration of H(Z, F) such that the corresponding graded sheaf is the
limit ;g€ of the fibrewise Leray-Serre spectral sequence. Using Lemma 3.19, we
get
ﬂ'g*[]:vq]:a Jva]
= [H(Z7 ]:)7 QH(Z,]-')y JH(Z’f)tf L(VTZ) A P— ’F](Q(Z, F)7 NZ7 JZ’F> dl):l
z
— [esEs st 757, [ (V77) A p = H(OUZ, F), Nz, JF, dF)
z
~ (H(Z, F); 1560y TIET), JroE) .

Note that H(Y, H(X, F)) = g€ with all induced structures. Next we use Lemma
3.16 several times to get

ﬂ-??,*[fz QJ-HJF:P] = [H(KH(Xa -7:))>qH(Y,’H(X,}')))JH(Y’H<X7‘F))7

/ L(VTZ) A p — (2, F), Nz, J%F  dF)
Z

— A(H(Z, F), 15€u0, JTED), J552) £ 3 1560, Ny, 57, 1iodr)]

r=2

Now we start with the other side. We have
Wi*[j:>q}—7 Jpr]

= I:H(X7]:))q’H(X,f)7JH(X’}.)7/ L(VTX)/\pu'F](Q(X7F)7NX7JX7F,dF)j|-
X
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Furthermore, we get

(77'2[:* ° Tr]{*)[f7 qr, JF7 p]
= [H(K H(Xa ]:))7 q'H(Y,'H(X,]:))a JH(Y’H(XJ:)%

+ / L(VTY) A (/ L(VTX) A p— (X, F)7NX7JX,F7dF)>
14 X
- 7(Q(Y, H(X, F)), Ny, JYaH(XJ:)’dH(X,]-‘)]

Thus the assertion of the theorem is proved if we show that

(5.14) / L(VTZY A p — (U Z, F), Nz, J5F  dF)

- 'F](H(Z,}-), LSgOO7JH(Z7]:)1JLSEm) +Z'F](LSgraNLsEMJLSEP,LSdr)

r=2

z/ LVTY) A (/ L(VTX)/\p—’f'](Q(X,F)’NX’JX,F7dF)>
Y X
— H(QY, H(X, F)), Ny, JYPHEF) gHX.F)

modulo exact forms. Note that we have
/ L(VTY) A / L(VTXy A p
Y X

= / asLIVIYYAL(VTX) A p
z

- / (L(VTZ) Ap—dL(TZ, V7% 0972y A p)
z

- / (B(9"%) Ao~ (TZ,97%,°V"%) A dp)
A

- / (L") A p = (T2, V77,°97%) A p(VF, J7)).
z
Using this identity, we see that (5.14) is equivalent to
— H(QUZ, F), Nz, J2F ,d5) = 5(H(Z, F), L5Eoo, JH ), Jrsbieo)

o0
+ ZFI(LSgr»NLSEMJLSETaLSdr)
r=2
= —/ L(TZ,VT% OVT2) A p(VF, JF)
Z

- / LIV ) A (QUX, F), Nx, J5*,d")
Y

— QY H(X, F)), Ny, JWH ), gOHXT)),
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The latter relation, however, is exactly the assertion of Theorem 5.11. O

5.5. The index map for L& and L¢*.

5.5.1. Definition. Let w: M — B be a fibre bundle with even-dimensional
closed fibres Z of dimension n. We assume that the relative tangent bundle TZ
is oriented. Furthermore, we assume that B is closed, oriented, and of dimension
m such that ee, e, = 1 and m is odd. Let (F,gr) be a locally constant sheaf of
finite-dimensional real vector spaces on M with an e-symmetric duality structure
qr. Recall from Subsection 5.2.3 that in this situation we have the Leray spectral
sequence (rsE., rsd,) (r > 2) of finite dimensional vector spaces which carries
induced duality structures ¢, g,.. It gives rise to the integer

Ls72(Z, F) = 12(1sE.) = > _7(1sEr,qu5E, Nysk,, Lsdr)-
T>2

DEFINITION 5.19. (1) We introduce the extended primary index map w,{‘ex :
L(M) — Lg (B) by

T Far, 2] = [H(Z7 F)yarw(z,7), % — 15T2(Z, F)]-

(2) We introduce the extended secondary index map 7L : L&(M) — L (B) by

ﬂ-lzex[f’ q}—v']F7p7z] = [H(Z7]:)7q7-t(Z,}')u JH(ZJ:)a

/ LIVTZY A p = ii(UZ, F), Nz, J#F,d"), 2 — sma(Z, F)|.
7

THEOREM 5.20. 7E™° and erx are well-defined.

PROOF. Let #2™: £&5(M) — L% (B) and #X°: L(M) — L2 (B) be given
by the above formulas.

LEMMA 5.21. We have

n(FE (Foar, I p,2)) = 0(F,qx, 15, p, 2).

PRrROOF. This is just a reformulation of Theorem 5.7. In fact, since the 7-
homomorphism of Definition 4.18 is independent of the metric, we can perform
the adiabatic limit and obtain (using that in this limit L(VZM) — x*L(VTB) A
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L(VTZ) (cf. [24, Thm. 5.1]))

n(j:yqfv JF’P7Z) = n(D;‘*gn) - 2/ L(VTZ) A p—z
Z
= (D3 7)) +2 /Z L(V"P) Nii(QUZ, F), Nz, 7T, dF)

+ 15l F) 2 [ L) [ L A g
B VA
=n(H(Z,F), ar(z,7), T Z),
/ L(V') N p=ii(QUZ,F),Nz,J%",d"), 2 — 1s72(Z, F))
A

= n(frfex(qufv‘]F?pv Z))

LEMMA 5.22. wL™ is well-defined.

PROOF. Assume that (F,qr,J,p,2) € Iiﬁx(M) satisfies (F, qr, J,p,2) ~ 0.
Then we have [F, qr, J, p] = 0 in L (M). Since ¥ is well-defined, we have w2 ([F,
gr,J, p]) = 0. By an inspection of the definitions we further observe that #L” (F,
qr,J,p,z) ~ (0,0,0,0,u) for some u € Z. We must show that u = 0. In fact, since
the n-homomorphism is well-defined, we can compute (using also Lemma 5.21)

0 =n(F,qp,J,p,2) = 7L (F,qr, J, p,2) = 0(0,0,0,0,u) = —u.

LEMMA 5.23. #l™ is well-defined.

PrOOF. Let (F,qr,z) € ﬁSX(M) satisfy (F,q,z) ~ 0. Then we can find a

metric structure J¥ and a form p such that (F,qx, J¥, p, 2) ~ 0 in LE(M). It
follows from Lemma 5.22 that

#L(F qr, JE, p,2) ~ 0.

This implies 727 (F, q,2) ~ 0. ]

REMARK 5.24. The assertion of Lemma 5.23 should have a purely algebraic
proof. In particular, such a proof should be independent of analytic results about
n-invariants and n-forms. We were not able to find such an argument.

The proof of Theorem 5.20 is now finished. 1

Let us state as a corollary the following consequence of Lemma 5.21.
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COROLLARY 5.25. The following diagram commutes:

L=(M) —— R

fex
T

L= (B) —— R.

5.5.2. Functoriality. We adopt the notation and assumptions of Subsection
5.4.2. In addition we assume that S is compact, the dimension ng is odd, and
€€ntng = 1. We have well-defined extended secondary index maps

Tt LX(W) — L (S)
7T1 o LEW) = L (V)

e L (V) = LE ().

THEOREM 5.26. We have the equality of homomorphisms L{(W) — L. (S):

Lex Lex LGX
Tr'%* _7T2* 071'1*.

PROOF. Let [F,qr,J¥,p,2] € L (W) be given. Then we have in view of
Theorems 2.22 and 5.18

W%,*([]:>q.7'_) 7p]) ( L Oﬂ-l*)([f qJTvJpr])_O
Thus

7T3* ([}- qr,J va7 Z]) 2L‘:‘ oﬂlLix)([fv qu‘]va’ z]) = [0,0,0,0,U]

for some u € Z. We must show that u = 0. We again use the n-homomorphism
and Lemma 5.25:

—u =n(0,0,0,0,u)

_,'7(”3*([]: q]:, 7)07 ]))‘ﬂ((”z{i Oﬂ-l*)([]: QF, ,P,Z]))
:ﬂ([]::Qnyj ,p,Z]) 77(’”1*([]: qfa‘] apvz]))

=n(lF,q7, 9", 0, 2)) = 0([F, g7, ", p, 2])
=0.

REMARK 5.27. We conjecture that we also have

5. =75, o, .
There should be a purely algebraic-topological proof of this identity. This together
with Theorem 2.22 would again imply Theorem 5.26. Unfortunately, we were not
able to find such a proof. The difficulties are very similar to the problems in an
algebraic approach to Lemma 5.23.
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In fact, we could conclude the well-definedness and the functoriality of L
from a combination of these hypothetical algebraic-topological results with Dai’s
formula for adiabatic limits of n-invariants and the well-definedness of the 7-
homomorphisms. In this case we would obtain an independent verification of the
adiabatic limit results for n-forms.

6. Adiabatic limits - sketches of proofs

6.1. Remarks. This section contains the proofs of the assertions about adi-
abatic limits of n—forms and invariants which were formulated earlier. The general
techniques were developed mainly in the work of Bismut and coworkers, but also
by Dai and others. Unfortunately, the details were worked out in specific cases
which are similar to the situations of the present paper, but not exactly the same.
In order to show the results needed in the present paper one can use the methods
after adaptation.

We decided to choose for the present section a coarser level of detailedness
of our arguments. While Subsection 6.2 is still rather detailed, in the remaining
subsections we just stated the main intermediate results with references to the
literature, where proofs of similar results in slightly different situations can be
found, which can be adapted to the present cases. It is not by coincidence that
the formulations of these intermediate results in the last three subsections almost
agree.

6.2. The proof of Theorem 4.17. Let ¢ € Z;. We assume that M is a
smooth closed oriented Riemannian manifold of odd dimension m such that €e,,, =
1,i.e., m = —e mod 4. Let (F, qr) be a locally constant sheaf of finite-dimensional
real vector spaces with e—symmetric form. Furthermore, let Np be a compatible
Z-grading of length nr and v be a compatible differential on F. By (H, gx) we
denote the associated cohomology. We choose a compatible metric structure J¥
on F and let J¥ be the induced metric structure on the cohomology H. Then
we can define the operators DZ5" and D3f" as in (4.2). In the present section we
sketch the proof of the following formula.

THEOREM 6.1 (Theorem 4.17). We have
n(DF") = n(D3") =2 / L(V"™) Nii(F, Np, JF,v) = 7(F, 47, NF, ).
M

PROOF. We are going give a detailed sketch of the proof. The methods have
been developed in connection with similar questions about analytic torsion (forms)
and for the study of adiabatic limits of n-invariants. The proof of Theorem 4.17 is
achieved by adapting these methods correspondingly to the present situation.

We abbreviate D = D}#". Let JM'F be the metric structure on Q(M, F)
induced by J¥ and the Riemannian metric g7 as in Subsection 4.3.1. We proceed
with v in the same manner as we did for d” to define D. We introduce W :=
JMFy + yJMF and set D := D + W. Note that D is not a compatible Dirac
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operator. Therefore, we must define its n-invariant by zeta function regularization.
Thus, we define the n-invariant 7(D) as the value of the function

1 ® —tD? 51
S ————~ Tr De t°"2dt
I(s+3) Jo
at s = 0, where the integral converges for Re(s) > 0 and has a meromorphic
continuation which is regular at s = 0. In fact, we will see below (Proposition 6.4)
that the integral converges locally uniformly for Re(s) > —3.
For T > 0, we define the rescaled metric structure

JE(T) := T~ Nr/24ne/d JEpNr/2=ne /4

Let JM-F(T) be the metric structure on Q(M, F) induced by J¥'(T) and g™ and
define D(T') using J™¥(T). Then we have

Dy :=TN?2D(T)TN*/2 = D + T'?W.

Note that Dy = D is well-defined. Furthermore, we have n(Dr) = n(D(T)).
Below we show that n(Dr) is independent of T € (0, c0). We obtain the proof of
Theorem 4.17 by considering the limits 7' — 0 and T — oo.

PROPOSITION 6.2. (D) is constant for T € (0, 00).

PRrOOF. By Hodge theory the kernel of D(T) for T' € (0, 00) can be identified
with the cohomology of the total complex (M, F),d¥ +v), i.e., with the hyper-
cohomology HH(M, F'). The kernel of Dr is isomorphic to the kernel of D(T") and
thus has constant dimension. It follows that n(Dy) is a smooth function of T, and
its derivative is given by the coefficient —% b_1/2, where b_; 5 is a coefficient of
the asymptotic expansion

Tr%DT—Te'tD% D bt
i€3Z

We now show that we can apply [8, Lemma 2.11] which states that b_,,, = 0.
Let D be the restriction of DM := JMd + dJM to Q(M)*, where JM de-
notes the metric structure on Q(M) induced by the Riemannian metric g7 ™.
By D' we denote the twist with F, or, what is the same, the restriction of D
to Q°V(M, F) (the superscript refers to the form degree). We have an isomor-
phism 27" Qdd(M, F) = Q°¥(M, F) such that we can identify Q(M,F) =
QY (M, F) @ Q' (M, F). In this identification D and W correspond to

DF 0 0 W
o DF)" \wy, o)

Up to the sign, D has the form {8, (2.5)]. The role of that sign in the argument of
[8, Lemma 2.11] is to assure that the anti-commutator of the Dirac operator and
the potential is a zeroth-order operator. Since in our situation DW + WD is still
of zero order, the argument of [8] applies. O
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Let per1 := pei(F,qr, Nr,v) be as in Paragraph 4.4.2 associated with the
hypercohomology spectral sequence.

PROPOSITION 6.3. For T € (0,00) we have n(Dr) — (D) = pem1-

PRrOOF. n(Dr)—n(Dy) is the difference of the numbers of eigenvalues (counted
with multiplicity) of Dy which become positive and negative when T moves from
0 to positive values.

The eigenvalues of Dy which tend to zero as T — 0 can be described in terms
of the hypercohomology spectral sequence (pcEr,ncd-). We employ the method
developed in [4, §VI]. In particular, we realize the spaces p.E, using Hodge theory
to obtain natural metric structures J»<F- induced by JZ%F.

Fix r > 1 and ¢ > 0 sufficiently small. We can find a > 0 such that +aT"/?
is not in the spectrum of Dy for T' € (0,¢). Let Pty := Ep-r/2p,.(~a,a) be the
spectral projection, i.e., the orthogonal projection from Q(M, F) on the direct
sum of the eigenspaces of T~ /2Dy associated to eigenvalues lying in (—a,a).
Then as T — 0 the spectrum of T~7/2 Dy P?r converges to the spectrum of
heDy i= pedp JreBr 4 JneBry d, (cf. [4, (6.55)]). This implies (using Definition 4.7
and Lemma 4.6 for the second equality) that

n(Dr) = (Do) = Y _ sign(neDr) = heTi-
r>1

O
Recall the definition of the families of forms (t) in Q{M) which enter the

Definition 3.15 of 7(F, Nr, JF,v). Recall also that L(VI™) is defined in Subsec-
tion 4.2.2.

PROPOSITION 6.4. There is some N € N such that

Tr Dre~ 07 = Qﬁ/ LVIMY Ay (Tt) + t/20(1 + TN EY).
M

PRrOOF. This follows from [8, (3.1)] and some local index theory calculation.
In fact, our operator is (locally) the spin Dirac operator twisted with the tensor
product of the spinor bundle and F. This explains the appearance of the L-form
above and the matrix structure of D, W in the proof of Proposition 6.2. |

It follows from Proposition 6.4 and the fact that v(t) = O(1) as t — 0 (see
[21, Prop. 29]) that

_p2 dt
TI(DT / TI‘D e t’DTt—l/_Z‘
If we choose o > 0 so small that 1 — a > lﬁfNN, then we have
p—1ta
Th_{réo i T1/2t1/20(1+TNtN) 1/2 =0

and thus after some transformation
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COROLLARY 6.5.

—1+a

: 1 —tD2. at T™ = F
115nwﬁ/(J Tr Dot 0 = 2/M LVTM) A G(F, Ni, JF, v),

LEMMA 6.6. Given N € N, there are functions a;(z) bounded for z € [1,00)
and rn(t, T) bounded for T € [1,00), t > T~ such that

N-1
T V2T Dre Pt = 37 a; (T2 +tV2ry (t,T).

1=—n

PROOF. This is essentially [16, Thm. 1.7] (cf. [8, (4.81)]). In [16], the situation
is more complicated, since it corresponds to an infinite-dimensional bundle F' and
unbounded differential v, namely a fibrewise de Rham complex. But the proof given
in [16, §3] can be applied in our situation with many simplifications. First we write
Dy = TY2(T~'/?2D + W) so that the parameters = and ¢ in [16] correspond to
T-1/2 and Tt in the present paper.

The localization part [16, §3.1] is just the usual finite propagation speed ar-
gument. Now we construct the rough parametrix as in {16, §3.2]. Then we verify
that the proof of [16, Lemma 3.4] goes through in our situation. Note that formula
[16, (3.5)] simplifies a lot in the present situation. The remaining argument using
Duhamel’s principle can be taken without change. O

We employ the suggestive notation Dy, := D?}gn = JMHgH | gH JM.H and
establish the estimate which corresponds to [16, (1.14)].

PROPOSITION 6.7. Given o € (0,1), there exists constants C > 0, N € N such
that, for T > 1, t > T7'%% we have

C
TY/2min(1,tV)’

PrOOF. We decompose A*T*M @ F := Ey & E;, where Ey := ker W and
E, := Ej. Let Q be the projection onto Ey and Q+ = 1 — Q. With respect to this

decomposition we write
D Dr
DT = T,1 T2 )
Drs Dra

[Tr DTe_tD% —Tr Dooe*mgo | <

Dy is independent of T and can be identified with D.,. We extend Do, by zero
to C>®(M, Ey).
Let 0(A) C C denote the spectrum of the operator A. Let

Ur:={AeC| N <aVvT, inf [A—p|>ec},
NEU(DDO)

where ¢y, ¢z > 0 are sufficiently small and will be fixed below. Following [11, §9],
we first show the following lemma:
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LEMMA 6.8. For p > dim(M) + 1, there exist constants C > 0, Ty > 1 such
that, for T > Ty and )\ € Up,

(6.1) 1 = Dr) ™ — (A= Do) PQ|l, < == (1 + A,

vT
where ||.||1 denotes the norm on trace class operators.

PROOF. In some sense, this is a special case of [11, §9]. Instead of writing all
details we explain how the the arguments given in [11] can be employed in the
present case.

The operator Dr; = QDQ is as in [11, §9 (b)], but much simpler. Further-
more, Dr2 = —Q[D,Q] € C®(M,Hom(Eg, Ey)), Dr3 = Q+[D,Q] € C*(M
Hom(Eq, Ey)) are independent of 7' and bounded. Therefore, we have a stronger
version of the estimate [11, (9.38)].

If ¢ € C*(M, E,), then using elliptic regularity, the fact that DW + WD is
bounded, and that W | £, is injective, we obtain the estimate [11, (9.48)]:

(6.2) |Dréll* = (Dré, Dré)
= (9, (D* + TV2(DW + WD) + TW?) 9)
= |Dg|l* + T"/*(¢,(DW + WD)¢) + T|W |

> di(181ly1 e,y + (T = da2)l|¢II°),
where di,d2 > 0 are independent of T > 1 and ¢, ||.| denotes the L?-norm,
and W'(M, E;) is the L2-based Sobolev space of order one. We now conclude
[11, (9.104)): There are constants Ty > 1 and d3 > 0 such that, for T > Ty,
¢ € C®(M,E),
(63) IDr.48]l 2 ds(l6llwr o) + VTI9).

Thus there exists a constant C; such that, for T > Tp, |A| < %‘L\/T, we have [11,
(9.106)],

[(A=Dra) o) < —= f lll,
(A = Dra) ' dllwr .50y < Crlloll,

for all ¢ € C*(M, E;). The following estimates are proved exactly as in [11,
Prop. 9.18]. For p > dim(M) + 1, there is a constant Cy > 0 such that, for T > Ty,

Al < LVT,

Co
IA = Dra) Moo < IT
IA = Dra)~ M, < Co,

Ca

Dro(A—Dra) Mo < —=,
I Dr2( T,4)" |l <77
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where ||.||, denotes the norm of the pth Schatten class.
We now fix c3 such that o(Ds) N (—2c2,2¢2) C {0}. Furthermore, we assume
that at least 2c; < d3. Following [11, (9.120)], for A € Ur and T > Tp, we define

MT()\) = )\ — 'DTJ —_ DT’g()\ - DT74)_1DT,3.
We have the estimates which correspond to [11, (9.124)]: If ¢; is sufficiently small,
then there are constants C3 > 0, Ty > Ty such that, for 7' > T7, A € Ur, we have

Mz (N oo < Cs,

| D13 Mr(N) "o < Cs,
I Mr(X) < C’s(l + [AD,

Mz (A)7F = (A =Drr) Plh < \/—(1 +1ADP.

Note that in our case the operator defined in [11, (9.125)] is trivial, and this gives
the better power p instead of p + 1 in the last estimate above. Now we follow the
proof of [11, Thm. 9.23] to finish the proof of (6.1). O

Let 6 C C be the circle of radius ¢y centered at the origin and oriented counter-
clockwise. For T' > T3, we have o(Dr) Nd = 0. Let Pr and Py, be the spectral
projections of D and Dy, corresponding to the interval (—cz/2, c2/2). Recall that
Q is the projection onto Eo Then, for T' > T}, we have

PuQ = 5 /)\pl()\ Dr)™" — (A = Do) PQ) dA

We conclude from (6.1) that || P; — PooQ|l1 < Cy4/VT for some Cy independent of
T. Since Dy P.o@ = 0 and P, Dy, = 0, there exists a constant Cs such that, for
T Z Tla

(6.4) D1 Pr — Do P |l1 < [PrDr(Pr — P Q)) < 7—% .
We conclude that there is a constant Cg such that, for T > T7,

Cs
Ti/2°

(6.5) | Tr PrDre™Pr — Tr PuDooe P | <

Let A be the oriented path in C which goes parallel to the real axis from
—00 — icg to g — icy, then parallel to the imaginary axis to ¢z + ica, and then
parallel to the real axis to —oo + ico, and which goes parallel to the real axis from
00 +1icy to ¢o +icy, then parallel to the imaginary axis to ¢; —ice, and then parallel
to the real axis to oo — ico.

Let hp(A) be holomorphic on C \ iR such that hp (p= 1)( A =(@p-1De*. So
up to a constant it is the function f,_; as defined in [11, (9.165)]. In particular,
we have the estimate [11, (9.169)],

lhy(V)| < Cre~M ) X ea,
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where ¢4 > 0 and C7 are independent of A. We have

(1 — Pp) Dre P — (1 — Py) Dove™ Do
1 2
- _,/ e (A~ Dr)™' — (A Doo)"'Q) d
2mi A
L[ hy(t2N)
T oni Jy tetD/2 ((
We split the integral into the parts Ay (T) := AN{A € Ur} = An{|A < e1vVT}

and Ay(T) := An{|A| > ¢;VT}. Let p := dim(M) + 1. By Lemma 6.8, there are
constants Cg, Cy such that, for T > T, t > 0,

—Dr)™P — (A= Da) PQ) d.

1 hy(t1/2X) _ _
©8) g /., Home (0 -P0 7~ (0= rQ) ],
Cs —cat]A|? P Cy
< T1/2¢(p+1)/2 /AI(T) € (L+[ADPdA < T1/2¢p+1"

It follows from (6.2) that there is a constant Cj¢ such that, for all T > Ty, A €
A2(T)7

(A =Dr)7"lli £ Cro, (A= Deo) Q1 < Cho-
We obtain constants C1, Ci2, Ci3 such that, for all T > Ty and t > T~ 1+,

6.7) H% /AZ(T)%((A—DT)—P_(A—DOO)—PQ) a|,

Cn —eat|?| Ciz _corip2 Cis
< cath gy < ealt/2 < 10
= tlp+1)/2 /AZ(T)e = r2)2° = VTtwt+2)/2

We combine (6.6) and (6.7) to obtain

C'14
VT min(tP+1,1)

for T > Ty and t > T~*®, where C4 is independent of T, t. Together with (6.5)
this implies the assertion of the proposition. O

(68)  ||(1~ Pr)Dre Pt — (1 - Pu) Doge™ P2 | <

The estimates in Proposition 6.4, Lemma 6.6, and Proposition 6.7 are all
the ingredients which are necessary to perform the proof of [16, Prop. 1.8]. We
conclude

COROLLARY 6.9. For 3 > 0 sufficiently small, we have

T dt
2

lim Tr Dpe~tPr —

T—oo T-14a t1/2

=0

Fix 1 — a > [ > 0 such that Corollary 6.9 holds. Note that Tr Do tPo =
O(1) as t — 0 (cf. [9, Thm. 2.4]). The following is an immediate consequence of
Proposition 6.7:
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COROLLARY 6.10.

1 1
] _¢p2 At —D2, dt
7}1_15130 - Tr Dye™ T ryeie /0 Tr D€ a7

It follows from (6.8) that ||(1 — Pr)Dre~P7|; is uniformly bounded for T >
1. Since PrDyp > ¢ for all T > Ty, we have a constant C such that ”(1 —

Pr) e‘(t‘1)172%ﬂ1 < Ce 2 for all T > Ty, t > 1. We conclude that there is a
constant C such that, for all T > Ty,

|(1 = Pr) Dre~tPr||| < Cre~tez.
Using (6.8) and Lebesgue’s theorem about majorized convergence, we obtain

COROLLARY 6.11.

im [ Tr(1— PryDre® Y% _ [T (- poypePh 2
TI—I};l)o_l (_-T) re m_.l I‘(—OO) € com_

Note that Pr and P,, are finite-dimensional projections. Since D, Py, = 0 it
follows from (6.4) that the spectrum of PrDr converges to zero as T — oo. We
have

I 1 OOT PD —¢D2, dt . Z 1 > —tp? dt
Thee m Jy o TETC T Tl NV VP

p€o(Dr Pr)
= lim Z ! oos’ n(u)e™" @ _ oy Z sign(p)
- T}—roo ﬁ w2 1BIH ti/2 N Tl—rvréo 1BINA)-

pEa(Dr Pr) p€o(DrPr)

Let 1,72 1= 1472(F, ¢, N,v) be associated to the local-global spectral sequence
as in Definition 4.8.

PROPOSITION 6.12. We have

Jm oY sign(p) = gm.
p€a(DrPr)

PRrROOF. The eigenvalues of Dy which tend to zero as T — oo can be described
in terms of the local-global spectral sequence (;4E;,4d,). We apply the method
of [4, §VI| to Dy = TY/?W + D. In particular, we realize the spaces 1gEr using
Hodge theory to obtain natural metric structures J'» (induced by J-F').

Fix r > 2. We can find @ > 0, T} > 1 such that +a7~~1/2 is not in
the spectrum of Dy for T > Ty. Let Py := Ept-1/2p,(—a,a) be the spectral
projection. Then as T — 0 the spectrum of 7 ~1)/ 2DTP,ffT converges to the
spectrum of ;4 D, := lgerlgET + J’-‘?E’lgdr. This implies

lim Z sign(p) = Zsign(lgDr) = 1gT2

T—ooo
p€o(DrPr) >2

and hence the proposition. O
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Combining Propositions 6.2, 6.3, 6.5, 6.9, 6.10, 6.11, and 6.12 we finish the
proof of Theorem 4.17. O

6.3. Proof of Theorem 5.9. We consider a family of superconnections de-
pending on two parameters (T, u) € (0,00) x (0,00). The parameter u is the usual
rescaling parameter associated to the total grading of Q2(Z, F'). The parameter T'
is associated to the form degree. If T' becomes large, then the de Rham differ-
ential is scaled large compared to the differential v of the complex. To stay in
our formalism we are going to work over the base B := (0,00) x (0,00) x B. Let
pr: B — B denote the projection and define 7 : M := pr*M — B with fiber Z.
Let pry,: M — M be the projection. Let T'Z be the relative tangent bundle of 7,
ie., TZ = pry,LZ. This bundle is equipped with the vertical metric 374 on TZ
Wthh restricts to (T'u)"2g7Z on the fibre over (T,u) x {b} € B. We define the
metric structure J7 on prMF such that it restricts to u~NF+nr/2 JEyNr—nr/2
over (T,u) x M. The metric §7% and J¥ together induce the metric structure
J%F on Q(Z,pri, F) (cf. (5.1)). Let dP"& ¥ be the twisted de Rham differential on
Q(M, pri, F). We define d = dP"»F 4 pr3,v and consider the form p(d, J%F) on
B defined in (5.2) if n is even (resp. in (5.7) if n is odd).

_ DEFINITION 6.13. We define B := du A B* + dT A BT to be the part of
p(d, J%F) € Q(B) of degree one with respect to the coordinates (T, u), with
functions 8%, 87 : (0,00) x (0,00) — Q(B).

The following corollary is an immediate consequence of the fact that p(&, Jjz.F )
is closed. Let d = dr,, + d? be the decomposition of the de Rham differential on
(0,00) x (0,00) x B.

COROLLARY 6.14. There erists a smooth family «: (0,00) X (0,00) — Q(B)
such that

(6.9) dr.B =dT A dud®a.

The following theorems can be shown by adapting the methods of the cor-
responding references to our present situation. Actually, the following results are
analogues of some related properties of Bismut-Lott’s real analytic torsion forms,
see especially [24, Thms. 4.3-4.9], where we work in a much more complicated
situation (instead of the finite-dimensional flat vector bundle here we have an
infinite-dimensional vector bundle there). See also Subsection 6.5 for more details.

Let B := (0,00) x B. Let Ny(z 5 be the Z-grading on H(Z,F) induced
by Np. We consider the metric structure J# (%) on H(Z,F) := pr*H(Z,F)
which restricts to =Nz A tnHEz /2 JHZF)yNuzm=—nuz7/2 gver {u} x B. We
consider the flat (—1)V#z.7 -superconnection B’ := V(%) + v (z,7), where the
differential vy (7 7) on H(Z,F) is induced by v.

Let p(d(#%) jH(Z.F)) be the form on B defined in Subsection 3.4.4 if n is
even (resp. in (5.10) if n is odd). Let y: (0,00) — Q(B) be such that

p(dH(Z’T),jH(Zf)) =dulAvy+r,



SECONDARY INDEX 331

where the remainder r does not contain du.
THEOREM 6.15. (1) For any u > 0,

(6.10) Tlim B (T, u) = y(u).

(2) For 0 < uy < uy fized, there exists C > 0 such that, for u € [ui,up], T > 1,

we have

(6.11) |8“(T,u)| < C.

(3) We have the following identity:

(6.12)  lim / BY(T, u)du = / Yw)du = > A(nelrs Ny, I hedy).
BAala! 1 r>2

THEOREM 6.16. (1) There exists a smooth family o: (0,00) — QB) such that,
for T > 1, we have
lim B7(T,u) = o(T).
(2) There ezist constants C > 0, 6 > 0 such that, for T > 1, we have the following
estimate:

C

(6.13) lo(T)| < Ti48"

(3) Modulo ezact forms on B we have the following identity:
(6.14) / o(T)dT = —ij(HH, nGr(HH), JTH, JreCrHD),
1

Note that (6.14) follows from Lemma 3.17 as in the proof of [24, Thm. 4.5].

Let M = (0,00)x M, Pr: M — M be the canonical projection. We consider the
vertical metric §7Z on M for the fibration M — B which restricts to u=2Pr*g??
on the fibre over (u,b) € (0,00) x B. Pr*J" 77 induce a metric structure J&F
on Pr* Q(Z, F) on B. We define the smooth family 6: (0,00) — (B) such that
(cf. Subsection 5.2.2)

p(dPr*F,jZ'F) =dun@+r
and r does not contain du. Note that by Definitions 5.3 and 5.4

/ O(u)du = —7(QUZ, F),Nz,J 7", d").
0

THEOREM 6.17. (1) For any u > 0, there exist C > 0,6 > 0 such that, for
T>1,

c
(2) For any T > 0, we have
(6.16) lim e 18T (Te 1 e) = 0(T).
E—
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(3) There exists C > 0 such that, fore € (0,1, e <T <1,
(6.17) ™! ]ﬁT(Ts"l,e)| <cC.

(4) There ezist 6 € (0,1], C > 0 such that, fore € (0,1], T > 1,
6.18 T (Te™! < ¢

(6.18) et BT (Te >€)|_m-

PrOOF OF THEOREM 5.9. We now finish the proof of Theorem 5.9. For 0 <
€ < A and 1 < Tp, we consider the rectangle (T,u) € R := [1,Tp] x [¢, 4]- By
Corollary 6.14 we have [, , 8 =d? [, a. Thus

A Ty A Ty
/ B (To, u)du — GT(T, A)dT — / B*(1,u)du +/ BY(T, e)dT
€ 1 € 1
=h+Lh+I3+1
is an exact form on B. We take the limits A — oo, Ty — 00, and then £ — 0 in the
indicated order ([4, §4(c)], [22, §4 (c)]). Let I¥, j =1,...4, k = 1,2,3 denote the
value of the part I; after the kth limit. Note that by [28, §22, Thm. 17], if ay, is
a family of smooth exact forms on B which converges uniformly on any compact

set K C B to a smooth form «, then « is exact. Thus modulo exact forms on B,
251 I3 = 0. We obtain by the definition of 7((Z, F), ¢, J%F,d) that

J=17J
Ig = ﬁ(Q<Za F)7 NZ,F: ']Z’Fyd)~
Furthermore, by Theorem 6.16 and in particular (6.14) we get
I3 = I3 = 7j(HH, nCr(HH), JHH | reGrim),

Now 7(u) = O(1) as u — 0, and by Definition 3.15, (5.10),

/ ’Y(U) du = #lfl(hcglyNhCE17J’wE17hcdl)'
0
From (6.10), (6.11), and (6.12) we conclude that

I? == Zﬁ(hcgr»thEM JhCET7th7')'

r>1
Finally, using Theorem 6.17, we get
I{ = —7(QZ,F),Nz, J%F d").

These four equations imply Theorem 5.9. O
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6.4. Proof of Theorem 5.10. We consider again two parameters (7', u).
Here u is the rescaling parameter corresponding to the total grading of Q(Z, F)
and T is associated to the grading of F'. For large T', the rescaled differential v
becomes large in comparison with the de Rham differential.

Let B := (0,00) x (0,00) x B. Let pr: B — B denote the projection and define
M = pr*M — B with fiber Z. This bundle is equipped with the vertical metric
477 on TZ which restricts to u=2¢77 on the fibre over (T, u) x {b} € B. We define
the metric structure JF such that it restricts to (T'w)=Nr+nr/2 JF(Ty)Nr—nr/2
over (T,u) x M. The metric §7% and J¥ together induce the metric structure J% 7
on Q(Zh,pr}‘wF) (cf. (5.1)).

As in Section 6.3, let d = dP*a¥ -+ pr¥,v be the pull-back of d. Let p(d, J%F)
be the form on B defined in (5.2) if n is even (resp. in (5.7) if n is odd).

DEFINITION 6.18. We define 8 = duAB“+dTAB” to be the part of p(d, J%T)
of degree one with respect to the coordinates (T, u), with functions 8%, 87': (0, 00) x
(0,00) = QB).

The following corollary is an immediate consequence of the fact that p(&, JZ.F )
is closed.

COROLLARY 6.19. There exists a smooth family a: (0,00) x (0,00) — Q(B)
such that

6.19 dr .8 =dT AdudBa.
( ) T u

Let B := (0, oo) x B and pry: B — B be the projection. We consider the bun-
dle M := priM — B with fiber Z. Let Pr: M — M be the induced map and H =
Pr* H be the pull-back of the flat cohomology bundle H of (F,v) on M. We consider
the metric structure J7 on H which restricts to w=N#+mu/2(Pr* JH )y Nu—nu/2
over {u} x M. Furthermore, we consider the vertical metric §7% on TZ which
restricts to u~2Pr*g7Z on the fibre over (u,b) € B. They induce the metric struc-
ture J%H on priQ(Z, H) as in (5.1). Let Ny be the Z-grading on H induced by
Np. The total Z-grading on Q(Z,H) is Nz g = Nz + Np. Let d" be the twisted
de Rham differential on Q(M, H). Then d¥ is a flat (—1)~7#_superconnection
on pr} ((Z, H)); here Nz iy = pri Nz ;. We define the family : (0,00) — Q(B)
such that

p(d?, J%H) =du Ay +r,
where r does not contain du. By Definitions 5.3 and 5.4,

(6.20) / y(u) du = —7j{(pc&1, hCEl,J’C Y hedr)
0
—i(UZ, H), Nz, JZH  d").

THEOREM 6.20. (1) For any u > 0, we have
(6.21) Jim 5(T,u) = y(u).
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(2) For 0 < uy < ug fized, there exists C > 0 such that, for u € [ug,up], T > 1,
(6.22) |8“(T,u)| < C.
(3) We have the following identity:
] oo . _ 00 B : \y Er
623 Jim [ o Ty du= [y du e My 75 1)

THEOREM 6.21. (1) There exists a smooth family o: (0,00) — Q(B) such that,
for T > 1, we have

Jim_ BY(T,u) = o(T).

(2) There exist constants C' > 0, & > 0 such that, for T > 1, we have the following
estimate:

(6.24) (1) < =2

< T1+6"

(3) We have the following equality modulo exact forms on B:
o0

(6.25) / o(T)dT = —ij(HH, lgGr(HH),JHHJ,gGr(HH))'
1

We consider the metric structure J¥ on Pr* F which restricts to = Nr+7r/2 JF
uNF=7F/2 over {u} x M. We consider V¥ + v as (—1)VF-superconnection on F.
We define the smooth family 8: (0,00) — Q(M) such that

p(Pr*(VF + v), jF) =dunfd+r,
where r does not contain du. Note that by Definition 3.15

/ 0(u) du = —7(F, Ng, J* ,v).
0

THEOREM 6.22. (1) For any u > 0, there exist C > 0, 6 > 0 such that, for
T > 1, we have

(6.26) |87(T,u)| < THT

(2) For any T > 0, we have

(6.27) lim e 37 (Te™ 1 e) = / L(VTZ) N O(T).
e—0 z

(3) There ezists C > 0 such that, fore € (0,1], e < T < 1, we have
(6.28) g! ]ﬁT(T€"1,€)| <C.
(4) There exist § € (0,1], C > 0 such that, for e € (0,1], T > 1, we have

_ _ C
(6.29) e HBT(Te 1 e)| < TiTs"
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PROOF OF THEOREM 5.10. We now finish the proof of Theorem 5.10. For
0 <e< Aand 1 < Ty, we consider the rectangle (T,u) € R := [1,Tp] x [, A]. By
Corollary 6.19 we have fBRﬁ =dB Jr @ Thus

A To A To
[ ormwdu- [T @ aar - [y [ 57T ar
€ 1 € 1
=hL+DL+1Is+ 14
is an exact form. We take the limits A — oo, Ty — o0, and then £ — 0 in the
indicated order. Let IJ’»‘, j=1,...4,k =1,2,3 denote the value of the part I; after

the kth limit. Then modulo exact forms on B, 22:1 I J?’ = 0. We obtain by the
definition of ﬁ(Q(Z, F),Nz g, JZ’F,d) that

I3 =7(QZ,F),Nz p, J7F,d).
Furthermore, by Theorem 6.21 and in particular (6.25) we get
IZ2 = I3 = 5(HH, p.Gr(HH), JTH  reCrii)y,
From (6.20), (6.21), (6.22), and (6.23), we conclude that

I} = =i(QZ, H), Ng, 27 ,d7) = > " ii(19Er, Nyy 5,0 T2 1gdr).

r>2

Finally, using Theorem 6.22, we get
= _/ L(VT?) Nj(F,Np,J",v).
z

These four equations imply the theorem. O

6.5. Proof of Theorem 5.11. By the variation formula for eta forms (The-
orem 5.6) it suffices to prove Theorem 5.11 for a particular choice of THW, T{V,
THW, and g7'%, 7%, 7Y . We will suppose that

(6.30) THW c Tfw,
gT% = gTX g rtg?Y

We consider a family of superconnections depending on two parameters (T, u)
€ (0,00) X (0,00). The parameter u is the usual rescaling parameter associated to
the total grading of Q(Z, F). In the present case the fibre Z is the total space of
a fibre bundle Z — Y with fibre X. The parameter T is introduced to perform
an adiabatic limit in this fibration. For large T the vertical part corresponding to
d*F of the differential d¥" is scaled to become large with respect to the horizontal
part.

Let us now fit this idea into the formalism. We consider the space S := (0, 00} x
(0,00) x S. Let pr: § — S denote the projection and define W := pr*W — §
with fiber Z. Let Pry ! W — W be the canonical projection. We consider the
decomposition of the vertical bundle T'Z = TX ®TH Z, where TH Z := TEWNT Z.
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Then THZ = 7*TY. We define the metric §7%on Z = priy (T'X & n7TY) such
that it restricts to u=2(T2¢g7* @& 77gTY) over (T,u) x S. The metric §7# and
priy JE together induce the metric structure J%F on pr*Q(Z, F) as in (5.1).

Let dP"w¥ be the twisted de Rham differential on Q(W, pr¥y, F). Further let
p(dPwF, jZ’F) be the form on $ defined by (5.2) if n is even (resp. by (5.7) if n
is odd).

DEFINITION 6.23. We define 5 = du A §* + dT A 5" to be the part of
p(dPw ¥, J4F) of degree one with respect to the coordinates (7',u), with func-
tions 8%, BT (0,00) x (0,00) — Q(S).

The following fact is an immediate consequence of the fact that p(d, J%* ) is
closed. Let d = dr,, + d® be the decomposition of the de Rham differential on
(0,00) x (0,00) x S.

COROLLARY 6.24. There exists a smooth family a: (0,00} x (0,00) — (S)
such that

(6.31) dr w0 =dT AdudSa.

To compare easily to [24, §4-§9], in the following we will write down explicitly
g%, BT. For ay, as two differential forms on S, we denote {a; + dua}?® = aq,
and {a; + dT a2} = ay.

Let Jf £ % be the metric structure and the Hodge star operator on (Z, F)
with respect to the metrics T2g7% @ n7g”Y and JF (cf. Subsection 4.3.1). Then
we have Jg,F — T—Nx+dimX/2 JZ,FpNx—dim X/2 Denote 297 — \/a_lJf’F.
Let d%1", V%F it be the operators defined in Subsection 5.2.2. Let (d¥")%., (dZF)%.,
(ir)%, (V#F)x be the formal adjoints of d¥', d%F, ip, V%F, respectively, with
respect to the metric structure Jf * on Q(Z, F). Then
(6.32) st %*TT- = % (2Nx — dim X),

() = T2 (") T2V

For u > 0, we set

’ Nz gF, —N " ~Ng( 3F\x , N
CS,uZ,T =1U Zd u Z, 03’u27T = U Z(d )TU Z,
1 1
/ 7" _ " /
C3,u2,T = §(Cs,u2,T + C3,u2,T)7 D3,u2,T = ‘2‘( 3u2,T — 3,u2,T)'

We denote by [4, B] = AB — BA the commutator. For T > 1, set A, 7 =
TNxCy 2 7T N%. Then from the above equations we get

2 At

[TY* Dy 2 v T™N*,Nx] =T 5T
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o If n is even, then

N F, 0
(633) "= (m) T[T (5-Cour) exp(=CF 1),
- N 1 _, 0%
B = (2mi)" V2 Tx [z‘] [§D3,u2,T7*T16—;] exp(—nguz’T)].
Thus we get
2r d au
(6.34) Bt = (2m‘)_1/290 {Tr [zJ ' exp(—Ain +du (ﬁA“*T))} } ,

N r e P T
T = (2mi)" 2 { I‘r[zJ exp(— A2 1 +dT (ﬁAu,T))] } .

e If n is odd, we introduce an extra odd variable o as in Subsection 5.2.2.
Then

zF, 0
(635) ﬂu = SOTra' I:ZJT (_CB,U2,T) exp(_cg,uQ,’]‘)] P

1
N3
1 gz F 1
ﬂT \/—S’JTf l:z T [ D3u T» T aT]eXp( Cguz T)}
Remark that J7* commute with (VZF + (V2 )%, dZF +(d%F)x, i+ (i)} Let
AS)T be the part of A, r of degree ¢ in A(T*S). Then AEL{)T = L(VEF 4 (VEE):).
Set Aur = AL} + 2777 (AL) + AL)). Then

B o - du

(6.36). g = %w {Tro [exp(~42 1 + du(aAu,T))}} ,
gr = 1 Tr[ (—A2, 4 dT(2 4 ]dT
= 79T | exp(= wr +dT (55 Aur)) .

The following theorems can be shown by adapting the the method [24] to our
present situation.

Let § := (0,00) x S and pr,: § — S be the projection. We consider the
bundle V := pr*V — S. Let pry: V — V be the induced map and H(X,F) =
pri, H(X, F) be the pull-back of the flat cohomology bundle H(X, F) of (Q(X, F),
d*:F). We consider the metric structure J7(X-*) which restricts to

u—NH(x,f)-FnI-I(x,f)/2pr*{/JH(X»]:)uNH(x.f)*"H(x,y--)/2

over {u} x V. Furthermore, we consider the vertical metric g, which restricts to
Lpriyg™" on {u} x V. They induce the metric structure JYHXF) on prt Q(Y,
(X F)) as in (5.1). Let d¥(¥%) be the twisted de Rham differential on Q(V,
pri, H(X,F)). Note that the Z-grading operators Nz, Nx, Ny act naturally
on Q(Y, H(X,F)). Then d¥X:%) is a flat (—1)V#-superconnection on pr} Q(Y,
H(X,F)). We define the family ~: (0,00) — §(S) such that

p(dH(X,]-')’ jY,H(X,f)) —duny+r,
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where r does not contain du. Note that p(cZH(X’}-), jY*H(X’F)) = 0if dim X is odd.
Furthermore, note that by Definitions 5.3 and 5.4

631 [ 9= (0, N, T o)
0
= (Y, H(X, F)), Ny, JHHOR) gHX.2)),
THEOREM 6.25. (1) For any u > 0, we have
(6.38) Tlim BT, u) = v(u).

(2) For 0 < uy < ug fized, there exists C > 0 such that, for u € [uj,u2], T > 1,
we have

(6.39) (T )] < C.
(3) We have the following identity:

o0

(6.40) Tlim BT, u) du:/ ¥(u) du—Zﬁ(LSSr,NLSEr,JLSET,Lgdr).
—0C 1

1 r>2

THEOREM 6.26. (1) There ezists a smooth family o: (0,00) — Q(S) such that,
for T > 1, we have
lim B7(T,u) = o(T).
(2) There exist constants C > 0, & > 0 such that, for T > 1, we have the following

estimate:

C

(6.41) lo(T)] < TP

(3) We have the following identity:

(6.42) / o(T)dT = —ij(H(Z, F), 1sCr(H(Z, F)), JHZF), JrsGri(Z7)
1

We consider the fibration W = (0,00) x W — V equipped with the vertical
metric §7X which restricts to u2¢7X on {u} x W. Let Prw: W — W be the
projection. PriyJ¥ and 7% induce a metric structure JX:¥ on pr},Q(X, F) as in
(5.1). Let dPTwF be the twisted de Rham differential on Q(W,Prjy F). We define
the smooth family 8: (0,00) — Q(V) such that

p(dP‘;VF, jX’F) =dunl+r,
where r does not contain du. Note that by Definitions 5.3 and 5.4

/ O(u)du = —7(QUX, F), Nx, J*F, dF).
0

The adiabatic family of metrics g7 X @ % ntg™Y on Prj,TZ on W induces a

family of connections VZZ of PriyTZ which after restriction to {T} x W is the
connection V1Z on T'Z with respect to ghZ, THW, m3 defined by [5, Def. 1.6].
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By [24, Thm. 5.1], for large T, VA% converges to "V7Z + A; o, where A3 €

T*W QEnd(TH Z, TX). We define the smooth family A: (0,00) — Q(W) such that
LVT?)y=dT AN+ 7

and r does not contain dT'. Now, by the same argument as in [24, § 5.7], we have
the following proposition for the transgression L class.

PROPOSITION 6.27. When T — oo, then we have A(T) = O{T~2). Modulo
ezxact forms on W we have

(6.43) L(Tz, V"% 0v1?) = - / A(T) dT.
1

THEOREM 6.28. (1) For any u > 0, there exist C > 0, § > 0 such that, for
T > 1, we have

(6.44) |87(T, )| < Tﬁl.

(2) For any T > 0, we have

(6.45) lim =167 (T ) = /Y LOVIY) A 6(T).

(3) There exists C' > 0 such that, fore € (0,1], e <T < 1,

(6.46) e ’ffT(Tefl,e) - / p(VE, I ANTe Y| < C.
(4) There exist § € (0,1], C >0 suchZ that, fore € (0,1], T > 1,
(6.47) e BT (T e)| < TiTs"

PRrROOF OF THEOREM 5.11. We now finish the proof of Theorem 5.11. For
0 <e< Aand 1 <7Tp, we consider the rectangle (T,u) € R := [1,Tp] x [e, A]. By
Corollary 6.24 we have [, , 3 =d® [, o. Thus

A 1o A To
/ BTy u)du— | AT(T, A)dT — / g (L udu+ [ BT(T,e)dT
€ J1 € 1
=h+L+1I;+1

is an exact form. We take the limits A — oo, Ty — oo, and then ¢ — 0 in the
indicated order. Let I ]’-“, j=1,...4, k = 1,2,3 again denote the value of the part
I; after the kth limit. By [28, §22, Thm. 17], dQ(S) is closed under uniformly
convergence on compact sets of S. Thus modulo exact forms on S, Z?zl 1 J?’ =0.
We obtain from the definition of 7(Q((Z, F), Nz, J#,d") that

I3 =i4(QZ,F),Nz, J%F,d").
Furthermore, by Theorem 6.26 and in particular (6.42) we get
I = I3 = §(HH, 4 .Gr(HH), JIH  jreCrH)Y
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From (6.37), (6.38), (6.39), and (6.40), we conclude that
I} = —i(Y, H(X, F)), Ny, JOHEF) gH(X.7))
= (19 Nyyg,r T 1gdr ).

r>2

Finally, using Theorem 6.28, we get
= —/YL(VTY) AF(UX,F),Nx,J%F df)
_ /ZE(TZ’ vTZ,OVTZ) /\p(vF7JF)
as follows: Convergence of the integrals below is granted by (6.44). We write

/w BT(T,€)dT = /Oo e 18T (Te™ 1, €) dT.
1

€

Using Proposition 6.27, (6.45), and (6.47), we get

lim e-lﬁT(Te—l,e)de/ L(VTY)/\/ 6(T) dT,
Y 1

e—0 1
1
lim [ ¢* [ﬁT(Te1,6)—/p(VF,JF)/\/\(Tel)] dT =
zZ

e—0 ¢
/Y L(VIYy A /0 ] 8(T) dT.

The remaining part of the integral yields by (6.43)

1 o]
lim / = / p(VF, JF) A NTeY)dT = / p(VF, JF) A / AT)dT
€ A A 1

e—0
=— / L(TZ, V"%,V T2y Ap(VF, JF).
¥4

These four equations for I3, k=1,...,4, imply Theorem 5.11. O
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