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1.

In a previous paper,’
Z part of) the n-invariant of Atiyah-Patodi-Singer!™ associated to non-
unitary flat vector bundles by identifying explicitly its real and imaginary
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Introduction

4

parts.

On the other hand, Gilkey has studied this kind of n-invariants system-
atically in,'® and in particular proved a general variation formula for them.

335

we have given an alternate formulation of (the mod
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However, it lacks in'? the identification of the real and imaginary parts of
the n-invariants as we did in.!*

In this article, we first show that our results in'? lead to a direct deriva-
tion of Gilkey’s variation formula Theorem 3.7.13

The second purpose of this paper is to apply the results in'* to examine
the n-invariants appearing in the recent papers of Braverman-Kappeler”™
on refined analytic torsions. We show that the imaginary part of the
n-invariant appeared in these articles admits an explicit local expression
which suggests an alternate formulation of the definition of the refined an-
alytic torsion there. This reformulation provides an analytic resolution of a
problem due to Burghelea!011
function on the representation space having the Ray-Singer analytic torsion

on the existence of a univalent holomorphic

as its absolute value.

Finally, using the extension (to the case of non-self-adjoint operators)
given in'® of the concept of spectral flow,? we propose a refinement in C of
the above variation formula for n-invariants.

Acknowledgements. We would like to thank Maxim Braverman for
bringing'® to our attention, and for helpful discussions. The work of the
second author was partially supported by the National Natural Science
Foundation of China.

2. m-Invariant and the Variation Formula

Let M be an odd dimensional oriented closed spin manifold carrying a
Riemannian metric g7, Let S(TM) be the associated Hermitian vector
bundle of spinors. Let (E, g¥) be a Hermitian vector bundle over M carry-
ing a unitary connection V¥. Moreover, let (F, g¥') be a Hermitian vector
bundle over M carrying a flat connection V. We do not assume that V¥
preserves the Hermitian metric g¥" on F.

Let DE®F . T(S(TM)® E® F) — I(S(TM) ® E ® F) denote the
corresponding (twisted) Dirac operator.

It is pointed out in Page 932 that one can define the reduced 7-invariant
of DE®F | denoted by B(D¥®F), by working on (possibly) non-self-adjoint
elliptic operators.

In this section, we will first recall the main result in Ref. 14 on 7j(DF®F)

and then show how it leads directly to a proof of the variation formula of
Gilkey, Theorem 3.7.13



Inspired by S S Chern Downloaded from www.worldscientific.com
by PIERRE & MARIE CURIE UNIVERSITY on 10/05/17. For personal use only.

n-Invariant and Flat Vector Bundles IT 337

2.1. Chern-Simons classes and flat vector bundles

We fix a square root of v/—1 and let ¢ : A(T*M) — A(T*M) be the homo-
morphism defined by ¢ : w € AYT*M) — (2my/—1)~"?w. The formulas in
what follows will not depend on the choice of the square root of /—1.

If W is a complex vector bundle over M and V¥, VIV are two connec-
tions on W. Let Wi, 0 < t < 1, be a smooth path of connections on W
connecting V' and V. We define the Chern-Simons form CS(V§, V)
to be the differential form given by

S (VW, VW) = - (#—\/__J%@/Ol Tr [GZ;W exp (- (th)Q)} dt.
(2.1)

Then (cf. Chapter 117)
dCs (Vy',VY') = ch (W, V}) — ch (W, V). (2.2)

Moreover, it is well-known that up to exact forms, CS(V¥, V) does not
depend on the path of connections on W connecting V¥ and VIV.

Let (F,V¥) be a flat vector bundle carrying the flat connection V.
Let g7 be a Hermitian metric on F. We do not assume that V¥ preserves
g7, Let (VF)* be the adjoint connection of V¥ with respect to g¥'.

From (4.1), (4.2)% and §1(g),® one has

(V) =V  +w(Fg") (2.3)

with
w(F,g") = (g") " (VFg"). (2.4)

Then
Ve = vF 4 %w (F,g™) (2.5)

is a Hermitian connection on (F, g©') (cf. (4.3)%).
Following (2.6)** and (2.47),!® for any r € C, set

V=1
vFhelr) — yFhe 4 TT“’ (F,g%). (2.6)

Then for any r € R, V5(") is a Hermitian connection on (F, g¥).
On the other hand, following (0.2),° for any integer j > 0, let
c2j+1(F, g*') be the Chern form defined by

cajr (FrgF) = (2rv/=1) 7 27 Gt DT [W¥H (F gF)].  (27)
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Then ¢g;41(F, g%') is a closed form on M. Let cgji1(F) be the associated

cohomology class in H¥ (M, R), which does not depend on the choice of

gF.

For any j > 0 and r € R, let a;(r) € R be defined as

1 .
a;(r) = /0 (1+ 1;2_7‘2)J du. (2.8)

With these notation we can now state the following result first proved
in Lemma 2.12.13

Proposition 1: The following identity in H°4 (M, R) holds for anyr € R,

“+oo

Fie F.e,(r) __L aj(T) )
05 (vre, vFei) = o ot () (29)

2.2. 7n-tnvariant associated to flat vector bundles

Let
DE®Fe . NS(TM)Q EQF) — T(S(TM)QE®F) (2.10)

denote the Dirac operator associated to the connection V¢ on F and
V¥ on E. Then DF®Fe i5 formally self-adjoint and one can define the

associated reduced n-invariant as in.!

In view of Proposition 1, one can restate the main result of,'* which is

Theorem 2.2, as follows,
7 (DF®F) = 7 (DP®Fe) 4 / A(TM)ch(E)CS (VF¢, V) mod Z,
M
(2.11)
where E(TM ) and ch(FE) are the A class of TM and the Chern character
of E respectlvely.17
Now let V¥ be another flat connection on F. We use the notation with

" to denote the objects associated with this flat connection.
Then one has

7 (5E®F> =7 <l~)E®F’e> —|—/ A(TM)ch(E)CS (%F’e,ﬁF) mod Z.
M
(2.12)
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By the variation formula for n-invariants associated to self-adjoint Dirac
operators,’* one knows that

7 (f)E@F"f) — 7 (DPOFe) = / A(TM)eh(E)CS (vFve, %Fve) mod Z.
M
(2.13)
From (2.11)—(2.13), one deduces that

o~

7 (DPer) —q(peer) = / ATM)eh(BYCS (Ve §5)  (@14)
M

- / A(TM)ch(E)CS (V5e,VF) + / A(TM)ch(E)CS (ﬁF»eﬁF)
M M

- / ATM)eh(EYCS (V9,97 mod 7,
M

which is exactly the Gilkey formula, Theorem 1.6'% for the operator P =
D therein.

Remark 2: As was indicated in Remark 2.4,'4 the main result in'# holds
also for general Hermitian vector bundles equipped with a (possibly) non-
Hermitian connection. Indeed, if we do not assume that V¥ is flat, then
at least (2.3)-(2.6) still holds. Thus for any r € R, we have well-defined
(formally self-adjoint) operator D¥®F (r) which is associated to the Hermi-
tian connection V¢ (") on F. For any r € R, one then has the variation
formulat*

7 (DPEF(r)) — m(DFEFe) = / A(TM)ch(E)CS (Ve vHe) mod Z.
M
(2.15)

By (2.1), one sees easily that the right hand side of (2.15) is a holomorphic
function (indeed a polynomial) of r. Thus, by analytic continuity, as in,**
one gets that for any r € C, (2.15) still holds. In particular, if we set

r=+/—1, we get
7 (DESF) =75 (DF®Fe) 4 / A(TM)ch(E)CS (VFe,VF) mod Z,
M
(2.16)

which generalizes (2.11). Then by proceeding as above, we see that (2.14)
holds without the assumption of the flatness of connections V" and V¥
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By (2.1) and {2.6),

Cs (Vhe, vFe) - gy |5 (.97

= > a(VF¢") (2.17)
By (2.6), one has

(v7e0) = (97 + Yo (9700 (Rg)) - T (o (R07))"

Note that
VEew (F,g") = [V w (F¢gF)] =0, if VI is flat. (2.19)

By taking adjoint of (2.18), we see that when r € C is purely imaginary,
one has

(G (7)) = v (6797 - F ota)’)
- <2w—1_\/—_1> \/2_7« (VFew (F,g")). (2.20)

From (2.1), (2.17) and (2.20), one sees that when r € C is purely imag-
inary, then

Re (CS (VF,e’vF,e,(r))) _ Z ai (VF,gF)

i even

tm (C (VFe, vFe))) = \/_ 3 a4 (VF,gF)
odd

(2.21)

Thus when r € C is purely imaginary, from (2.16) and (2.21), we have

Re(m(DP®F (r))) = (DPEF) + >~ r / A(TM)ch(E)a;(VF, g¥) mod Z,

i even

Im (7 (DP®F(r))) \/_ Z / A(TM)ch(E)a; (VF,g7) . (2.22)
7 odd
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In particular, by setting r = +/—1, we get
Re (ﬁ(DE(@F)) = ﬁ (DE'®F,6)

+ Y (-3 /M A(TM)ch(E)a;(VF,g%) modZ,

i even

Im (7 (D"#)) = 3 (—1)%/ ATM)ch(E)a; (V7,g7).  (2.23)
i odd M

This generalizes the main result in Ref. 14.

3. m-Invariant and the Refined Analytic Torsion of
Braverman-Kappeler

Recently, in a series of preprints,”® Braverman and Kappeler introduce
what they call refined analytic torsion. The n-invariant associated with flat
vector bundles plays a role in their definition. In this section, we first ex-
amine the imaginary part of the n-invariant appearing in,”® from the point
of view of the previous sections and propose an alternate definition of the
refined analytic torsion. We then combine this refined analytic torsion with
the n-invariant to construct analytically a univalent holomorphic function
on the space of representations of 71 (M) having the absolute value equals
to the Ray-Singer torsion, thus resolving a problem posed by Burghelea.!!

3.1. n-invariant and the refined analytic torsion of
Braverman-Kappeler

Since there needs no spin condition in,”® here we start with a closed ori-
ented smooth odd dimensional manifold M with dim M = 2n+1. Let g7¥
be a Riemannian metric on TM. For any X € TM, let X* € T*M denote
its metric dual and ¢(X) = X* A —ix denote the associated Clifford action
acting on A*(T*M), where X*A and ix are the notation for the exterior
and interior multiplications of X respectively.

Let ey, ..., eant1 be an oriented orthonormal basis of TM. Set

I'= (\/:—1)n+1 c(el) s C(€2n+1) . (31)

Then I'? = Id on A*(T*M).

Let (F,g™) be a Hermitian vector bundle over M equipped with a flat
connection V¥ which need not preserve the Hermitian metric g on F.
Then the exterior differential d on 2*(M) = I'(A*(T*M)) extends naturally
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to the twisted exterior differential d*" acting on Q*(M, F) = I(A*(IT*M) ®
We define the twisted signature operator Dgig to be

1
D§, = 5 (Td" +dfT) : QV(M, F) — QV°"(M, F). (3.2)

It coincides with the odd signature operator %Beven in.™™

Let VATHT MOF (reqp AT (T"M)®Fe) he the tensor product con-
nections on A®V*(T*M)® F obtained from V¥ (resp. V¢) and the canon-
ical connection on A¢¥e™(1*M) induced by the Levi-Civita connection VI
of gTM

From (3.2), it is easy to verify that

2n+1
Di, =T (Z c(ei)vge””T*M)@F) : (3.3)
=1
Set
2n+1
D =T <Z c(es) VAT M>®F’e> : (3.4)
=1

Then Dgi’g is formally self-adjoint.

Since locally one has identification S(TM) ® S(TM) = A®v"(T*M),
one sees that one can apply the results in the previous section to the case
E = S(TM) to the current situation.

In particular, we get

Re (7 (D&)) =7 (Ds)  mod z,

Im (77 (Dsﬁg)) = \/%—1/ L(TM, V™) CS (VF,e’vF)

= __/ TM 2 n 1) 62j+1(F)’ (35)
where L(T'M, VT M) is the Hirzebruch L-form defined by
T 1/2 RTM
L({TM,V' M) =pdet —— .
(T, ) =pde <tanh (RTM/2)> ’ (36)

with RTM = (VTM)?2 the curvature of V7™ and L(TM) is the associated
class.

Remark 3: By proceeding as in Section 2, we can get Theorem 3.7'3 easily
by using the results in Remark 2.



Inspired by S S Chern Downloaded from www.worldscientific.com
by PIERRE & MARIE CURIE UNIVERSITY on 10/05/17. For personal use only.

n-Invariant and Flat Vector Bundles II 343

Proposition 4: The function

U (F,VF) =Im (7(D&,)) + % /M L(TM)cy(F) (3.7)

s a locally constant function on the set of flat connections on F. In par-
ticular, U(F,VF) =0 if VF can be connected to a unitary flat connection
through o path of flat connections.

Proof Let VI, 0 <t <1, be a smooth pass of flat connections on F.
From (3.5), we get

V—=1Im (7 (D§ig1)) — V—1Im (7 (Déiy 0))

:/ L(TM, V™) Cs v“ vF / (TM, V™) CS (v(fﬁ,vg“)
M
— V1 / L(TM, V™) Im (CS (V]9,V5¢) - €5 (91, V) )

M

=1 /M L (TM, V™) Im (CS (VE,V])). (3.8)

Now consider the path of flat connections V¥, 0 <t < 1. Since for any
t € [0,1], (V)2 =0, from (2.1), (2.5), one gets

05 (98, 99) = () 7 (98 = 90) = () (987 - )

<27r\1/_> (1”0(F’9F)*%w1(F,9F)>- (3.9)

Thus, one has

V—=1Im (CS(V§,VT)) = %;_ ( wo(F,g") — wl(F, gF)>
_ _.%1_\/51 (c1 (F,VE) e (F,9T)) . (3.10)
From (3.8) and (3.10), we get
1

m(ﬁ(Dggl))Jr—/ L (TM, VM) e, (F, V)
’ 271' M

1
=Im (7 (D&, 0)) +%/ML(TM,VTM) a(FVE),  (311)

from which Proposition 4 follows. Q.E.D.
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Remark 5: Formula (3.11) is closely related to Theorem 12.3.7 Moreover,
for any representation « of the fundamental group 73 (M), let (F,, V=) be
the associated flat vector bundle. One has

exp (¥ (Fy, V) = r(a), (3.12)
where 7(a) is the function appearing in Lemma 5.5.° While from (3.5) and
(3.7), one has

P 1 X 2%
W (F,V ):—%/ML(TM Z 23 ) e (K1) (3.13)

Combining with (3.12), this gives an exphclt local expression of r(«a) as well
as the locally constant function r¢ defined in Definition 5.6.%

Remark 6: To conclude this subsection, we recall the recent modifica-
tion due to Braverman-Kappeler {Braverman mentioned this in a recent
Oberwolfach conference) themselves of the original definition of the refined
analytic torsion in” as follows: for any Hermitian vector bundle equipped
with a flat connection V¥ over an oriented closed smooth odd dimensional
manifold M equipped with a Riemannian metric g”, let p(V¥,gT™) be
the element defined in (2.13).° Then the modified definition of the refined
analytic torsion is given by

pan (VF,g™M) = p (VF, gT™) emV=Ik(IM(Dsse) (3.14)

where 7(Dsig) is the reduced 7 invariant in the sense of Atiyah-Patodi-
Singer® of the signature operator coupled with the trivial complex line bun-
dle over M (i.e. Dygig := Dmg) There are two advantages of this reformula-

tion. First, by multiplying the local factor ™ (FV7) makes the compari-

son formula [9, (5.8)] of the refined analytic torsion has closer resemblance
in comparing with the formulas of Cheeger-Miiller and Bismut-Zhang (cf.5).
The advantage of this reformulation is that since 7(Ds;g) various smoothly
with respect to the metric g7 (as the dimension of ker(Dsg) does not
depend on the metric g7*), the ambiguity of the power of v/—1 disappears

—1rk( F)7(Dsig)

. Irk(F) My o,
if one uses e to replace the factor e = Iy Lp:g™) in

(2.14).°
3.2. Ray-Singer analytic torsion and univalent holomorphic
functions on the representation space

Let (F, V) be a complex flat vector bundle. Let g¥ be an Hermitian metric
on F. We fix a flat connection V¥ on F' (note here that we do not assume
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that VF and V¥ can be connected by a smooth path of flat connections).
Let g™™ be a Riemannian metric on TM and V7™ be the associated

Levi-Civita connection.
Let 77(VF, VF) € C be defined by

7 (vF,9F) = / L(TM, V™M) CS (VFe,vF).  (3.15)
M

One verifies easily that 7j(VF,VF) € C does not depend on g7, and is a
holomorphic function of V¥. Moreover, by (3.5) one has

tm (77 (V¥,97)) = m (7 (DE,)) - (3.16)

Recall that the refined analytic torsion of”? has been modified in
(3.14).
Set

Ton (VF,gTM) = Phn (VF,gTM) exp (\/——_17rﬁ (VF, ﬁF)) . (3.17)

Then T,,(VF, g™ ) is a holomorphic section in the sense of Definition 3.4.°
By Theorem 11.3% (cf. (5.13)%), (3.14), (3.16) and (3.17), one gets the
following formula for the Ray-Singer norm of T,,(V¥, g™™),

[ Toa (V7. 6™ = 1. (3.18)

In particular, when restricted to the space of acyclic representations,
Tan(VE, gT™) becomes a (univalent) holomorphic function such that

|Tan (VF,g™M) | = THS(VF), (3.19)

the usual Ray-Singer analytic torsion. This provides an analytic resolution
of a question of Burghelea.!!

Remark 7: If one considers 7.2

an?

7;211 (VF79TM)I = ,1:1211 (VFygTM)

X exp (27r\/——_1 (ﬁ (155;;) — k(F) (DSig))) . (3.20)

then one can further modify it to

which does not depend on the choice of vr , and thus gives an intrinsic
definition of a holomorphic section of the square of the determinant line
bundle, having the same norm as that of 7.2 (V¥ g7). The dependence
of T4y on « indicates in part the subtleness of the analytic meaning of the
phase of the Turaev torsion (cf.1%16).
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Next, we show how to modify the Turaev torsion'®16 to get a holomor-
phic section with Ray-Singer norm equal to one.

Let € be an Euler structure on M and o a cohomological orientation.
We use the notation as in® to denote the associated Turaev torsion by p o.

Let c(e) € Hi(M,Z) be the canonical class associated to the Euler
structure £ (cf.16 or Section 5.212). Then for any representation ap corre-
sponding to a flat vector bundle (F, V¥), by Theorem 10.2'2 one has

1pe,0 (ap)||®° = |det ap(c(e)]V?. (3.21)

Let Laimar1(TM) € HI™M-1(A1 7) be the degree dim M — 1 com-
ponent of the characteristic class L(T'M). Let Ly (TM) € Hi(M,Z) denote
its Poincaré dual. Then one verifies easily that

‘det ap (il(TM))‘ = exp (/ML (TM, V™M) ¢, (F, vF)) ' (3.22)
On the other hand, by Corollary 5.9, Li(T'M) + c(e) € Hy(M,Z) is
divisible by two, and one can define a class 3, € H1(M,Z) such that
—28. = Ly(TM) + c(e) . (3.23)
From Proposition 4, (3.22) and (3.23), one finds
det ap(c(e))|V? = |det ar (B:) texp (—7® (F,VF) +xlm (7 (DE,))),

where ®(F, VF) is the locally constant function given by (3.13).
‘We now define a modified Turaev torsion as follows:

Teo (F, V) = peo (ar) e (B E )y =Tmi(95,97) (detap (B:)). (3.25)

Clearly, 7; o(F,VT) is a holomorphic section in the sense of Definition
3.4.% Moreover, by (3.21), (3.24) and (3.25), its Ray-Singer norm equals to
one. Thus it provides another resolution of Burghelea’s problem mentioned
above which should be closely related to what in.'°

Combining with (3.18) we get

Tan (VF, gTM)

—_—7;:,0 EVT) =1, (3.26)

which, in view of (3.12), is equivalent to (5.10).°
On the other hand, since now T,,(VF, g7™) /T, o(F,VF) is a holomor-
phic function with absolute value identically equals to one, one sees that
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there is a real locally constant function 8. o(F, V) such that

Tan (VF,g™) F
an ) _ V18 o (FVT)
To(F,VF) °© ’ (8.27)

which is equivalent to (5.8).°

Remark 8: While the univalent holomorphic sections Tan and 7 o depend
on the choice of an “initial” flat connection V¥, the quotients in the left
hand sides of (3.26) and (3.27) do not involve it.

Remark 9: One of the advantages of (3.26) and (3.27) is that they look in
closer resemblance to the theorems of Cheeger, Miiller and Bismut-Zhang®
concerning the Ray-Singer and Reidemeister torsions.

Now let VI and V£ be two acyclic unitary flat connections on F. We do
not assume that they can be connected by a smooth path of flat connections.
By (14.11)7 (cf. (6.2)%), (3.15), (3.17) and the variation formula for

r-invariants,»®* one finds

Tan( f,gTM> _ TRS(VE) exp(—V1am Dg}gl ) + V= Inif(VE, "F))
Tan(vz g7 ) TRS(Vg) eXP( V—1n7(D S]g2 + v/ —=17( V ))

_TRS(VF)  exp(—vV=InTi(Dgi 1) + V=T (Dgg 5))
TRS(VI)  exp(—v/—1r [,, LTM, VIM)CS(VE, VT))
TRS vF

= RS( ;‘) rexp(v/—1m - Sf(Dgig,la Dgig,z))v (3.28)
TRS(VE)

where Dgig’l and D§g72 are the signature operators associated to VI and
V¥ respectively, while sf(D§, ,, D§, 5) is the spectral flow of the linear

path connecting DSlg ; and Dgigz, in the sense of Atiyah-Patodi-Singer.?

Remark 10: Since we do not assume that Vi and V£ can be connected by
a path of flat connections, our formula extends the corresponding formula
in Proposition 6.2.9

Corollary 11: The ratio Ton(VF,g™™)/TRS(VT) is a locally constant
Sfunction on the set of acyclic unitary flat connections on F'.

Example 12: Let V¥ be an acyclic unitary flat connection on F. Let
g € T(U(F)) be a smooth section of unitary automorphisms of F. Then
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g~ 'V¥g is another acyclic unitary flat connection on F. A standard calcu-
lation shows that

of (ng , D5V ): / L(TM)ch(g), (3.29)
M

where ch(g) € H°4(M,R) is the odd Chern character associated to g
(cf.17). From (3.29), one sees that if [, L(TM)ch(g) is nonzero, then V¥
and ¢~ 'V¥g do not lie in the same connected component in the set of
acyclic unitary flat connections on F'.

3.3. More on n-invariants, spectral flow and the phase of
the refined analytic torsion

We would like to point out that the (reduced) n-invariant for non-self-
adjoint operators we used above, when considered as a C-valued function,
is the original 7 invariant appeared in® (see also'). In this section, we show
that the R-valued variation formula for n-invariants (which has been used
n (3.28)) admits an extension to a C-valued variation formula valid also
for the non-self-adjoint operators discussed in the present paper.

First, the concept of spectral flow can be extended to non-self-adjoint

operators, and this has been done in'®

in a general context.
For our specific situation, if DSlgt’ 0 <t <1, is a smooth path of
(possibly) non-self-adjoint signature operators, following,'® we define the

spectral flow of this path to be, tautologically,

Sf (DSng,O7D§ig,l) =
# {spec (Dgig’o) N{Re(A) > 0} — spec (DSlg 1) N{Re(p) < 0}}

— # {spec (D o) N {Re(N) < 0} — spec (DE 1) N {Re(p) > 0}},
(3.30)

which simply replaces the number zero in the original definition for self-
adjoint operators® by the axis of purely imaginary numbers.

Now let VI, 0 < ¢ < 1, be a smooth path of (not necessary unitary
and/or flat) connections on F. Let Dgig,t, 0 <t <1, be the corresponding
path of signature operators. With the definition of spectral flow, one then
sees easily that the following variation formula holds in C,

A(DE, 1) — H(DE, o) = sf(DEy o, DEy 1) + /M LM, VTM)CS(VE, VF).
(3.31)
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Now we observe that in,”® Braverman and Kappeler propose an alter-
nate definition of (reduced) 7 invariant, which if we denote by npx, then
(cf. Definition 4.3" and Definition 5.29)

nBx (D&g) =7 (Dgyg) — m— (DE,) , (3.32)

where m_(Dgig) is the number of purely imaginary eigenvalues of Dgig of
form Av/—1 with A < 0.

Formulas (3.31) and (3.32) together give a variation formula for npk,
which can be used to extend (3.28) to non-unitary acyclic representations.
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