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Abstract We present an alternate definition of the mod Z component of the Atiyah-
Patodi-Singer η invariant associated to (not necessary unitary) flat vector bundles, which
identifies explicitly its real and imaginary parts. This is done by combining a deformation
of flat connections introduced in a previous paper with the analytic continuation procedure
appearing in the original article of Atiyah, Patodi and Singer.
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1 Introduction

Let M be an odd dimensional oriented closed spin manifold carrying a Riemannian metric
gTM . Let S(TM) be the associated Hermitian bundle of spinors. Let E be a Hermitian vector
bundle over M carrying a unitary connection ∇E . Moreover, let F be a Hermitian vector
bundle over M carrying a unitary flat connection ∇F . Let

DE⊗F : Γ(S(TM)⊗ E ⊗ F ) −→ Γ(S(TM)⊗ E ⊗ F ) (1.1)

denote the corresponding (twisted) Dirac operator, which is formally self-adjoint (cf. [4]).
For any s ∈ C with Re (s) À 0, following [1], set

η(DE⊗F , s) =
∑

λ∈Spec(DE⊗F )\{0}

Sgn(λ)
|λ|s . (1.2)

Then by [1], one knows that η(DE⊗F , s) is a holomorphic function in s when Re (s) > dim M
2 .

Moreover, it extends to a meromorphic function over C, which is holomorphic at s = 0. The η

invariant of DE⊗F , in the sense of Atiyah-Patodi-Singer [1], is defined by

η(DE⊗F ) = η(DE⊗F , 0), (1.3)

while the corresponding reduced η invariant is defined and denoted by

η̄(DE⊗F ) =
dim(kerDE⊗F ) + η(DE⊗F )

2
. (1.4)
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The η and reduced η invariants play an important role in the Atiyah-Patodi-Singer index
theorem for Dirac operators on manifolds with boundary (cf. [1]).

In [2] and [3], it is shown that the following quantity

ρ(DE⊗F ) := η̄(DE⊗F )− rk(F ) η̄(DE) modZ (1.5)

does not depend on the choice of gTM as well as the metrics and (Hermitian) connections on E.
Also, a Riemann-Roch theorem is proved in [3, (5.3)], which gives a K-theoretic interpretation
of the analytically defined invariant ρ(DE⊗F ) ∈ R/Z. Moreover, it is pointed out in [3, Remark
(1), p. 89] that the above mentioned K-theoretic interpretation applies also to the case where F

is a non-unitary flat vector bundle, while on [3, p. 93] it shows how one can define the reduced
η-invariant in case F is non-unitary, by working on non-self-adjoint elliptic operators, and then
extend the Riemann-Roch result [3, (5.3)] to an identity in C/Z (instead of R/Z). The idea
of analytic continuation plays a key role in obtaining this Riemann-Roch result, as well as its
non-unitary extension.

In this paper, we show that by using the idea of analytic continuation, one can construct the
C/Z component of η̄(DE⊗F ) directly, without passing to analysis of non-self-adjoint operators,
in the case where F is a non-unitary flat vector bundle. Consequently, this leads to a direct
construction of ρ(DE⊗F ) in this case. We will use a deformation introduced in [9] for flat
connections in our construction.

In the next section, we will first recall the above mentioned deformation from [9] and then
give our construction of η̄(DE⊗F ) modZ and ρ(DE⊗F ) ∈ C/Z in the case where F is a non-
unitary flat vector bundle.

2 The η and ρ Invariants Associated to Non-unitary
Flat Vector Bundles

This section is organized as follows. In Subsection 2.1, we construct certain secondary
characteristic forms and classes associated to non-unitary flat vector bundles. In Subsection
2.2, we present our construction of the mod Z component of the reduced η-invariant, as well as
the ρ-invariant, associated to non-unitary flat vector bundles. Finally, we include some further
remarks in Subsection 2.3.

2.1 Chern-Simons classes and flat vector bundles

We fix a square root of
√−1 and let ϕ : Λ(T ∗M) → Λ(T ∗M) be the homomorphism defined

by ϕ : ω ∈ Λi(T ∗M) → (2π
√−1 )−i/2ω. The formulas in what follows will not depend on the

choice of the square root of
√−1.

If W is a complex vector bundles over M and ∇W
0 , ∇W

1 are two connections on W . Let
Wt, 0 ≤ t ≤ 1, be a smooth path of connections on W connecting ∇W

0 and ∇W
1 . We define

Chern-Simons form CS(∇W
0 ,∇W

1 ) to be the differential form given by

CS(∇W
0 ,∇W

1 ) = −
( 1

2π
√−1

) 1
2
ϕ

∫ 1

0

Tr
[∂∇W

t

∂t
exp(−(∇W

t )2)
]
dt. (2.1)
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Then (cf. [10, Chapter 1])

d CS(∇W
0 ,∇W

1 ) = ch(W,∇W
1 )− ch(W,∇W

0 ). (2.2)

Moreover, it is well known that up to exact forms, CS(∇W
0 ,∇W

1 ) does not depend on the path
of connections on W connecting ∇W

0 and ∇W
1 .

Let (F,∇F ) be a flat vector bundle carrying the flat connection ∇F . Let gF be a Hermitian
metric on F . We do not assume that ∇F preserves gF . Let (∇F )∗ be the adjoint connection of
∇F with respect to gF .

From [8, (4.1), (4.2)] and [7, §1, (g)], one has

(∇F )∗ = ∇F + ω(F, gF ) (2.3)

with

ω(F, gF ) = (gF )−1(∇F gF ). (2.4)

Then

∇F,e = ∇F +
1
2
ω(F, gF ) (2.5)

is a Hermitian connection on (F, gF ) (cf. [7, (1.33)] and [8, (4.3)]).

Following [9, (2.47)], for any r ∈ C, set

∇F,e,(r) = ∇F,e +
√−1 r

2
ω(F, gF ). (2.6)

Then for any r ∈ R, ∇F,e,(r) is a Hermitian connection on (F, gF ).

On the other hand, following [7, (0.2)], for any integer j ≥ 0, let c2j+1(F, gF ) be the Chern
form defined by

c2j+1(F, gF ) = (2π
√−1 )−j2−(2j+1)Tr[ω2j+1(F, gF )]. (2.7)

Then c2j+1(F, gF ) is a closed form on M . Let c2j+1(F ) be the associated cohomology class in
H2j+1(M,R), which does not depend on the choice of gF .

For any j ≥ 0 and r ∈ R, let aj(r) ∈ R be defined as

aj(r) =
∫ 1

0

(1 + u2r2)jdu. (2.8)

With these notation we can now state the following result first proved in [9, Lemma 2.12].

Proposition 2.1 The following identity in Hodd(M,R) holds for any r ∈ R,

CS(∇F,e,∇F,e,(r)) = − r

2π

+∞∑

j=0

aj(r)
j!

c2j+1(F ). (2.9)
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2.2 η and ρ invariants associated to flat vector bundles

We now make the same assumptions as in the beginning of Section 1, except that we no
longer assume ∇F there is unitary.

For any r ∈ C, let

DE⊗F (r) : Γ(S(TM)⊗ E ⊗ F ) −→ Γ(S(TM)⊗ E ⊗ F ) (2.10)

denote the Dirac operator associated to the connection∇F,e,(r) on F . Since when r ∈ R, ∇F,e,(r)

is Hermitian on (F, gF ), DE⊗F (r) is formally self-adjoint and one can define the associated
reduced η-invariant as in (1.4).

By the variation formula for the reduced η-invariant (cf. [1, 6]), one gets that for any r ∈ R,

η̄(DE⊗F (r))− η̄(DE⊗F (0)) ≡
∫

M

Â(TM) ch(E)CS(∇F,e,∇F,e,(r)) modZ, (2.11)

where Â and ch are standard notations for the Hirzebruch Â-class and Chern character respec-
tively (cf. [10, Chapter 1]).

Let DE⊗F,e denote the Dirac operator DE⊗F (0).
From (2.9) and (2.11), one gets that for any r ∈ R,

η̄(DE⊗F (r)) ≡ η̄(DE⊗F,e)− r

2π

∫

M

Â(TM) ch(E)
+∞∑

j=0

aj(r)
j!

c2j+1(F ) modZ. (2.12)

Recall that even though when Im (r) 6= 0, DE⊗F (r) might not be formally self-adjoint, the
η-invariant can still be defined, as outlined in [3, p. 93]. On the other hand, from (2.5) and
(2.6), one sees that

∇F = ∇F,e,(
√−1 ). (2.13)

We denote the associated Dirac operator DE⊗F (
√−1 ) by DE⊗F .

We also recall that
∫ 1

0

(1− u2)jdu =
22j(j!)2

(2j + 1)!
. (2.14)

We can now state the main result of this paper as follows.

Theorem 2.2 Formula (2.12) holds indeed for any r ∈ C. In particular, one has

η̄(DE⊗F ) ≡ η̄(DE⊗F,e)−
√−1
2π

∫

M

Â(TM) ch(E)
+∞∑

j=0

22jj!
(2j + 1)!

c2j+1(F ) modZ. (2.15)

Equivalently,

Re (η̄(DE⊗F )) ≡ η̄(DE⊗F,e) modZ,

Im (η̄(DE⊗F )) = − 1
2π

∫

M

Â(TM) ch(E)
+∞∑

j=0

22jj!
(2j + 1)!

c2j+1(F ). (2.16)
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Proof Clearly, the right-hand side of (2.12) is a holomorphic function in r ∈ C. On the
other hand, by [3, p. 93], η̄(DE⊗F (r)) modZ is also holomorphic in r ∈ C. By (2.12) and the
uniqueness of the analytic continuation, one sees that (2.12) holds indeed for any r ∈ C. In
particular, by putting together (2.12) and (2.13), one gets (2.15).

Recall that when ∇F preserves gF , the ρ-invariant has been defined in (1.5). Now if we no
longer assume that ∇F preserves gF , then by Theorem 2.2, one sees that one gets the following
formula of the associated (extended) ρ-invariant.

Corollary 2.3 The following identity holds:

ρ(DE⊗F ) ≡ η̄(DE⊗F,e)− rk(F ) η̄(DE)

−
√−1
2π

∫

M

Â(TM) ch(E)
+∞∑

j=0

22jj!
(2j + 1)!

c2j+1(F ) modZ. (2.17)

Equivalently,

Re (ρ(DE⊗F )) ≡ η̄(DE⊗F,e)− rk(F ) η̄(DE) modZ,

Im (ρ(DE⊗F )) = − 1
2π

∫

M

Â(TM) ch(E)
+∞∑

j=0

22jj!
(2j + 1)!

c2j+1(F ). (2.18)

It is pointed out in [3] that the Riemann-Roch formula proved in [3, (5.3)] still holds for
ρ(DE⊗F ) in the case where ∇F does not preserve gF . One way to understand this is that
the argument in the proof of [3, (5.3)] given in [3] works line by line to give a K-theoretic
interpretation of η̄(DE⊗F,e) − rk(F ) η̄(DE). By (2.17) it then gives such an interpretation for
ρ(DE⊗F ).

2.3 Further remarks

Remark 2.4 The argument in proving Theorem 2.2 works indeed for any twisted vector
bundles F , not necessary a flat vector bundle. This gives a direct formula for the mod Z part
of the η-invariant for non-self-adjoint Dirac operators.

Remark 2.5 In [11, Theorem 2.2], a K-theoretic formula for DE⊗F (r) modZ has been
given in the r ∈ R case. As a consequence, one gets an alternate K-theoretic formula for
ρ(DE⊗F ) in [11, (4.6)] which holds in the case where ∇F preserves gF . By combining the
arguments in [11] with Theorem 2.2 proved above, one can indeed extend [11, Theorem 2.2]
and [11, (4.6)] to the case where ∇F might not preserve gF . We leave this to the interested
reader. Here we only mention that this will provide an alternate K-theoretic interpretation of
ρ-invariants in the case where ∇F does not preserve gF .

Remark 2.6 We refer to [9] where we have employed the deformation (2.6) to study and
generalize certain Riemann-Roch-Grothendieck formulas due to Bismut-Lott [7] and Bismut [5],
for flat vector bundles over fibred spaces.
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