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Elliptic Genus and Vertex Operator Algebras

Chongying Dong, Kefeng Liu and Xiaonan Ma

Abstract: We construct bundles of modules of vertex operator algebras,
and prove the rigidity and vanishing theorem for the Dirac operator on loop
space twisted by such bundles. This result generalizes many previous results.

0. Introduction

Let X be a compact smooth spin manifold. The elliptic genus of Landweber-
Stong and Ochanine can be regarded to be the index of the formal signature
operator on loop space LX (see [47]). It is the index of the following twisted
Dirac operator on X

D ⊗⊗n≥1Symqn(TX ⊗R C)⊗ S(TX)⊗⊗n>0Λqn(TX ⊗R C)

where S(TX) is the spinor bundle of X and D is the classical Dirac operator.
Here q is a parameter and for a vector bundle E

Symt(E) = 1 + t E + t2Sym2(E) + · · · , Λt(E) = 1 + t E + t2Λ2(E) + · · ·
are respectively the symmetric and wedge operation of E. This elliptic operator
should be considered as infinite number of twisted Dirac operators by taking the
q expansion.

The following elliptic operator

D ⊗⊗n≥1Symqn(TX ⊗R C)⊗⊗n>0Λ±qn−1/2(TX ⊗R C)

were also studied in [47]. It was conjectured in [47] that all these elliptic oper-
ators are rigid, generalizing the famous vanishing theorem of Atiyah-Hirzebruch
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for the Â-genus. There were several rather interesting proofs of these Witten’s
conjectures (see [46], [8], [38], [41]). The one relevant to this paper is the proof
given in [38], [39] where the main idea was to use the modular invariance of affine
Kac-Moody characters.

Note that the fibers of the bundles

S(TX)⊗⊗n>0Λqn(TX ⊗R C)⊗n>0 Λ±qn−1/2(TX ⊗R C)

are level one highest weight integrable module for affine Kac-Moody Lie algebra
D

(1)
l where l is half the dimension of X. This explains partially why the modular

invariance of characters of level 1 highest weight integrable modules for affine
algebra D

(1)
l enters the proof of the rigidity [38].

It is well known that the level one highest weight irreducible module L(Λ0),
where Λ0 is the fundamental weight of D

(1)
l corresponding to the index 0, is a

vertex operator algebra and the four level one highest weight integrable mod-
ules for the affine algebra D

(1)
l are the irreducible modules for L(Λ0). In our

case, the bundles S(TX) ⊗ ⊗n>0Λqn(TX ⊗R C), ⊗n>0Λ±qn−1/2(TX ⊗R C) are
L(Λ0)-bundles in the sense that each fiber is a module of L(Λ0). In this paper,
we construct very general bundles such that the corresponding twisted Dirac op-
erators is rigid. Namely, we twist the Dirac operator by a rather general class
of vertex operator algebra bundles and prove the rigidity property of the corre-
sponding elliptic operators. The main idea in the proof of rigidity theorem again
is to use the modular invariance of certain trace functions in the theory of vertex
operator algebras.

The study of elliptic operators on loop space twisted by a general vertex op-
erator algebra bundle in this paper is motivated by attempting to understand
the monstrous moonshine [12] geometrically. Borcherds proved [7] the Conway-
Norton’s moonshine conjecture for the McKay-Thompson series associated to the
moonshine vertex operator algebra constructed in [26]. But there is still a lot of
interest to understand the genus zero property for the McKay-Thompson series
geometrically. For example, Hirzebruch proposed to realize the J function as
an Â-genus [29]. We hope that McKay-Thompson series can be realized as the
Monster equivariant elliptic genus of certain elliptic operator on some orbifold
[19]. This will lead to the study of elliptic operators on loop space twisted by
vertex operator algebra bundles whose fibers are twisted modules for the vertex
operator algebra. Another motivation for such construction is to understand the
geometric meaning of elliptic cohomology by using bundles of vertex operator
algebras. Some progress has been made in this direction. Actually our results
indicate that elliptic cohomology should contain certain vertex operator algebra
bundles.
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The setting and the argument in this paper give a uniform treatment for the
Dirac operators on loop spaces when V are the vertex operator algebras associated
to the highest weight integrable modules for affine Kac-Moody algebras. More
importantly, our results even in the case that V is a lattice vertex operator
algebra are totally new: many lattice vertex operator algebras are not “natural”
modules for loop groups or affine Kac-Moody algebras. As far as we know, this
is also the first interesting application of the algebraic theory of vertex operator
algebras into geometry and topology. The ideas and results in this paper can be
carried out for the orbifold elliptic genus in the setting of [19].∗ In this case, one
uses twisted sectors or twisted modules for vertex operator algebras instead of
modules. The results on modular invariance of trace functions in orbifold theory
obtained in [17] is also needed.

This paper is organized as follows. In Section 1 we review the basic facts
about vertex operator algebras and present some results which will be used in
Section 2. In particular, we discuss the modularity of certain trace functions
associated to vertex operator algebras and their representations. We also give
a brief account of lattice vertex operator algebras for reader’s convenience. In
Section 2, we begin with a compact Lie group G which acts on the vertex operator
algebra as automorphisms. Using the principal G-bundle we construct the vertex
operator algebra bundles on manifolds. We then consider the Dirac operator on
the loop space twisted by the vertex operator algebra bundles and prove a rigidity
theorem.

Acknowledgments. Part of this work was done while the third author was
visiting UCSC. He would like to thank the Mathematics Department of UCSC
for its hospitality. This project was initiated during the authors’ visit to the
Morningside Center of Mathematics in Beijing.

1. Vertex operator algebras and modular invariance

In this section we present some results about vertex operator algebras and
their graded traces. We recall some details for those readers who are not very
familiar with the theory of vertex operator algebras.

1.1. Vertex operator algebras and modules. We give the definitions of ver-
tex operator algebras and their modules in this section (cf. [6], [15], [26], [48]).

∗The condition c1(W ) = 0 in H∗(P,Z) in [19, Theorem 4.2] should be modified as following:
det W is a trivial complex line bundle as an orbifold bundle on X. In fact,

P
v v dim Wv is

constant on each connected component of X under the current condition (cf. the sentence after
[19, (4.22), (4.28)]).
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Let z, z0, z1, z2 be commuting formal variables. We shall use the basic gener-
ating function

δ(z) =
∑

n∈Z
zn,(1.1)

which is formally the expansion of the δ-function at z = 1. The fundamental (and
elementary) properties of the δ-function are in [26], [25] and [14].

A vertex operator algebra is a Z-graded vector space:

V =
⊕

n∈Z
Vn; for v ∈ Vn, n = wt v;(1.2)

such that dimVn < ∞ for all n ∈ Z and Vn = 0 if n is sufficiently small; equipped
with a linear map

V → (EndV )[[z, z−1]](1.3)

v 7→ Y (v, z) =
∑

n∈Z
vnz−n−1 (vn ∈ EndV )

and with two distinguished vectors 1 ∈ V0, ω ∈ V2 satisfying the following condi-
tions for u, v ∈ V :

unv = 0 for n sufficiently large;(1.4)

Y (1, z) = 1;(1.5)

Y (v, z)1 ∈ V [[z]] and lim
z→0

Y (v, z)1 = v;(1.6)

and there exists a nonnegative integer l depending on u, v such that

(z1 − z2)l[Y (u, z1), Y (v, z2)] = 0;(1.7)

[L(m), L(n)] = (m− n)L(m + n) +
1
12

(m3 −m)δm+n,0(rankV )(1.8)

for m,n ∈ Z, where

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, z) =
∑

n∈Z
L(n)z−n−2(1.9)

and

L(0)v = nv = (wt v)v for v ∈ Vn (n ∈ Z);(1.10)
d

dz
Y (v, z) = [L(−1), Y (v, z)] = Y (L(−1)v, z).(1.11)

This completes the definition. We denote the vertex operator algebra just defined
by (V, Y,1, ω) (or briefly, by V ). The series Y (v, z) are called vertex operators.

An automorphism g of the vertex operator algebra V is a linear automorphism
of V preserving 1 and ω such that the actions of g and Y (v, z) on V are compatible
in the sense that gY (v, z)g−1 = Y (gv, z) for v ∈ V. Then gVn ⊂ Vn for n ∈ Z.
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The group of all automorphisms of the vertex operator algebra V is denoted by
Aut(V ).

A relevant concept is derivation. A derivation of V is an endomorphism D :
V −→ V such that

D(anb) = D(a)nb + anD(b) for all a, b ∈ V, n ∈ Z(1.12)

and D(ω) = 0. In particular, D preserves the gradation of V. So the exponential
eD converges on V and is well-defined. It is easy to see that eD is an automor-
phism.

Suppose that V = ⊕n≥0Vn with V0 = C1, that is, V is of CFT type [18]. Then
V1 is a Lie algebra under [u, v] = u0v with a symmetric invariant bilinear form
(u, v) = u1v for u, v ∈ V1. Moreover, each Vn is a V1-module with u acting as u0.
In this case u0 is a derivation of V and eu0 is an automorphism of V. Set

N = 〈ea0 |a ∈ V1〉.(1.13)

Since σea0σ−1 = e(σa)0 and wt(σ(a)) = 1 for any σ ∈ Aut(V ), N is a normal
subgroup of Aut(V ) (cf. [23]). It is conjectured in [23] that Aut(V )/N is a finite
group. An equivalent conjecture is that the derivation algebra of V is V1.

We say that V is of strong CFT type if V further satisfies the condition that
L(1)V1 = 0. Recall from [25] that a bilinear from (·, ·) on V is called invariant if

(Y (u, z)v, w) = (u, Y (ezL(1)(−z−2)L(0)v, z−1)w)(1.14)

for u, v, w ∈ V. If V is also simple, that is V is an irreducible V -module, then
there is unique nondegenerate invariant bilinear from on V [35]. We shall fix a
bilinear form (·, ·) on V so that (u, v) = u1v for u, v ∈ V1 (cf. [35]). It is clear
from the definition that (gu, gv) = (u, v) for any automorphism g and u, v ∈ V.

Remark 1.1. Let g be a finite dimensional simple Lie algebra and ĝ = g ⊗
C[t, t−1] ⊕ CK the corresponding affine Kac-Moody Lie algebra. Let V be the
vertex operator algebra associated to the irreducible highest weight representation
of level m for ĝ. That is, V is the irreducible quotient of the Verma module
U(ĝ) ⊗U(g⊗C[t]+CK) C where C is the trivial module for g ⊗ C[t]-module and K
acts on C as scalar m. Then V1 is isomorphic to g and the bilinear form (·, ·)
defined by u1v is the m multiple of canonical bilinear form 〈·, ·〉 (the square
length of a long root in canonical bilinear form is 2).

Now we define admissible modules and ordinary modules for vertex operator
algebras. An admissible V -module

M =
∞⊕

n=0

M(n)
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is a Z-graded vector space with the top level M(0) 6= 0 equipped with a linear
map

V −→ (EndM)[[z, z−1]](1.15)

v 7−→ YM (v, z) =
∑

n∈Z
vnz−n−1 (vn ∈ EndM)

which satisfies the following conditions; for u, v ∈ V, w ∈ M , n ∈ Z,

unw = 0 for n À 0,
YM (1, z) = 1,

(1.16)

(1.17)

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1)YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2)YM (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2)

(Jacobi identity) where all binomial expressions (zi − zj)n are to be expanded in
nonnegative integral powers of the second variable zj : This identity is interpreted
algebraically as follows: if this identity is applied to a single vector of V then the
coefficient of each monomial in z0, z1, z2 is a finite sum in V ;

umM(n) ⊂ M(wt(u)−m− 1 + n)(1.18)

if u is homogeneous. We denote the admissible V -module by M = (M, YM ).

Remark 1.2. Let (M, YM ) be an admissible V -module. Then L(−1)-derivation
property

(1.19) YM (L(−1)v, z) =
d

dz
YM (v, z)

holds. Moreover, the component operators of YM (ω, z) generate a copy of the
Virasoro algebra of central charge rankV (see [15]).

A (ordinary) V -module is an admissible V -module M which carries a C-grading
induced by the spectrum of L(0). That is, we have

M =
⊕

λ∈C
Mλ

where Mλ = {w ∈ M |L(0)w = λw}. Moreover we require that dimMλ is finite
and for fixed λ, Mn+λ = 0 for all small enough integers n.

A vertex operator algebra V is called rational if any admissible V -module is a
direct sum of irreducible admissible V -modules. It was proved in [16, Theorem
8.1] (also see [48]) that if V is a rational vertex operator algebra then every ir-
reducible admissible V -module is an ordinary V -module and V has only finitely
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many irreducible admissible modules up to isomorphism. We introduce the fol-
lowing notions:

(1) V is called holomorphic if V is rational and V is the only irreducible module
for itself.

(2) V is called C2-cofinite if C2(V ) = 〈u2v|u, v ∈ V 〉 is of finite codimension.

It is a well known conjecture in the theory of vertex operator algebra that
rationality and C2-cofinite conditions are equivalent. A vertex operator algebra
V is said to be strongly rational if V is of strong CFT type, rational and C2-
cofinite.

The following theorem was proved in [21].

Theorem 1.3. If V is strongly rational then V1 is a reductive algebra.

We shall fix a Cartan subalgebra h of V1.

1.2. Trace functions and modular invariance. We first review the vertex
operator algebras on torus as defined in [48]. The new vertex operator algebra
is denoted by (V, Y [ ],1, ω − c/24) where c is the central charge of V. The new
vertex operator associated to a homogeneous element a is given by

Y [a, z] =
∑

n∈Z
a[n]z−n−1 = Y (a, ez − 1)ezwta(1.20)

while a Virasoro element is ω̃ = ω − c/24. Thus

a[m] = Resz

(
Y (a, z)(ln (1 + z))m(1 + z)wta−1

)
(1.21)

and

a[m] =
∞∑

i=m

c(wta, i, m)a(i)(1.22)

for some scalars c(wta, i, m) such that c(wta,m, m) = 1. In particular,

a[0] =
∑

i≥0

(
wta− 1

i

)
a(i).(1.23)

We also write

L[z] = Y [ω, z] =
∑

n∈Z
L[n]z−n−2.(1.24)
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Then the L[n] again generate a copy of the Virasoro algebra with the same central
charge c. Now V is graded by the L[0]-eigenvalues, that is

V =
⊕

n∈Z
V[n](1.25)

where V[n] = {v ∈ V |L[0]v = nv}. It should be pointed out that for any n ∈ Z
we have ∑

m≤n

Vm =
∑

m≤n

V[m].(1.26)

It is worthy to remark that if v ∈ Vn is a lowest weight vector for the Virasoro
algebra generated by L(m),m ∈ Z then v ∈ V[n]. In particular if L(1)V1 = 0 then
V1 = V[1].

Let M =
∑

λ∈CMλ be a V -module. For homogeneous a ∈ V we define

o(a) = awta−1,(1.27)

and extend o(a) to all a by linearity. Let a ∈ V we define

ZM (a, q) = TrMo(a)qL(0)−c/24 = q−c/24
∑

λ∈C
(TrMλ

o(a))qλ.(1.28)

If V is C2 − cofinite it is proved in [48, Theorem 4.4.1] that ZM (a, q) converges
to a holomorphic function in upper half plane with q = e2πiτ .

Now we assume that V is rational. Let M1, ..., Mn be the irreducible V -
modules. Then there exist rational numbers λi for i = 1, ..., n such that

M i =
∞∑

p=0

M i
λi+p(1.29)

(see [17, Theorem 11.1]) and M i
λi
6= 0. For a ∈ V we set Zi(a, q) = ZM i(a, q) for

i = 1, ..., n. Then

Zi(a, q) = qλi−c/24
∞∑

p=0

(TrM i
λi+p

o(a))qp.(1.30)

The following modular property is given in [48, Theorem 5.5.1].

Theorem 1.4. Assume that V is rational, C2-cofinite. Let v ∈ V[m] and γ =(
a b
c d

)
∈ SL(2,Z). Then Zs(v, q) converges to a holomorphic function in the

upper half plane and there exist scalars γst independent of v, m and τ such that

Zs(v,
aτ + b

cτ + d
) = (cτ + d)m

n∑

t=1

γstZt(v, τ).(1.31)
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We remark that in fact the condition that V is a sum of lowest weight modules
for the Virasoro algebra was assumed in [48]. This condition was removed in [17].

We should also mention that Theorem 1.4 does not assert that Zs(v, q) is a
modular form of weight m on a subgroup of SL(2,Z) of finite index. Although
the modularity of Zs(v, τ) is always assumed in physics, it is still an open problem
in mathematics. For the discussion of the next section we introduce the following
definition.

Definition 1.5. A module M for vertex operator algebra V is called modular
if there exists a subgroup Γ of SL(2,Z) of finite index such that ZM (v, γτ) =
ψ(γ)(cτ + d)mZM (v, τ) for v ∈ V[m] and γ ∈ Γ where ψ is a character on Γ.

The irreducible modules for well-known rational vertex operator algebras are
modular (see [30] for the affine vertex operator algebras and [22] for the lattice
vertex operator algebras).

Following [44] we define

Zs(v, u, q) = TrMse2πi(o(v)+(u,v)/2)qL(0)+o(u)+(u,u)/2−c/24,(1.32)

for u, v ∈ V1. We remark that the bilinear form on V1 used in [44] is the minus
of the bilinear form used in this paper. So our Zs(v, u, q) has a slightly different
expression although they are exactly the same as in [44]. Based on Theorem 1.4,
a modular transformation law is obtained in the [44, Main theorem].

Theorem 1.6. Suppose that V be a rational, C2-cofinite vertex operator algebra
of CFT type. Assume that u, v ∈ V1 such that u, v span an abelian Lie subalgebra

of V1. Let γ =
(

a b
c d

)
∈ SL(2,Z). Then Zs(u, v, q) converges to a holomorphic

function in the upper half plane and

Zs(v, u,
aτ + b

cτ + d
) =

n∑

t=1

γstZt(av + bu, cv + du, τ)(1.33)

where γst is the same as in Theorem 1.4.

Remark 1.7. Although the modular transformation properties of Zs(v, u, q) was
given in [44], but the convergence of Zs(v, u, q) was never discussed there. We
will prove in the next proposition that Zs(v, 0, q) is convergent in the upper half
plan.

From now on we assume that V is strongly rational. Recall that h is a fixed
Cartan subalgebra of the reductive Lie algebra V1 (cf. Theorem 1.3). Since the
homogeneous subspace of a module M of V is finite dimensional, M is a direct
sum of generalized eigenspaces for h. Since the restriction of the bilinear form on
V to h is nondegenerate we can identify h∗ with h via the bilinear from.
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We now define

χs(v, τ) = χMs(v, τ) = Zs(v, 0, τ)(1.34)

for v ∈ V1.

Proposition 1.8. Assume that V is strongly rational. Then χs(v, τ) converges
to a holomorphic function in h×H where H = {τ ∈ C; Imτ > 0} is the upper half
plane.

Proof : We first recall a result from [27, Proposition 8] on the generators of V.
Let dim V/C2(V ) = m and x1, ..., xm the coset representatives such that L(0)xi =
µix

i and xi is a generalized eigenvector for h with eigenvalue αi ∈ h. Let U s be the
space of lowest weight space of M s. Then M s = ⊕p≥0M

s
λs+p where M s

λs
= U s.

For convenience we set u(m) = uwtu−1−m for u ∈ V and m ∈ Z. Then M s is
spanned by

xi1(m1) · · ·xik(mk)U s

for 1 ≤ ij ≤ m and m1 ≥ m2 ≥ · · · ≥ mk > 0 (see [37], [31], [27], [10]). Take
w ∈ U s to be a generalized eigenvector for h with eigenvalue γ ∈ h. Then the
subspace W spanned by

xi1(m1) · · ·xik(mk)w
for 1 ≤ ij ≤ m and m1 ≥ m2 ≥ · · · ≥ mk > 0 is invariant under L(0)
and o(v) for v ∈ h. Since U s is finite dimensional, it is enough to prove that
TrW e2πio(v)qL(0)−c/24 is holomorphic in h×H.

It is easy to see that

TrW e2πio(v)qL(0)−c/24 ≤ q−c/24+λie2πi(v,γ)
m∏

j=1

∏

p>0

(1− qpe2πi(v,αj))−1

where the inequality holds for each coefficient of the qµe2πie2πi(v,t1α1+···+tmαm).
So it suffices to show that the power series

∏

p>0

(1− qpξ)−1

is convergent absolutely for (ξ, τ) ∈ C∗ × H. Write ξ = eα+iβ and τ = x + iy
for α, β, x, y ∈ R with y > 0. Then |qpξ| = e−2πpyeα. It is clear now that∏

p>0(1− qpξ)−1 is absolutely convergent. ¥

Remark 1.9. The same argument also shows that Zs(u, v, q) is convergent for
any u, v ∈ h.

Next we discuss the transformation law for χs(v, τ) under the modular group
action.
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Proposition 1.10. Assume that V is strongly rational. Then for γ =
(

a b
c d

)
∈

SL(2,Z), v ∈ V1

χs(
v

cτ + d
,
aτ + b

cτ + d
) = eπi(c(v,v)/(cτ+d))

n∑

j=1

γsjχj(v, τ).(1.35)

In particular, if M is modular and Γ is the corresponding subgroup of SL(2,Z),
then

χM (
v

cτ + d
,
aτ + b

cτ + d
) = ψ(γ)eπi(c(v,v)/(cτ+d))χM (v, τ).(1.36)

Proof : It is enough to prove that

χs(
v

τ
,−1

τ
) = eπi(v,v)/τ

n∑

j=1

Ss,tχt(v, τ),(1.37)

where Ss,t corresponds to the matrix S =
(

0−1
1 0

)
in Theorem 1.4 and

χs(v, τ + 1) = e2πi(λs−c/24)χs(v, τ).(1.38)

The transformation law for T =
(

1 1
0 1

)
is clear. For the S matrix we note from

Theorem 1.6 that

χs(v,−1
τ
) =

n∑

t=1

Ss,tZt(0, v, τ)

for any u ∈ h. In particular,

χs(
v

τ
,−1

τ
) =

n∑

t=1

Ss,tZt(0,
v

τ
, τ).

It is straightforward to verify that

Zt(0,
v

τ
, τ) = eπi(v,v)/τχt(v, τ).

This completes the proof. ¥

Remark 1.11. Recall Remark 1.1. In this case, the factor eπi(v,v)/τ in Proposi-
tion 1.10 becomes to eπim〈v,v〉/τ .

Recall from Theorem 1.3 that V1 is a reductive Lie algebra and h is a Cartan
subalgebra. Then V1 = gss ⊕ ga is a direct sum of the semisimple ideal gss and
the center ga and h = hss ⊕ ga where hss is a Cartan subalgebra of gss. Since gss
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acts completely on any V -module M i, hss acts on M i semisimply. For α ∈ h let
M i,α be the generalized eigenspace for h with eigenvalue α. Also set

Q = {α ∈ h|V α 6= 0}.
Then Q is generated by α1, ..., αm where αi are given in the proof of Proposition
1.8. Clearly Q = Qss⊕Qa where Qss is a lattice of hss containing the root lattice
of gss and Qa is a lattice of ga consisting of eigenvalues for ga on V.

Lemma 1.12. There exist µi ∈ h for i = 1, ..., n such that

V = ⊕α∈QV α,(1.39)

M i = ⊕α∈QM i,µi+α.

Moreover, each V α and M i,µi+α are nonzero, and Q span h.

Proof : Since V is generated by x1, ..., xm we clearly have

V = ⊕α∈QV α.

Showing that V α is nonzero for any α ∈ Q is equivalent to showing that if V β and
V γ are nonzero then V β+γ and V −β are nonzero. Observe that uqV

γ ⊂ V β+γ

for u ∈ V β and q ∈ Z. It follows from [14, Proposition 11.9] that if u is nonzero
there exists q ∈ Z such that uqV

γ is nonzero. That is, V β+γ is nonzero.

In order to see that V −β is nonzero we notice that V 0 ⊃ V0 is nonzero. Since
V is simple V is spanned by uqw for u ∈ V, 0 6= w ∈ V β and q ∈ Z (see [20,
Corollary 4.2] or [36, Proposition 4.1]). Thus V −β must be nonzero, otherwise
V 0 would be zero. Since M i is an irreducible V -module the same argument can
prove that M i = ⊕α∈QM i,µi+α and M i,µi+α is nonzero for any α ∈ Q.

It remains to prove that Q spans h. Define an invariant symmetric bilinear
form (·, ·)p on V1 such that (u, v)p = TrVpo(u)o(v) for u, v ∈ V. It is proved in
[21] that if p is big enough the form (·, ·)p is nondegenerate. Since the form is
invariant, the restriction of the form (·, ·)p to h is also nondegenerate if p is large.
If Q does not span h then for some nonzero u ∈ h, o(u) has only zero eigenvalue.
As a result (u, v)p = 0 for all v ∈ h. This is a contradiction. ¥

This following lemma can be found in [21].

Lemma 1.13. If V is a strongly rational vertex operator algebra then each V -
module is a completely reducible V1-module. That is, the action of ga on any
V -module is semisimple.

Let L be the lattice generated by Q and µi for i = 1, ..., n and L◦ = {α ∈
h|(α, L) ⊂ Z} the dual lattice of L. Then we immediately have the following
consequence.
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Lemma 1.14. Let V be as before. Then for any v ∈ h, α ∈ L◦ we have

χs(v + α, τ) = χs(v, τ).(1.40)

Here is a conjecture on χM (v, τ).

Conjecture 1.15. If V is a rational vertex operator algebra of CFT type then
for any irreducible module M

χM (v + ατ, τ) = e−2πi(v,α)−πi(α,α)τχM (v, τ)(1.41)

for v ∈ h and α ∈ L◦.

This conjecture holds for vertex operator algebras associated to the highest
weight integrable representations for affine Kac-Moody Lie algebra and for lattice
vertex operator algebras. The complete reducibility of each V -module as a V1-
module is automatic by construction in these cases. The transformation property
(1.41) for affine vertex operator algebras can be found in [30]. The transformation
property (1.41) for lattice vertex operator algebras is discussed below.

Here we briefly recall the structure of lattice vertex operator algebra VK asso-
ciated to a positive definite even lattice K from [6], [26], [13]. Then K is a free
abelian group of finite rank with a Z-valued positive definite symmetric bilinear
form (·, ·) such that the square length of any element is even. Set h = K ⊗Z C
and extend the bilinear form to h by C-linearity. Regarding h as an abelian Lie
algebra we consider the affine algebra ĥ = h ⊗ C[t, t−1] ⊕ CC. Let M(1) be the
canonical irreducible ĥ-module such that C acts as 1. For h ∈ h and n ∈ Z we
set h(n) = h⊗ tn. Then M(1) = C[h(−n)|h ∈ h, n > 0] as vector space. Let C[K]
be the group algebra of K. The lattice vertex operator algebra VK is defined to
be M(1) ⊗ C[K] as a vector space. We refer the reader to [6] and [26] for the
definition of the vertex operators Y (u, z).

We write eα for the basis element of C[K] corresponding to α ∈ K. For v =
h1(−n1) · · ·hk(−nk)⊗ eα (hi ∈ h, ni > 0, α ∈ K) L(0)v = (

∑k
i=1 ni + (α, α)/2)v.

So (VK)1 is spanned by

{h(−1), eα|h ∈ h, α ∈ K, (α, α) = 2}.
Let h(−1) be the span of h(−1) for h ∈ h. Then h(−1) is a Cartan subalgebra of
(VK)1. We identify h with h(−1) in an obvious way.

It is well known that VK is a strongly rational vertex operator algebras (cf.
[13, Theorem 2.7], [15, Theorem 3.16], [17, Proposition 12.5]). Let K◦ = {h ∈
h|(h,K) ⊂ Z} be the dual lattice of K. Let K◦ = ∪g∈K◦/K(K + βg) be the coset
decomposition. For g ∈ K◦/K we set

VK+βg = M(1)⊗ C[K + βg].
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Then VK+βg for g ∈ K◦/K give a complete list of irreducible modules for VK

up to isomorphism. Now let v = h1(−n1) · · ·hk(−nk) ⊗ eα with α ∈ K + βg we
still have L(0)v = (

∑k
i=1 ni + (α, α)/2)v. Moreover, o(h(−1)) = h(0) acts on v

as (h, α) for h ∈ h. Note that the central charge of VK is the rank of K. Set
χg(h, τ) = TrVK+βg

e2πih(0)qL(0)−c/24. We have

χg(h, τ) =
θK+βg(h, τ)

η(q)c

where
θK+βg(h, τ) =

∑

α∈K+βg

e2πi(h,α)q(α,α)/2,

η(q) = q1/24
∏

p>0

(1− qp),

and c is the rank of K. It is immediate to see that

χg(h + ατ, τ) = e−2πi(v,α)−πi(α,α)τχg(v, τ)

for α ∈ K◦.

2. Rigidity and vanishing theorems of voa elliptic genera

In this section we study certain elliptic operators on loop spaces twisted by
vertex operator algebra bundles. More precisely, we begin with an arbitrary
strong rational vertex operator algebra V and a compact Lie group G which acts
continuously on V as automorphisms. We use the principal G-bundle P and V
to form the associated sequence of vector bundles ψ(V, P ) on the manifold which
is used to define elliptic operators. We then show that these operators are rigid
under certain assumptions on the vertex operator algebra V. We will call the
indices of these twisted elliptic operators the voa elliptic genera.

2.1. Rigidity theorem of voa elliptic genera. Let X be a compact mani-
fold and dimX = 2k. We assume that the S1 acts on X, and TX has an S1-
equivariant spin structure. Let S(TX) = S+(TX)⊕S−(TX) be the spinor bundle
of TX. Let DX be the Dirac operator on S(TX). If W is an S1-equivariant com-
plex vector bundle on X, we will denote by D⊗W the twisted Dirac operator of
S(TX)⊗W (cf. [5, §3.3]).

Recall that the elliptic operator D ⊗W is called rigid if the equivariant index

Indg(D ⊗W ) = Tr g|Ker D⊗W − Tr g|Coker D⊗W

of D ⊗W is constant with respect to g ∈ S1.



Elliptic Genus and Vertex Operator Algebras 805

For a complex (resp. real) vector bundle W on X, as in the introduction, we
let

Symt(W ) = 1 + tW + t2Sym2W + · · · ,
Λt(W ) = 1 + tW + t2Λ2W + · · · ,

(2.1)

be the symmetric and respectively the exterior power operations of W (resp.
W ⊗R C) in K(X)[[t]].

Let V = ⊕n≥0Vn be a strongly rational vertex operator algebra. Then the
bilinear form (a, b) = a1b on V1 is Aut(V )-invariant. Recall the automorphism
group N of V from (1.13). Let G be a compact Lie group which is contained in N
and acts continuously on V as automorphisms. Then G acts on each V -module.

Let P be an S1-equivariant principal G-bundle on X. We define

ψ(V, P ) =
∑

n≥0

(P ×G Vn)qn ∈ K(X)[[q]].(2.2)

Here P ×G Vn is the associated vector bundle corresponding to the representation
of G on Vn. More generally, if Mµ = ⊕∞p=0M

µ
µ+p is an irreducible V -module, we

define

ψ(Mµ, P ) =
∑

λ

(P ×G Mµ
λ )qλ ∈ K(X)[[qQ]].(2.3)

Recall that the equivariant cohomology group H∗
S1(X,Q) of X is defined by

H∗
S1(X,Q) = H∗(X ×S1 ES1,Q),

where ES1 is the usual S1-principal bundle over the classifying space BS1. So
H∗

S1(X,Q) is a module over H∗(BS1,Q) induced by the projection π : X ×S1

ES1 → BS1. Let p1(TX)S1 ∈ H∗
S1(X,Q) be the equivariant first Pontrjagin

classes of TX. Also recall that

H∗(BS1,Q) = Q[[u]]

with u a generator of degree 2. Then the G-invariant bilinear form ( )V1 defines
an S1-equivariant characteristic class Q(V1)S1 of P .

In the rest, we suppose that there exists l ∈ Z such that

Q(V1)S1 − p1(TX)S1 = l · π∗u2 in H∗
S1(X,Q).(2.4)

As in [39], we call l the anomaly to rigidity.

Theorem 2.1. Assume that V is strong, rational vertex operator algebra and M
an irreducible V -module satisfying (1.41). If the G-principal bundle P satisfies
(2.4), then the elliptic operator

DX
⊗

(
∞⊗

m=1

Symqm(TX)⊗ ψ(M, P ))
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is rigid for l ≤ 0. Moreover, its equivariant index is zero on S1 if l < 0, especially,
its index is zero.

Remark 2.2. By combining the argument in this paper and [40, §2], we can easily
generalize Theorem 2.1 to family case, and obtain the rigidity and vanishing
theorems at the equivariant Chern character level [40, Definition 2.1] for the
corresponding fiberwise twisted Dirac operator of a fibration.

2.2. Proof of Theorem 2.1. For τ ∈ H = {τ ∈ C; Imτ > 0}, q = e2πiτ , v ∈ C,
let

θ(v, τ) = c(q)q1/82 sin(πv)Π∞n=1(1− qne2πiv)Π∞n=1(1− qne−2πiv)(2.5)

be the classical Jacobi theta functions [11], where c(q) = Π∞n=1(1− qn). Set

θ′(0, τ) =
∂θ(v, τ)

∂v

∣∣∣∣
v=0

.(2.6)

Recall that we have the following transformation formulas of theta-functions [11]:

θ(t + 1, τ) = −θ(t, τ), θ(t + τ, τ) = −q−1/2e−2πitθ(t, τ),

θ( t
τ ,− 1

τ ) = 1
i

√
τ
i e

πit2

τ θ(t, τ), θ(t, τ + 1) = e
πi
4 θ(t, τ).

(2.7)

Let g = e2πit ∈ S1 be a topological generator of S1. Let Xg = {Xα} be the
fixed submanifold of the circle action. Let iα : Xα → X be the natural immer-
sion. Let i∗α : H∗

S1(X,Q) → H∗
S1(Xα,Q) denote the induced homomorphism in

equivariant cohomology. We have the following S1-equivariant decomposition of
TX

TX|Xα
= N1 ⊕ · · · ⊕Nh ⊕ TXα,(2.8)

Here Nγ is a complex vector bundle such that g acts on it by e2πimγt. We denote
the Chern roots of Nγ by 2πixj

γ , and the Chern roots of TXα⊗RC by {±2πiy′j}.
Let dimCNγ = dγ , and dimXα = 2kα.

Now, recall that P is an S1 equivariant G-principal bundle on X. We assume
that G acts on the right on P , and S1 acts on the left on P . Let ω be an
S1-equivariant connection form on P , it defines a S1-equivariant horizontal sun-
bundle HP of TP . Let Ω = dω+ 1

2 [ω, ω] be the curvature of ω, it is a two form on
P with values in g. Let S be the basis of Lie(S1) = R such that exp(tS) = exp(it)
for t ∈ R. Let SX , SP be the vector field on X, P induced by S. For example,
(SXf)(x) = d

dε |ε=0f(exp(−εS)x) for x ∈ X and f a C∞ function on X.

Let W be a vector space. Let ρ : G → End(W ) be a representation of G,
let W = P ×G W be the corresponding associated vector bundle. Then the
connection ω induces a connection ∇W on W, and the corresponding curvature
is given by ρ(Ω) [5, p25]. Let LW(S) be the Lie action of S on the C∞ sections
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of W which is defined by (LW(S)s)(x) = d
dε |ε=0

(
exp(εS)

(
s(exp(−εS)x)

))
for

x ∈ X and s a
mathcalC∞ section of W on X. Then the moment of S ∈ Lie(S1) is given by

µ(S) = LW(S)−∇WSX
.(2.9)

Let TP/X be the relative tangent bundle of the fibration P → X. Let PHP ,
P TP/X be the projections from TP = HP ⊕ TP/X onto HP , TP/X. By [5,
p24], we know for s ∈ C∞(P, W )G = C∞(X,W). Here C∞(P, W )G is the G-
invariant C∞ function on P with values in W ,

(2.10) µ(S)s = LW(S)s− (PHP SP ) · ds = (SP − PHP SP ) · ds

= (P TP/XSP ) · s = −ρ(ω(SP ))s ∈ C∞(P, W )G.

Now the equivariant curvature of W corresponding to S [5, p211] is ρ(Ω−ω(SP )).
So the equivariant Chern character of W for g = e2πit is

chg(W) = TrW eρ( −1
2πi

Ω−2πtω(SP )).(2.11)

Now we return to our situation. When restricted to Xα we can calculate (2.11)
in the following way: when we consider P|Xα

its restriction on Xα, then we can
define f : P|Xα

× S1 → G by : for (p, s) ∈ P|Xα
× S1, s · p = p · fp(s). Then for p

fixed, fp : S1 → G is a group homeomorphism, and for h ∈ G, s ∈ G,

hfph(s)h−1 = fp(s).(2.12)

Now, we fix p0 ∈ P. Then fp0(S
1) is contained in a maximum torus H of G. Let

G1 be the centralize of fp0(S
1) in G. We choose the Cartan subalgebra h of V1

in Section 1.1 such that the Lie algebra of H is contained in h.

By using parallel transport with respect to HP , from p0G1, we get an S1-
equivariant G1-principal bundle P1 on Xα which is a subbundle of P|Xα

and for
s ∈ S1, fp(s) ∈ H doesn’t depend on p ∈ P1. In fact, let Xt : t ∈ [0, 1] → X be a
curve such that x0 is the projection of p0 to X, and let kt be the lift of xt on P
along HP , then kt(p0g) = kt(p0)g for any g ∈ G. In this way, P|Xα

= P1×G1 G is
induced by the G1-principal bundle P1 on Xα, and recall that H is the maximum
torus of G1. Let ω1 be the restriction of ω on P1. Then iω1(SP ) is constant on
P1 which lies in the lattice L◦ of h where the lattice L◦ is defined in Section 1.
In the same way, the restriction of Ω on P1 lies in g1, the Lie algebra of G1. So
for g = e2πit ∈ S1,

chg(W) = TrW eρ( −1
2πi

Ω−2πω1(SP )t).(2.13)

We write T = iω1(SP ) ∈ h. Let U = −1
(2πi)2

Ω. Now from (1.27) and (2.13), we
know that

i∗αchg(P ×G Mλ) = TrMλ
e2πio(U+Tt).(2.14)
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Thus, the restriction of the equivariant Chern character of ψ(M, P ) on Xα is

i∗αchg(ψ(M, P )) =
∑

λ

TrMλ
e2πio(U+Tt)qL(0) = qc/24χM (U + Tt, τ).(2.15)

Compare with (1.34).

For g = e2πit, t ∈ R, and τ ∈ H, q = e2πiτ , we let

FM,P (t, τ) = q−c/24Indg(DX
∞⊗

m=1

Symqm(TX − dimX)⊗ ψ(M, P )).(2.16)

For f(x) a holomorphic function, we denote by f(y′)(TXg) = Πjf(y′j), the
symmetric polynomial which gives characteristic class of TXg, and similarly for
Nγ . Using the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula [2], (2.5),
(2.14), we find for t ∈ [0, 1] \Q

FM,P (t, τ) = (2πi)−k
∑
α

∫

Xα

[
θ′(0, τ)k

( 2πiy′

θ(y′, τ)

)
(TXg)

χM (U + Tt, τ)
Πγθ(xγ + mγt, τ)(Nγ)

]
.(2.17)

Considered as functions of (t, τ), we can obviously extend FM,P (t, τ) to mero-
morphic functions on C × H. and holomorphic in τ . The first part of Theorem
2.1 is equivalent to the statement that FM,P (t, τ) is independent of t. We will
prove FM,P (t, τ) is holomorphic on C × H, then Theorem 2.1 will be deduced
from Lemma 2.3.

Lemma 2.3. If Q(V )S1 − p1(TX)S1 = l · π∗u2, then for a, b ∈ 2Z,

FM,P (t + aτ + b, τ) = e−πil(a2τ+2at)FM,P (t, τ).(2.18)

Proof : By (2.7), for a, b ∈ 2Z, m ∈ Z, we have

θ(x + m(t + aτ + b), τ) = e−πi(2max+2m2at+m2a2τ)θ(x + mt, τ).(2.19)

By (2.4),

(U + Tt, U + Tt)V1 −
( ∑

j

(y′j)
2 +

∑

γ,j

(xj
γ + mγt)2

)
= l · t2(2.20)

where (·, ·)V1 is the bilinear from on V1.

This means
(T, T )V1 −

∑
γ m2

γdγ = l, (T,U)V1 =
∑

γ,j mγxj
γ ,

(U,U)V1 =
∑

j(y
′
j)

2 +
∑

γ,j(x
j
γ)2.

(2.21)

By using (1.40), (1.41), (2.17), (2.19) and (2.21), we get (2.18). ¥

Now we will examine the modular transformation property of FM,P (t, τ) under
the group SL2(Z).
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For A =
(

a b
c d

)
∈ SL2(Z), we define its modular transformation on C × H

by

A(t, τ) =
(

t

cτ + d
,
aτ + b

cτ + d

)
.(2.22)

Then the two generators S =
(

0 − 1
1 0

)
, T =

(
1 1
0 1

)
of SL2(Z) act on C×H

in the following way:

S(t, τ) =
( t

τ
,−1

τ

)
, T (t, τ) = (t, τ + 1).

Lemma 2.4. For any A =
(

a b
c d

)
∈ SL2(Z), we have

FM,P (A(t, τ)) = eπilct2/(cτ+d)(cτ + d)kFAM,P (t, τ),(2.23)

where AM =
∑

µ aµMµ is a finite complex linear combination of the irreducible
V -modules, and we denote by

FAM,P (t, τ) = (2πi)−kθ′(0, τ)k
∑

µ

∑
α

aµ

∫

Xα

[( 2πiy′

θ(y′, τ)

)
(TXg)

χMµ(U + Tt, τ)
Πγθ(xγ + mγt, τ)(Nγ)

]
,

(2.24)

the complex linear combination of the corresponding equivariant indices.

Proof : Set

F (t, τ) =
θ′(0, τ)
θ(t, τ)

.(2.25)

By (2.7), we get

F (A(t, τ)) = (cτ + d)e−cπit2/(cτ+d)F ((cτ + d)t, τ).(2.26)

By Proposition 1.10, (2.14), it is easy to see that on Xα,

χM (A(U + Tt, τ)) = ecπi(U+Tt,U+Tt)V1
/(cτ+d)χAM (U + Tt, τ).(2.27)

with

χAM (U + Tt, τ) =
∑

µ

aµχMµ(U + Tt, τ).(2.28)
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By using (2.17), (2.21), (2.26) and (2.27), we get

FM,P (
t

cτ + d
,
aτ + b

cτ + d
) = (2πi)−k

∑
α

∫

Xα

[(
2πiy′F (y′,

aτ + b

cτ + d
)
)
(TXg)

Πγ

(
F (xγ +

mγt

cτ + d
,
aτ + b

cτ + d
)(Nγ)

)
χM (U +

Tt

cτ + d
,
aτ + b

cτ + d
)
]

= eπilct2/(cτ+d)(cτ + d)k(2πi)−k
∑
α

∫

Xα

[(
2πiy′F ((cτ + d)y′, τ)

)
(TXg)

Πγ

(
F ((cτ + d)xγ + mγt, τ)(Nγ)

)
χAM ((cτ + d)U + Tt, τ)

]

(2.29)

By (2.29), to prove (2.24), we only need prove the following equation,
∫

Xα

[(
2πiy′F ((cτ + d)y′, τ)

)
(TXg)

Πγ

(
F ((cτ + d)xγ + mγt, τ)(Nγ)

)
χAM ((cτ + d)U + Tt, τ)

]

=
∫

Xα

[(
2πiy′F (y′, τ)

)
(TXg)

Πγ

(
F (xγ + mγt, τ)(Nγ)

)
χAM (U + Tt, τ)

]
.

(2.30)

By looking at the degree 2kα part, that is the kα-th homogeneous terms of the
polynomials in x’s, y′’s and u’s, on both sides, we get (2.29). The proof of Lemma
2.4 is complete. ¥

The following lemma is a generalization of [39, Lemma 2.3],

Lemma 2.5. For any A ∈ SL2(Z), the function FAM,P (t, τ) is holomorphic in
(t, τ) for (t, τ) ∈ R×H.

Proof : Let z = e2πit, and N = maxα,γ |mγ |. Denote by DN ⊂ C2 the domain

|q|1/N < |z| < |q|−1/N , 0 < |q| < 1.(2.31)

By (2.3), (2.17) and (2.24), we know that in DN , FAM,P (t, τ) has a convergent
Laurent series expansion of the form

∑
µ

aµq−c/24+λµ

∞∑

j=0

bA
jµ(z)qj(2.32)

where λµ is a rational number such that Mµ = ⊕∞p=0M
µ
λµ+p (see (1.29)) and

{bA
jµ(z)} are rational functions of z with possible poles on the unit circle.

Now considered as a formal power series of q,
∞⊗

n=1

Symqn(TX − dimX)⊗
∑

µ

aµq−c/24ψ(Mµ, P ) =
∑

µ

aµq−c/24+λµ

∞∑

j=0

V A
j,µqj
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with V A
j,µ ∈ KS1(X). Note that the terms in the above two sums correspond to

each other. Now, we apply the Atiyah-Bott-Segal-Singer Lefschetz fixed point
formula to each V A

j,µ, for t ∈ R \Q, we get

bA
jµ(z) = Indz(D ⊗ V A

j,µ).(2.33)

This implies that for t ∈ R \Q, z = e2πit,

bA
jµ(z) =

N(j)∑

l=−N(j)

aA,µ
l,j zl.(2.34)

for N(j) some positive integer depending on j and aA,µ
l,j ∈ R. Since both sides

are analytic functions of z, this equality holds for any z ∈ C.

On the other hand, by multiplying FAM,P (t, τ) by f(z) = Πα,γ(1 − zmγ )l′dγ

(l′ = dim X), we get holomorphic functions which have a convergent power series
expansion of the form

∑
µ aµq−c/24+λµ

∑∞
j=0 cA

jµ(z)qj , with {cA
jµ(z)} polynomial

functions in DN . Comparing the above two expansions, one gets

cA
jµ(z) = f(z)bA

jµ(z)(2.35)

for each j. So by the Weierstrass preparation theorem, we get FAM,P (t, τ) is
holomorphic in DN . ¥

Lemma 2.6. FM,P (t, τ) is holomorphic on C×H.

Proof : Recall that by Proposition 1.8, χM (v, t) is holomorphic on h×H. From
their expressions, we know the possible polar divisors of FM,P in C×H are of the
form t = m

n (cτ + d) with m,n, c, d integers and (c, d) = 1 or c = 1 and d = 0.

We can always find integers a, b such that ad− bc = 1, and consider the matrix

A =
(

d − b
−c a

)
∈ SL2(Z). By (2.23),

FAM,P (t, τ) = (−cτ + a)−kFM,P

( t

−cτ + a
,

dτ − b

−cτ + a

)
.(2.36)

Now, if t = m
n (cτ + d) is a polar divisor of FM,P (t, τ), then one polar divisor

of FAM,P (t, τ) is given by
t

−cτ + a
=

m

n

(
c

dτ − b

−cτ + a
+ d

)
,(2.37)

which exactly gives t = m/n. This contradicts Lemma 2.5, and completes the
proof of Lemma 2.6. ¥

Proof of Theorem 2.1: By Lemma 2.6, FM,P is holomorphic on C × H.
For fixed τ ∈ H, if FM,P (·, τ) isn’t identically zero, we let δ be the contour
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z0 + 2s, z0 + 2 + 2sτ , z0 + 2 + 2(1 − s)τ , z0 + 2(1 − s)τ (s ∈ [0, 1]), such that
FM,P (·, τ) does not have any zero on δ. Then by (2.18),

1
2πi

∫

δ

1
FM,P (t, τ)

∂

∂t
FM,P (t, τ)dt = 4l.(2.38)

This means that FM,P (t, τ) has exactly 4l zeros inside δ. Therefore, if l < 0, FM,P

must be identically zero. If l = 0, FM,P (t, τ) is a double periodic holomorphic
function, it must be independent of t. Thus we get Theorem 2.1. ¥

The reader may have noticed that we do not assume in Theorem 2.1 the mod-
ularity of χM (v, τ). When V is the vertex operator algebra associated to the
highest weight integrable representation for the affine Kac-Moody algebra D

(1)
l

it was also proved in [39, Theorem 5] that FM (v, τ) is a holomorphic Jacobi form
by using the fact that χM (v, τ) is modular. It turns out the same result holds in
our setting under the assumption that M is modular. See Definition 1.5.

Recall that a (meromorphic) Jacobi form of index m and weight l over Lo Γ,
where L is an integral lattice in the complex plane C preserved by the modular
subgroup Γ ⊂ SL2(Z), is a (meromorphic) function F (t, τ) on C×H such that

F (
t

cτ + d
,
aτ + b

cτ + d
) = ψ(A)(cτ + d)le2πim(ct2/(cτ+d))F (t, τ),

F (t + λτ + µ, τ) = e−2πim(λ2τ+2λt)F (t, τ),
(2.39)

where (λ, µ) ∈ L, A =
(

a b
c d

)
∈ Γ, and ψ(A) is a character of Γ. If F is

holomorphic on C×H, we say that F is a holomorphic Jacobi form.

Theorem 2.7. Let X, V,M and P be as in Theorem 2.1. Assume that M is
modular, then FM,P is a holomorphic Jacobi form of index l/2 and weight k over
(2Z)2oΓ, here Γ is the subgroup of SL(2,Z) such that χM (v, τ) is modular over
Γ.

Proof : Recall that Γ is the subgroup of SL(2,Z) which defines the modular

vertex operator algebra V . Then for any A =
(

a b
c d

)
∈ Γ, we have

χM (A(U + Tt, τ)) = ψ(A)ecπi(U+Tt,U+Tt)V1
/(cτ+d)χM (U + Tt, τ).(2.40)

Now, by (2.26), (2.40), as Lemma 2.4, we get

FM,P (A(t, τ)) = ψ(A)(cτ + d)keπilct2/(cτ+d)FM,P (t, τ).(2.41)

By Lemmas 2.3, 2.6, (2.41), we get Theorem 2.7. ¥
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Centre de Mathématiques de Laurent Schwartz, UMR 7640 du CNRS, Ecole
Polytechnique, 91128 Palaiseau Cedex, France
E-mail: ma@math.polytechnique.fr


