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On Family Rigidity Theorems for Spin® Manifolds

Kefeng Liu and Xiacnan Ma

ABSTRACT. In [LM], we proved a family version of the famous Witten rigidity
theorems and several family vanishing theorems for elliptic genera. In this
paper, we gerenalize our theorems [LM] in two directions. First we establish a
family rigidity theorem for the Dirac operator on loop space twisted by general
positive energy loop group representations. Second we prove a family rigidity
theorem for spin®-manifolds. Several vanishing theorems on both cases are
also obtained.

0. Introduction

In [W], Witten considered the indices of elliptic operators on the free loop space
LM of a manifold M. In particular the index of the formal signature operator on
loop space is exactly the elliptic genus of Landweber-Stong. Witten made the
conjecture about the rigidity of these elliptic operators which says that their S!-
equivariant indices on M are independent of g € S1. We refer the reader to [T],
[BT|, H], K], [L] and [O] for the history of the subject.

In [Liu2|, the first author observed that these rigidity theorems are consequence
of their modular invariance. This allowed him to give a simple and unified proof
of the above conjectures of Witten. In [Liud], it was proved the rigidity of the
Dirac operator on loop space twisted by positive energy loop group representations
of any level, while the Witten rigidity theorems are the special cases of level 1. An
ﬁ—vanishing theorem for loop spaces with spin structure, which is an analogue of
the famous ﬂwanishing theorem of Atiyah and Hirzebruch [AH], was also proved
in [Liud). Recently, by using Liu’s idea, Dessai [D1] proved a version of rigidity
theorem for spin®-manifolds.

The purpose of our paper is to generalize these results to family case.

Let M, B be two compact smooth manifolds, and m: M — B be a submersion
with compact fibre X. Let a compact Lie group G act fiberwise on M, that is the
action preserves each fiber of m. Let P be a family of elliptic operators along the
fiber X, commuting with the action . Then the family index of P is

{0.1} Ind(P) = KerP — CokerP’ € Kg(B).

Note that Ind(P) is a virtual G-representation. Let ch,{Ind(P)} with g € G be
the equivariant Chern character of Ind(P) evaluated at g.
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To consider rigidity, we only need to restrict to the case when G — S!. From
now on we let G = §%. A family elliptic operator P is called rigid on equivariant
Chern character level with respect to this S'-action, if chy(Ind(P)) € H*(B) is
independent of ¢ € S*.

In [LM], several family rigidity and vanishing results for elliptic genera were
obtained. As pointed out in [LM], by taking expansions in H* (B), from the family
rigidity and vanishing theorems we get many higher level rigidity and vanishing
results for characteristic numbers of the family. These characteristic numbers may
not be the indices of any elliptic operators.

This paper is the continuation of [LM], and is naturally divided into two parts.
In Section 1, we prove a family rigidity theorem of the Dirac operator on loop
space twisted by positive energy loop group representations, and we also derive
some vanishing theorems. In Section 2, wé prove the family rigidity and vanishing
theorems for spin°-manifolds which generalize the results of Dessai [D1].

1. Loop groups and family rigidity theorems

This Section is organized as follows: In Section 1.1, we recall the modular
invariance of the characters of the representations of affine Lie algebra. In Section
1.2, we state the family rigidity theorems of the Dirac operator on loop space
twisted by general positive energy loop group representations for spin manifold. In
Section 1.3, we prove the main theorem, Theorem 1.2. In Section 1.4, we derive
some vanishing theorems.

1.1. Characters of affine Lie algebras. Let @ be a simple, simply con-
nected compact Lie group and LG be its loop group. There is a central extension
LG of G

(1.1) 1—- 8" LG - LG - 1.

The circle group S? acts on LG by the rotation Ry, Rov(0') = v(¢# — 0). The
action of ST on LG lifts (essentially uniquely) to an action on LG. We say the
representation U of LG is symmetric if B, U.Ry =y, Row- We say a representation
Eof LG is positive energy [PS, Chap. 9] if
(a) E is a direct sum of irreducible representations;
(b) E is symmetric and E® = DjenE; is dense in E, where E; = {v € E :
Rgv = 7%} and Ej is a finite dimensional complex representation of G,
{¢) The action of LG x S on E naturally extends to a smooth action of
LG x Difft (87, where Difft(S') is the group of orientation preserving
diffeomorphisms of S,
Let g be the Lie algebra of ¢, Let 7n be the Cartan subalgebra, W be the Weyl
group of g. Denote by @ = ©!_, Zoy;, where {a:} is the root basis, the root lattice
of g. Then the affine Lie algebra associated to gis

(1.2) Lg=g®r Ct,t")|® CK & Cd,

where K (resp. d) is the infinitesimal generator of the central element (resp. the
rotation of §') of LG. Lg has the triangle decomposition

(1.3) Ig=7 onen,
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where 771 are the nilpotent subalgebras and 7=n®r C& CK @ Cd is the Cartan
subalgebra. Let (,) be the normalized symmetric invariant bilinear form on Lg
which extends the standard symmetric bilinear form on g, such that

(14) (CK© Cd,g@r Clt,t ') =0; (K,K)=0; (4, d}=0; (K,d)=1.

Let 7* be the dual of § with respect to (:). Let {,) denote the pairing between
i and 7. Then the level of X 7" is defined to be (A, K). Let Ag,d € 7* be the
elements such that §j,eox =0, (6,d) = 1; Aolpecd =0, {Ag, K) = 1.

It is known that Lg falls into class X 1(\}) in the classification of Kac-Moody
algebras [Kac, Chap 7]. An Lg-module V is called a highest weight module with
the highest weight A € #* if there exists a non-zero vector v € V such that

(L5) () =0; h(v)=A(h)v, for hef and UEg)(w)=V.

where U(Lg) is the universal envelopping algebra of Lg. An irreducible represen-
tation Z{A) of Lg with the highest weight A is called of level & — (A,K). L(A)
is said to be integrable if A € P, = {) € #* : (A a;) € N for all i)}, the set of
dominant integral weights. An integrable highest weight representation L(A) of g
can always be lifted to a representation of LG which turns out to be irreducible
and of positive energy.

Since each LG-module V has a weight space decomposition V = @ aeq+ W, we
can define formal Kac-Weyl character of U as chy = Zreqr (dim(Vy))er

The normalized character of L{A) is yx = g™ chyay, where [Kac, (12.8.12)]

_{(A+2p,A) __mdimg
AT 2Am+RY) T 2(m v

where hY = (p, K}, the dual Coxeter number, p = g+ hVAq [Kac, (6.2.8)], and 7
is half the sum of the positive roots of g. We call ¢"» the anomaly factor.

Let M = Z(W - 8) be a lattice in n*, where § is the long root in 7, and W is
the Weyl group of g. For any integer m, let P ={A € Pr|(A\ K) = m} be the
level m subset of the dominant integral weights.

If we choose an orthonormal basis {Uj}f-,':l of n* @r C, such that for v 7*,
then we have

(1.6)

v= ZWi(Zfi:Izjvj ~ 1Ay + ud).
we denote z = X{_, 2,9, € 7* ®g C. Recall the classical theta functions associated
to the lattice M is defined by
a7 Ox(z,7) = 2mimn z e™imT (YY) +2mim{y,z)
YEM+m—1A
Here X means the orthogonal projection of A from 7* to n* ®g C with respect to the

bilinear form (-,-), and v = %_, ;v; with (7, 2) = E!l_,7v2. Then we can express
X 88 a finite sum

(1.8) Xalz,T) = 3 y (1) (2, 7),

AEP™mod(mM |-C&)

Where P is the level m clement in the integral weight lattice, and {c}(7)} are
some modular forms of weight — %l, which are called string functions in [Kac, §12.7,
§13.10].
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One of the important facts about the formal character is that x4 is holomorphic
in {v € 7 : Re(d,v) > 0} = {(2,7,u) € C'*2,Im(7) > 0}.

Now, we state the following important Kac-Peterson theorem on the modular
transformation property of xa under SL3(Z) [Kac, Theorem 13.8].

THEOREM 1.1. Let A € PT*. Then

z 1 ;
(1.9) xa(=,—=) = @A N Sy v (7, 7),
T T A’EP_’;’_"‘modCﬁ

for some complex numbers Sy a1, and
(1.10) xalz, 74+ 1) = 2™ ™Ay, (2, 7).
By (1.8), for ¢ € M, we also have

xalz + o, 7) = xal27);

11 , )
(1 ) XA(Z + aT, T) - eZ?rzm(z,a)+7rlm(a,a)XA(z, T).

This, together with its transformation formulas (1.9), (1.10), means that x4 is an
{-variable Jacobi form of index m/2 and weight 0.

1.2. Family rigidity theorem of general elliptic genera. Let7: M — B
be a fibration of compact manifolds with fiber X, and dim X = 2k. 'We assume
that the §" acts fiberwise on M, and T'X has an S'-equivariant spin structure. Let
A(TX) = AT(TX)® A~(TX) be the spinor bundle of TX. Let D be the Dirac
operator on A{TX) which is defined fiberwise on the fiber X.

For a vector bundle # on M, we let

S(F)=1+tF+135°F+ .-,

(1.12) A{Fy=1+tF +t2A%F + .-,

be the symmetric and respectively the exterior power operations in K {M)[[2]].

Agsume F is an irreducible positive energy representation of ESp’in(Ql) and V
is an S equivariant vector bundle with structure group Spin(2l) over M. Let A
be the highest weight of £ and m be the level of . By the discussion in Section
1.1, we have the decomposition £ = $p>0FE, under the action of Ry. Here B, is
a finite dimensional representation of Spin(2l). Let P be the frame bundle of V
which is a Spin(2!) principal bundle. We define

{1.13) W(E, V) = Enz0(P Xgpingary En)q" € K(M)[[q]].
Let p1(-)5: denote the first S'-equivariant Pontrjagin class.

THEOREM 1.2. For E an irreducible positive energy representation of ESpin(Ql)
of highest weight of level m, if ;1(TX) g1 = mp1(V)g1, then the elliptic operator

DX @%_ ) S (TX)® Y(E,V)
18 rigid on equivariant Chern character level.

Theorem 1.2 actually holds for any semi-simple and simply connected Lie group,
instead of Spin(20).
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1.3. Proof of Theorem 1.2. For 7 € H = {r € C;Im7 > 0}, ¢ = 2T,
v e C, let
L) alorr) = QI (L4 @2 (g™ ),
82(v,7) = el (1 — gV 2T (1 — ¢ e,
o1 (0.7) — c(@)g 52 con(mo) I (1 + I (1 a7 ™),
0(v, 7) = e(g)g 2 sin(r) ey (1 — "Iz (L - e F).

be the classical Jacobi theta functions [Ch], where c(q) = e, (1 —¢").
Recall that we have the following transformation formulas of theta-functions

[Ch]:
(1.15) a(t+1,7) = —0(t,7), B(t+7,7)= —qﬁlfzeﬁg"“ﬂ(t, T,
91t +1,7) = —01(¢,7), B, (t +7,7) = g2 G (t, 7).

and
t 1 1 (7 =u® i
1 2 D)= -e T A 1) =€e48
wo oL = GFewn, deren =i
i 1 T ri? i
t (-1-_-, ﬁ;) = \/;;6 5 Qg(t, T), Bl(t,'?'—l- 1) =ef 91(?5,’1'),

t 1 mit?
oo (& 1) = E 0, ot =0
(E,—--l—) = \/Eiem:z Bg(t,'r), 93(t,T+1) :Bg(t,’r).

Let g = ¢2™ € S* be a topological generator of §1. Let {M,} be the fixed
submanifolds of the circle action. Then 7 : M, -+ B be a submersion with fibre
X,. We have the following Sl-equivariamt decomposition of TX

(1.17) TXkMale@---@Nh@TXa,

Here N, is a complex vector bundle such that g acts on it by e2mimat  We denote
the Chern roots of Ny by Zﬂ'z':rvf;,, and the Chern roots of TX, ®r C by {£2miy}-
Let dimg N, = d(m.), and dim X, = 2kq-

Let
(1.18) IflMa :VIQ"'@WCH

be the equivariant decomposition of V resiricted to M,. Assume that g acts on Vu
by e2minot, where some n, may be zero. We denote the Chern roots of Vi, by 2mind.
Let us write dimg V, = 2d(n,). By [Liud, §3.5], the equivariant Chern character
of $(E, V) can be obtained as g ™ Cg,v(u+1t,7), where

(1.19) Cev(utt,T) =xg(U+T,7),
with U+ T = (uj1 +nit,... ,u{ﬂ +n‘;0t). _
For g =™, i cR,and 7 € H, g = ¢, we let

(120)  Fay(t,m) =g chy (Ind(DX Q) 5o (TX — dimX) © w(E,V))).
m=1
For f(z) a holomorphic function, we denote by F(¥)(TX9) = I;f (), the
symietric polynomial which gives characteristic class of TX9, and similarly for
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N,. Using the family Atiyah-Bott-Segal-Singer Lefschetz fixed point formula [L.M,
Theorem 1.1], (1.14), we find for ¢ € [0,1] Q

(1.21)
Fiy(t.7) = (27i)7* Y . [9’(0,fr)’“ (e%;zi)) {TXQ)HTH(C:’i’i(:;T}T))(Nv)}

Considered as functions of (,7), we can obviously extend Fg v (¢, 7) to mero-
morphic functions on C x H with values in H*(B), and holomorphic in 7. Theorem
1.2 is equivalent to the statement that Fg v (¢,7) is independent of ¢. To prove it,
we will proceed as in [Liud], [LM].

LEMMA 1.1. If p1(TX)g: = mp1(V)sn, then for a,b € 22,
(1.22) Fgy(t+ar+b,7)= Fgy(t,7).
Proor. By (1.15), for a,b € 2Z, [ € Z, we have
(123)  B(z+I(t+ a7 +b),7) = e miFazt?attlainigy Ly oy
Since mp1(V)g: = p1(TX) g1, we have
(1.24) mIy,; (] + nut)? = (v} ) + , ;(2d + m,t)2
This implies the equalities:

M, (1)) = ;5 (5)? + 5y 5(24)?,
My 1yl = Dy izl Bym2d(m.y) = m¥,nld(n,).

By using (1.11), (1.21), (1.23), and (1.25), we get (1.22). O

(1.25)

Now we will prove that Fg v (t,7) is holomorphic in t. Then, by Lemma 1.1,
we get the rigidity theorem.

To prove Fg i (f, ) is holomorphic in ¢, we will examine the modular transfor-
mation property of Fig v (¢, 7) under the group SLs(Z).

Recall that for g = ( g’ 2, ) € SL3(Z), we define its modular transformation
on C x H by
t  ar+b
1.26 t,r)=| ——,——
(1.26) 9t 7) (CT—l—d’m'-i-d)

Obviously, the two generators of SLy(Z) are § = ( (; _01 ) T= ( é 1 )

They act on C x H in the following way:
t 1
(1.27) St = (=-2), T(t7) = (6 +1).

Let ¥, be the scaling homomorphism from A(T*B) into itself : § — 73de883,
If o is & differential form on B, we denote by {a}?) the component of degree p of
.

LEMMA 1.2. For any g = ( g db ) € SLy(Z), we hove
(128) FE,V (g(t1 T)) = (CT + d)k]IICT+ngE,V(t) T);
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where gE = Y,a,E, is a finite complex linear combination of positive energy rep-
resentations of LSpin(2l) of highest weight of level m, and we denote by

(129)  Fmy(t,7) — (2mi) %' (0, 1) Zzaﬂ*[( Hz(wfyT Yerxo)

. CE}“V(”U.-I-t,T) }
TL,0{(x. + myt, T)(Ny)

the complex linear combination of the equivariant Chern characters of the corre-

sponding index bundles.

ProoF. Set
8'(0,7)
(1.30) F(t,7) 0T)
By (1.16), we get
(1.31) Flg(t, 7)) = (cr + dye /T p((er + d)t, 7).
By Theorem 1.1, (1.19), it is easy to see that on M,
(132)  Coy(glu+t,7)) = e Esdn /OO Ly (u +t,7).
with
(1.33) ngjv(u-i"t,‘?') = ZFGMCva(qut,T).
By using (1.21), (1.31), (1.32}, we get

t ar + Db
er+d er+d

(1.3) Fgyv (

(2mi) =k Za‘r* [(2my F(y’ ‘ZIS))(TXQ)

m,,t at+b
+d er+d

= (er +dni) ™ 3 [ (2 F((er + )y 7)) (TX0)

[ aT+b)]

= (F(x*J’ cr+d or+d

TN Oy (w4 —
T, (F((er + )y +mat, )(N;) ) Cymy((er +du+1, )
By (1.34), to prove (1.28), we only nced prove the following equation for p € N,
(1.35) {m [(zm'y'F((m +d)y, 'r)) (TX9)
11, (F(ler + djay + ot 7)(N,)) Cp (e +dJu+ t ] }(2")
(cr + d)P{m [(2ni Py, ) (TX9)

11 (F(m,y-kmq,t T)(N.,,)) OE, V(u—i—t T)]}(2p)-

By looking at the degree 2(p+ka) part that is the (p+ ko )-th homogeneous terms
of the polynomials in z’s, y’s and w’s, on both sides, we get (1.35). The proof of
Lemma 1.2 is complete. O

The following lemma is a generalization of [Liud, Lemma 2.3],
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LEMMA 1.3. For any g € SLa(Z), the function Fypv(t,7) s holomorphic n
(t,7) for (t,7) € R x H.

Proor. Let z = €™ and let N = [0aXq 4|My|. Denote by Dy C C? the
domain
(1.36) g1t/ < |2 < lgI7/N,0 < gl <1.

By (1.14), (1.19), (1.21) and (1.29), we know that in D, F,g,v(t,7) has a conver-
gent Laurent series expansion of the form

(1.37) S aud™ YW
H i=0

Here {b],(2)} are rational functions of z with possible poles on the unit circle.
Now considered as a formal power series of g,

e o) o0
Q) S (TX — dimX) ® (3 aua™ (B, V)) =S, Q Vi
n=1 P o =0

with Vﬁp € K (M). Note that the terms in the above two sums correspond to
each other. Now, we apply the family Lefschetz fixed point formula [LM, Theorem
1.1] to each V7, fort € R\ Q, we get

(1.38) b, () = ch,(Ind(D ® V7,))-
But by [S, Proposition 2.9], we know that

(1.39) Kgi(B) ~ K(B)® R(5")
This implies that for 1 € R\Q,z= glmit

(1.40) bY,(2) = Zf;(i)N(j)aﬁ’j”zl.
for N{j) some positive integer depending on j and a.f,’;" € H*(B). Since both sides
are analytic functions of z, this equality holds for any z € C.

On the other hand, by multiplying £ gvit,T) by f (z) =Tay{1— z""'r)lld(m"f)
(I' = dim M), we get holomorphic functions which have a convergent power series
expansion of the form X,a,q™** %20¢] 'u(z)qj , with {cf,(2)} polynomial functions
in Dy. Comparing the above two expansions, one gets

(1.41) c2,(2) = F2)b],(2)
for each j. So by the Weierstrass preparation theorem, we get Fopv(t,T)is holo-
motphic in Dy. O

Proof of Theorem 1.1. We will prove that Fg,v is holomorphic on C x H,
which implies the rigidity theorem we want to prove.

From their expressions, we know the possible polar divisors of Fpy mCxH
are of the form ¢t = %(c7 -+ d) with n, ¢, d,! intergers and (c,d) = 1 or ¢ = 1 and
d=0.

We can always find intergers a, b such that ad —be = 1, and consider the matrix

g= ( d -‘ab ) € SL,(Z). By (1.28),

t d'r—b)

1.42 0, = [— _kF JE——
(142) U(_eria)Fapv(tm) = (-7 +0) E,V(fm__'_aa —ia
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Now, if £ = %(cr + d) is a polar divisor of Figy(t,7), then one polar divisor of
Fyev(t,7) is given by

t nye dr—b
(1.43) e e R R
which exactly gives ¢ = n/l. This contradicts Lemma 1.3, and completes the proof
of Theorem 1.1. O

1.4. Family vanishing theorems. Recall that a (meromorphic) Jacobi form
of index n and weight [ over Lx T, where L is an integral lattice in the complex plane
C preserved by the modular subgroup I' C SL4{Z), is a (meromorphic) function
F(t,7) on C x H such that

t ertb 1 amin{ct? /(er+d))
— LT & T F
(c'r+d’cr+d) (er +dYe (&7,

F{t+ A +u,7)= e~ B(¢ ),

a b
d
that F is & holomorphic Jacobi form.
For N € N*, set

(1.44)

where (\, 1) € L, and g =  T'. If F is holomorphic on C x H, we say

(1.45) T(N) = {gz ( ot ) € SLy(Z)lg = ( 0l )(modN)}

Recall that the equivariant cohomology group Hg (M, Z) of M is defined by
(1.46) H%(M,Z) = H*(M xg: ES', Z).

where ES! is the Sl-principal bundle over the classifying space BS' of 5. So
H% (M, Z) is a module over H” (BS',Z) induced by the projection @ : M xg
ES! — BS'. Let py(V)g:,p1(TX)s: € H§ (M, Z) be the equivariant first Pontr-
jagin classes of V and T'X respectively. Also recall that

(1.47) H*(BS',Z) = Zu]

with u a generator of degree 2.
In this part, we suppose that there exists n € Z such that

(1.48) mpl(V)31 ﬁpl(TX)bu =1 f*uz in H§1 (M, Z) Xz Q
As in [Liud], we call n the anomaly to rigidity.

THEOREM 1.3. Let M, B,V and E be as in Theorem 1.2. Then for p € N,
{Fpv}?) is a holomorphic Jacobi form of index n/2 and weight k+p over (2Z)% %
L(N{m)). '

Here N(m) is an integer depending on the level 7n and was given in [Kac], and
my defined in (1.6).

Proor. Now, by (1.48), we get
(1.49) mEy 5 (ud + nut)? (Ej (y;)z + Xy (ngr + m'yt)z) n %
This means
(1.50) mIynid(ng) — Z;,m?rd(m.y) =n, mIynul = E,},,jm,yﬂ;?;,
mEBe j(ud)? = B5(y})? + By ()
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First by using (1.50), as in Lemma 1.1, for (a,b) € (2Z)?, we get
(1.51) ngv(t +ar+b7)= e—?rin(a.21'+2at) FE,V(t, ‘T').

Second by a theorem of Kac, Peterson and Wakimoto [Kac, Chapter 13], there

exists an integer N{m) such that for any g = ( g‘ 3 ) € T(N{m}), we have

(1”52) Cav (g(u + ¢, 1’)) _ emcwiZu,j{uf,+nvt)2/(c'r+d) CE,V(U t 7).
Now, by using (1.21), (1.50} and (1.52), as Lemma 1.2, we get
(1.53) Fry(g(t,7)) = (er + d)fe™ /0T g Fp v (L, 7).

As the same argument in the proof of Theorem 1.2 (see also [Liu4, Theorem
3.4]), we know Fpg,y is holomorphic on C x H. By (1.51}, {1.53), we get Theorem
1.3. O

The following lemma was established in [EZ, Theorem 1.2):

LEMMA 1.4. Let F' be a holomorphic Jacobi form of index m and weight k.
Then for fixed T, F(t,7), if not identically zero, has exactly 2m zeros in eny fun-
damental domain for the action of the lattice on C.

This tells us that there are no holomorphic Jacobi forms of negative index.
Therefore, if m < 0, F must be identically zero. If m = 0, it is easy to see that F
must be independent of £. So we immediately get the following:

COROLLARY 1.1, Let M,B,V,E and n be as in Theorem 1.3. Ifn =0, the
equivariant Chern character of the index bundle of

Ind(DX é Sgn(TX —dim X) @ (&, V))
m=1

is independent of g € S*. If n <0, this equivariant Chern character is identically
zero, in particular, the Chern character of this index bundle is zero.

2. Family rigidity theorems for spin®-manifolds

The purpose of this Section is to prove a family version of the rigidity theorem
for spin®-manifolds.

This Section is organized as follows: In Section 2.1, we explain the equivariant
family index theorem for spin®-manifolds. In Section 2.2, we state our main result,
Theorem 2.2. In Section 2.3, we prove Theorem 2.2, In Section 2.4, we prove a
family version of the rigidity and vanishing theorem for spin®-manifolds of [D1]. A
family vanishing theorem of Witten genus for spin®-manifolds is also obtained.

2.1. Equivariant family index theorem for spin®-manifolds. By [LM,
Theorem 1.1], we have the equivariant family index theorem for a family of equi-
variant elliptic operators. In fact, by the proof of [LM], we know we have a local
version of (LM, Theorem 1.1] for the Dirac operator associated to the Clifford
module in the sense of [BeGeV, §3.3, §10.3].

Let 7 : M — B be a fibration of compact manifolds with fiber X with dim X =
2k. We assume that the S! acts fiberwise on M, and TX has an Sl_equivariant
spin® structure. Let A(TX) be the complex spinor bundle for TX [LaM, Definition
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D.9]. We denote D¢ the corresponding spin®-Dirac operator on the fibre X [LaM,
Appendix D].

Let W be an S'-equivariant complex vector bundle on M. Let D*® W be the
twisted spinc-Dirac operator on A(TX) @ W. Then Ind{(D°® @ W) € Kg:1(B).

Let g = e?™ € S! be a generator of the action group. Let {M,} be the fixed
submanifolds of the circle action. Then 7 : M, — B be a submersion with fibre
X,. We have the following equivariant decomposition of TX

(2.1) TX\p, = N1 ®--- & N, ® TXa,

Here N, is a complex vector bundle such that g acts on it by ™™, So TX,
is naturally oriented. We denote the Chern roots of N, by 27&':‘55{'/, and the Chern
roots of TX, ®r C by {£2miy}}. Let dimg Ny = d{m,), dim X, = 2k,.

We recall that the spin®-structure on TX induces an S'-equivariant complex
line bundle L over M. Its equivariant Chern class ¢;(L)g will also be denoted by
c1(TX)g:1. We denote the Chern class ¢; (L) of L by 2mic,. Let iy : My — M be the
inclusion, and let ¢}, denote the induced homomorphism in equivariant cohomology.

If g acts on L on M, by e?™#* we have
(22) i;cl (TX)Sl = 211‘11((21 -+ lct).

We denote m, : H*(M9) — H*(B) the intergration along the fibre X9. Now, we
can reformulate the family Atiyah-Boti-Segal-Singer Lefschetz fixed point formula,
[LM, Theorem 1.1] in this case,

THEOREM 2.1. We have the following identity in H*(B)

.2: g wifer+Ht)
(2.3) chy (Ind(D*¢ & W)) = . (TX9)chy (W)e
IL, (eﬂ'i(ﬂ:'y+mﬁt) — e—rri(x,y—{-mqt)) (N,)

2.2. Family rigidity for spin®-manifolds. In this part, we use the assump-
tion of Section 2.1, we also use the notation of Seﬁgtions 1 and 2.1.

For a vector bundle E on M, we denote by E the reduced vector bundle £ —
dim(E}.

Let W be an S*-equivariant complex vector bundle of rank r over M. Let
Lw = det(W) the determinant line bundle of W on M. Let V be a dimension
21 real vector bundle on M with S'-equivariant spin(2l) structure. Let A(V)
AT(V) @ A~ (V) be the spinor bundle of V.

Let y = €2™ be a complex number, and we define the following elements in
K(M)[lg"/2)):

(2.4)

OuTXIW), = R Sy (TK) & AL (W) & QA _¢=(Wem ©),

m=1 n=1

O (TX|W), = é) Sm(TX)Q Ay (W) ® @A,yqn (W) @ A_ym1n (WH).
m=1 n=1
Let
Ra(V)y = AV) @ @52, Age (V)
(2.5) Bo(V)y = @nla A3 (V)

Ry(V)y = @y Aoy (V).
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Forg=e " tc R, g=¢e"",7 € H, set

Fi(t,7) = 2"ch, (Ind(D” ® 0,(TX|W), ® Rl(V)u)),

(26) FP(t,7) = 27tch, (Ind(Df ®OHTX|W), ® Rl(V).,,)).

We consider Fy (¢,7), F(t,7) as functions on (¢,7) € C x H with values in H*(B).

Recall that for n € N*,
( (1) 1: )(modn)}.

a b
(2.7) Tiln)= {gz ( . d ) c SLa{Z)g
THEOREM 2.2. [f; (VAW -TX)s1 = n-7u? (n€ Z), a(W)g: = e1(TX) s
in % (M,Z) ®2 Q. Then
i), If ci(W) = 0 mod(N) (N € N,N > 1), then for y = ™% an Nth root of
unity, and p € N, {Ff (t,7)}P) is @ holomorphic Jacobi form of index n/2
and weight (k + p) over (2NZ)? x T'1(2N).
ii). For p € N, {Fy(t,7)}@)is a holomorphic Jacobi form of inder n/2 and
weight k — v + p over (2Z)% x I'1(2). If V = 0, the same holds for I'y(2)
replaced by SLo(Z).

Il

Remark. If we replace the condition ¢;(W)s = ¢1(TX)g1 by wa(TX) =
wa(W). Let Fi(t,7), and let F2(t, ) be the equivariant Chern character of index
bundles of D¢ @ (Ly ® L )Y?2 @ 8,(TX|W)y @ B1(V),, D°® (Lw @ L™H)V2 ®
O2(TX|W), ® Ry(V},, we still have Theorem 2.2. Tn fact, we only need to take
tensor product of (Ly ® L~1)1/2 with the corresponding operators in the proof of
Theorem 2.2. If V = 0, this result also generalizes [Liu2, Theorem B] to the family
case.

Remark. If we replace the condition oi(W)gs1 = a1(T'X)s1 by (W) =
e1(TX) in H*(M, Q), as Dessai remarked in [D, Lemma 3.4|, then there exists m €
Z such that ¢;{(W)gr — ¢1(TX)g1 = m7T u. Now, for the functions e™™ F (£, 1),
e”ithiG (t,7), we still have the result of Theorem 2.2. In fact this only multiplies
all the functions in the proof of Theorem 2.2 by ™M

2.3. Proof of Theorem 2.2. Let
(2.8) Vi, =V1®&--- 8V,

be the equivariant decomposition of V restricted to M,. Assume that g acts on V),
by e?"? where some n, may be zero. We denote the Chern roots of V,, by 2miud,.
Write dimg V,, = 2d(n,,). Similarly, let

(2.9) WlMQZW:l@..'@WTQ}

be the equivariant decomposition of W restricted to M,. Assume that g acts on
W, by e2™¥ut where some r,, may be zero. We denote the Chern roots of W, by
2miw) . Write dimg W, = d(r,).

First note that the condition ¢;(W)g1 = ¢1(TX ) g1 means that

(2.10) By (wl +rut) = e + et
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We take 3 = 1/N. By applying the family Atiyah-Bott-Segal-Singer Lefschetz
fixed point formula, Theorem 2.1, and using (2.10), for g = *"® ¢t € R\ Q, we get

o 0(0,7)F 2miy g
Fi(t,7) - (2ni) km;m [(W%)(TX )

11,01 (uy + nyt, 7){V2)
L8z + mqt, 7)(N,) b, + rit, T)(W”)] ’

o oy — 9’(05 T)k 2ﬂ-iyf g
A = iy 2 gy ) X

val(u-v + ’l"?a-ut,T)(Vu) .
10,8(zy + mqt, 7)(N,) bl +rut 15, T)(W”)] )

(2.11)

In the following, we will consider Fy{t,}, Ff (t,7) as meromorphic functions
on {t,7) € C x H with values in H*(B).

LEMMA 2.1, If ;i (V+W —TX)r =n T (u?) in HZ (M, Z) ®z Q for some
integer n,

i) For a,b e 22,
(2.12) Fit+er+b71)= ¢ min(a*7+2at) F(t, 7).
ii} Fora,bec 2NZ,
(2.13) FP(t 4+ ar +b,7) = e 7o’ T+2at) gy oy,
ProOOF. Since p1(V + W — TX)g = n-7*u?, we have
(2.14)  Dy;(ul, +nut)® + By i (W] + rut)? — (S5(55)° + Ty 5 (2 + mat)?) = nit?
This implies the equalities:
Do, (uh)? + i (@h)? = ;) + By ()2
(2.15) Bt + By jwir, = X ymaal,
Eynid(n, ) + Zyrad(r,) — BymZd(m.,) = n.
By (1.15), for 8, = 0,04; a,b € 2Z, 1 € Z, we have
(2.16) O, (x +i(t+ ar +b),7) = e—-qrn‘(2£a:n:-¢-2.!:i.azf-i-,l?c,,z'r)Bv(m +it, 7).

Let Fiq, FEQ be the contribution of M, to Fy{t,7), Ff(t,*r). By using (2.11},
(2.15), (2.16), we get for a,b € 2Z,

Fl,oz (t + a7 + b’ 7.) _ B—Tr'in(a,27+2a.t)Fl’a(t’ ‘T),

2.17 )
(217) F{ (t+ar +b,7) = y Sumusemminla®rt2a0 pld (4 o),
Since by the assumption, ¥ = 1, we get Lemma 2.1. O
a b
For A = ( c d ) € SLy(Z), we define
1, if {(cd)=(0,1) (mod2),

(2.18) ca=4 2, if (¢,d)=(1,0) (mod2),

| 3, if (e, d)=(1,1) (mod2)
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a b

Forg—e*® tcR, A= ( e d ) C SLy(Z), j = 1,2,3, we let

(218)  Fy(t,7) = e(i)chy (Ind(D° @ O, (TX[W)y © By (V))).
P (t,m)* = e(j)cb, (Ind(D* ® Lij @ OF I (TX|W), B;(V))).

with e(j) =27t for j=1; 1 for j = 2,3.
By applying the family Atiyah-Bott-Segal-Singer Lefschetz fixed point formula,
Theorem 2.1, and using (2.10), for g = ®",t e R\ Q, j = 1,2, 3, we get

i T k—r i
(2.20)  Fj(t,7) = (217:')’""’“% Zm[(%)(ng)
M8 (uy + nut, 7) (V)
IL,0(z + mat, 7)(Ny)
N 9’([)’ T)k 271'?::1}’ g
B0 = @) e Sg(or + B 27 [(@T)) (TX?)
.8 (uy + not, 7)(Vy)
L0z, + moyt, 7)(IVy)

10, (ezwicﬁ(wp+rpt)g(w“ +rut+ (er + d)8, '7')) (WH)] :

I0,,0(w,, + rut, THW, ] )

[

Remark. In fact, to define a S'-action on L":,g, we must replace the S1-action
by its N-fold action. Here by abusing notation, we still say an Sl action without
causing any confusion.

LEMMA 2.2. Ifpi (VAW -TX)s1 = n7*(u?), under the action A = ( g 2 )
€ SLo(Z), we have

F1 (A(?f, 'T)) = (C’T =+ d)kirewlin(:tz/(cr-’-d)‘ch'r+dF5A (ta T)?

2.21 .
( ) F]'_G(A(t, T)) — (CT o+ d)kerrzﬂct2/(cq-+d) ‘IICT+GEFEBA (t, T)A,

PROOF. As the equation for Fy in (2.21) is very easy, we leave it to the inter-

ested reader. IHere, we only prove (2.21) for Flﬁ .
By (1.15), (1.16), 242 is a Jacobi form of index 1/2 and weight 0 over (22)”
I'1(2). This explains the index £4 in the following equation. By (1.18), we get

4_0’(0’ gj:;g) ={er+d e“”"'%:d
BECT}W %g ( 2) 9(15,1')6:
crtdi er+d! _ mic( stz (er+d)) () :
8(3, ﬁ_’—z) 8(B(er +4d),7)
gl(g'r%?d’ 3;13) _ em’c#id 9€A (ta'r)
91 (0 m--H:) 95A (0,7) :

(2.22)

Y er+d
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By (2.11), (2.22), we get

t ar+b

3
@2) W3 wid

)
— (211'72)4“ Z Ty [(271"&3,1’———9’(0, ?j; ) (TX9)

G(y” cr+d
(o TOED o, (et Bl
\G(y + My 5 g%_%) 61(0, Z=2)
Owu + Tusig + B, 2Z8) W )]
. 0(8, %) g
—k k minet? /(cr+4d) .t 9’(037)
#'(0,7) 0., ((er + d)uy +nut, 7)
N ’ H‘u 4 Vu
HW(G((cT +d)Ty + m,),t,'r)) (Nr) ( 0.,(0,7) )( )

. o g CT+dw +r,t+ e+ d ' T
[Eszc((cr+d) ptrat)d (( Jwu + Tt + )8 )l(W“)]'

1Ly 8((cr + d)3,7)

To prove (2.23), we will prove

(2.24)
{7T [( 2miy’ ) (TX9) IL, 0., ({c7 + d)uy + not, 7)(Ve)
ING((er + d)y/, T} IL,B((ct + d)zy + mqt, 7)(N5)

I, [egmcﬁ((m”)wﬁw#ﬂg ((m’ + d)w, +rat + (cr +d)B, ‘r)] (Wu)] }(21))
)

iy’ ole, (U + npt, T) (Ve
(er -+ P {r. [(ég(ﬁ)( XQ)I;ILTB(.'E(T +_;1th7)2§\7.,)

0L [821ric,5(wu+f‘pt)9 (Wu + rut + (et + d)f3, T)] (W.u«)] }

(2p)

By looking at the degree 2(p+ k) part, that is the (p+ k. )-th homogeneous terms
of the polynomials in s, y'’s, #’s and w’s on both sides, we immediately get (2.24).

The proof of Lemma 2.2 is complete.

Since F;(t,7), Ff(t,T)A (§ = 1,2,3) are the equivariant Chern characters of
the index bundles of some elliptic operators, the same proof as that of Lemma 1.3

gives the following

LEMMA 2.3.
i) F;{t,7) (j = 1,2,3) is holomorphic in (t,7) «c R x H.

i) If (W) = 0(modN), then for A € SLy(Z), j = 1,2,3, F(t,7)* is holo-

morphic in (t,7} € R x H.

This is the only essential place where we need the topological condition c1 (W)
= O(modN) which insures the existence of L‘fg-, therefore the holomorphicity of

FP(t,7)4 for t € R.
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Proof of Theorem 2.2. Now, if A= ( g z ) < T1(2N), by (1.15), (2.20}, we
get
(2.25) FB (t,7)% = F{ (t,7).

By using the above three Lemmas, and proceeding as in the proof of Theorem
1.1, we know that Ff(t, 7) is holomorphic in (t,7) € C x H.
From Lemmas 2.1, 2.2, (2.25), we get Theorem 2.2. O

2.4, Family rigidity and vanishing theorems for spin®-manifolds. From
Lemma 1.4 and Theorem 2.2, we get the following family rigidity and vanishing
theorems for spin®-manifolds.

THEOREM 2.3. Let M, B, W,V as in Theorem 2.2. If pr(V + W — TX)g1 =
n-7u? (n € Z) and cy(W)gr = a(TX)s1 in H (M, Z) 2z Q.

i). Ifn=0, then D°® B (TX|W)y & Ri(V)y is Tigid. I, in addition, ¢1(W)
is divisible by an integer N > 2, then D* ® ST X\W )y ® Ro(V)y @8 rigid
fory = €*™# an N'th root of unity.

il). If n < 0, then the equivariant Chern character of the index bundle D° &
O TX|W), @R1(V)y vanishes identically, in particular, the Chern char-
acter of this index bundle is zero. If, in addition, ¢ (W) is divisible by an
integer N > 2, then the equivariant Chern character of the index bundle
D¢ ® O (TX|W), ® Ri(V), vanishes identically for y = e*™# an Nth root
of unity, in perticular, the Chern character of this index bundle is zero.

The following family vanishing Theorem generalizes [LM, Theorem 3.2] to
family spin®-manifolds.

THEOREM 2.4. Let m: M — B be a fibration of compact connected manifolds
with compact fibre X, and S acts fiberwise and non-trivially on M. We suppose
TX has a S'-equivariant spin® structure. If ci(TX) = 0 in H*(M,Q), and if
p(TX)gr = —n-7u? in H5u:(M,Z)®zQ for some integer n, then the equivariant
Chern character of the index bundle, especially the Chern character of the index
bundle of D¢ ® @1 Sgm (T X) is zero.

Remark. Note that the condition ci(TX) =0 in H *(M,Q) does not mean
the Spin® structure is spin. This only insures that there exists m € Z, such that
e (TX)gr = mwu. So in fact, the difference between [LM, Theorem 3.2] and
Theorem 2.4 are quite subtle.

As pointed out by Dessai [D2, §3], when the Sl-action is induced from an S°
or nice Pin(2) action on M (In fact the 5 3 and Pin(2) action need not act fiberwise
on M), the condition p1 (T X)g1 = —n- 7u? in Hg1 (M, Z) ®z Q is also equivalent
to p1(TX) =0 in H*(M,Q).

In [HL], some related result was proved for foliations.

Proof of Theorem 2.4. We only need to put W = V = 0 in Theorem 2.2. In
fact, by (2.15), we know

So the case n > 0 can never happen. If n = 0, then all the exponents {m;} are
zero, so the Sl-action can not have a fixed point. By (2.11), we get the result. For
n < 0, by Remark in Section 2.2 and Theorem 2.3, we get the result. O

—#
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