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Abstract. We study the asymptotic of the spectrum of thespinc Dirac oper-
ator on high tensor powers of a line bundle. As application, we get a simple
proof of the main result of Guillemin–Uribe [13, Theorem 2], which was
originally proved by using the analysis of Toeplitz operators of Boutet de
Monvel and Guillemin [10].

1. Introduction

Let (X,ω) be a compact symplectic manifold of real dimension2n. Assume
that there exists a hermitian line bundleL overX endowed with a hermitian
connection∇L with the property that

√−1
2π R

L = ω, whereRL = (∇L)2 is
the curvature of(L,∇L). LetE be a hermitian vector bundle onX.

Let gTX be a riemannian metric onX. Let J0 : TX −→ TX be the
skew–adjoint linear map which satisfies the relationω(u, v) = gTX(J0u, v).
Let J be an almost complex structure which is compatible withgTX and
ω. Then one can construct canonically aspinc Dirac operatorDk acting on
Ω0,•(X,Lk ⊗ E) = ⊕n

q=0Ω
0,q(X,Lk ⊗ E), the direct sum of spaces of

(0, q)–forms with values inLk ⊗ E. Let

λ = inf
u∈T (1,0)

x X,x∈X
RLx (u, u)/|u|2gTX > 0 .

One of our main results is as follows:
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Theorem 1.1. There existsC > 0 such that fork ∈ N, the spectrum ofD2
k

is contained in the set{0} ∪ (2kλ − C,+∞). SetD−
k = Dk �Ω0,odd, then

for k large enough, we have

(1.1) KerD−
k = {0}.

We recover with (1.1) the vanishing result of [6, Theorem 2.3], [11, Theo-
rem 3.2]. Another interesting application is to describe the asymptotics of
the spectrum of the metric Laplacian∆k = (∇Lk⊗E)∗ ∇Lk⊗E acting on
C∞(X,Lk⊗E). Introduce the smooth functionτ(x) =

∑
j R

L(wj , wj) >

0, x ∈ X, where{wj}nj=1 is an orthonormal basis ofT (1,0)
x X.

Corollary 1.2. The spectrum of the Schrödinger operator∆#
k = ∆k − kτ

is contained in the union(−a, a)∪(2kλ−b,+∞), whereaandbare positive
constants independent ofk. For k large enough, the numberdk of eigen-
values on the interval(−a, a) satisfiesdk = 〈ch(Lk ⊗E) Td(X), [X]〉. In
particular dk ∼ kn(rankE) volω(X).

In the caseE is a trivial line bundle, Corollary 1.2 is the main result of
Guillemin and Uribe [13, Theorem 2]1. The idea in [6], [11], [12], [13] is
that one first reduces the problem to a problem on the unitary circle bundle
of L∗, then one applies Melin inequality [14, Theorem 22.3.2] to show that
∆#
k is semi–bounded from below. In order to prove [13, Theorem 2], they

apply the analysis of Toeplitz structures of Boutet de Monvel–Guillemin
[10]. For the interesting applications of [13, Theorem 2], we refer the reader
to Borthwick and Uribe [6], [8], [9]. For the related topic on geometric
quantization, see [16], [21]. Our proof is based on a direct application of
Lichnerowicz formula.

This paper is organized as follows. In Sect. 2, we recall the construction
of the spinc Dirac operator and prove our main technical result, Theorem
2.5. In Sect. 3, we prove Theorem 1.1 and Corollary 1.2. In Sect. 4, we
generalize our result to theL2 case. In particular, we obtain a new proof of
[12, Theorem 2.6].

2. The Lichnerowicz formula

Let (X,ω) be a compact symplectic manifold. Let(L, hL), (E, hE) be
two hermitian complex vector bundles endowed with hermitian connections
∇L and∇E respectively. LetRL andRE be their curvatures. We assume
rankL = 1 andRL = −2π√−1ω. Let gTX be an arbitrary riemannian
metric onTX. Let J be an almost complex structure which is compatible

1 In [13], they only knewdk ∼ kn volω(X). WhenJ0 = J , Borthwick and Uribe [6, p.
854] got the precise valuedk, for large enoughk, in this case.
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with gTX andω (For the existence ofJ , we refer to [17, p.61]). ThenJ
defines canonically an orientation ofX. Let J0 : TX −→ TX be the
skew–adjoint linear map defined by

(2.1) ω(u, v) = gTX(J0u, v), for u, v ∈ TX.
ThenJ commutes withJ0.

Let TXc = TX ⊗R C denote the complexification of the tangent bun-
dle. The almost complex structureJ induces a splittingTXc = T (1,0)X ⊕
T (0,1)X, whereT (1,0)X andT (0,1)X are the eigenbundles ofJ correspond-
ing to the eigenvalues

√−1 and−√−1 respectively. Accordingly, we have a
decomposition of the complexified cotangent bundle:T ∗Xc = T (1,0) ∗X ⊕
T (0,1) ∗X. The exterior algebra bundle decomposes asΛT ∗Xc = ⊕p,qΛ

p,q,
whereΛp,q := Λp,qT ∗Xc = Λp(T (1,0) ∗X)⊗ Λq(T (0,1) ∗X).

Let∇TX be the Levi–Civita connection of the metricgTX , and let∇1,0

and∇0,1 be the canonical hermitian connections onT (1,0)X andT (0,1)X
respectively:

∇1,0 = 1
4(1−

√−1J)∇TX (1−√−1J) ,
∇0,1 = 1

4(1 +
√−1J)∇TX (1 +

√−1J) .
SetA2 = ∇TX − (∇1,0 ⊕ ∇0,1

) ∈ T ∗X ⊗ End(TX) which satisfies
J A2 = −A2 J .

Let us recall some basic facts about thespinc Dirac operator on an almost
complex manifold [15, Appendix D]. The fundamentalZ2 spinor bundle
induced byJ is given byΛ0,• = Λeven(T (0,1) ∗X) ⊕ Λodd(T (0,1) ∗X). For
anyv ∈ TX with decompositionv = v1,0 + v0,1 ∈ T (1,0)X ⊕ T (0,1)X, let
v∗

1,0 ∈ T (0,1)∗X be the metric dual ofv1,0. Thenc(v) =
√
2(v∗

1,0 ∧−iv 0,1)
defines the Clifford action ofv onΛ0,•, where∧ andi denote the exterior
and interior product respectively.

Formally, we may think

Λ0,• = S (TX)⊗
(
detT (1,0)X

)1/2
,

whereS (TX) is the spinor bundle of the possibly non–existent spin struc-

ture onTX, and
(
detT (1,0)X

)1/2
is the possibly non–existent square root

of detT (1,0)X.
Moreover, by [15, pp.397–398],∇TX induces canonically a Clifford

connection onΛ0,•. Formally, let∇S(TX) be the Clifford connection on
S(TX) inducedby∇TX , and let∇det be theconnectionon(detT (1,0)X)1/2

induced by∇1,0. Then

∇Cliff = ∇S(TX) ⊗ Id+ Id⊗∇det .
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Let {wj}nj=1 be a local orthonormal frame ofT (1,0)X. Then

e2j = 1√
2
(wj + wj) and e2j−1 =

√−1√
2
(wj − wj) ,

j = 1, . . . , n ,(2.2)

form an orthonormal frame ofTX. Let {wj}nj=1 be the dual frame of
{wj}nj=1. LetΓ be the connection form of∇1,0⊕∇0,1 in local coordinates.
Then∇TX = d + Γ + A2. By [15, Theorem 4.14, p.110], the Clifford
connection∇Cliff onΛ0,• has the following local form:

∇Cliff = d+ 1
4

∑
i,j

〈
(Γ +A2)ei, ej

〉
c(ei)c(ej)

= d+
∑
l,m

{〈
Γwl, wm

〉
wl ∧ iwm+

1
2

〈
A2wl, wm

〉
iwl
iwm +

1
2

〈
A2wl, wm

〉
wl ∧ wm ∧

}
.

(2.3)

Let ∇Lk⊗E be the connection onLk ⊗ E induced by∇L,∇E . Let
∇Λ0,•⊗Lk⊗E be the connection onΛ0,• ⊗ Lk ⊗ E,

(2.4) ∇Λ0,•⊗Lk⊗E = ∇Cliff ⊗ Id+ Id⊗∇Lk⊗E .

Along the fibers ofΛ0,• ⊗ Lk ⊗ E, we consider the pointwise scalar
product〈·, ·〉 induced bygTX ,hL andhE . LetdvX be the riemannian volume
form of (TX, gTX). TheL2–scalar product onΩ0,•(X,Lk ⊗E), the space
of smooth sections ofΛ0,• ⊗ Lk ⊗ E, is given by

(2.5) (s1, s2) =
∫
X
〈s1(x), s2(x)〉 dvX(x) .

We denote the corresponding norm with‖·‖.

Definition 2.1. Thespinc Dirac operatorDk is defined by
(2.6)

Dk =
2n∑
j=1

c(ej)∇Λ0,•⊗Lk⊗E
ej

: Ω0,•(X,Lk ⊗ E) −→ Ω0,•(X,Lk ⊗ E) .

Dk is a formally self–adjoint, first order elliptic differential operator on
Ω0,•(X,Lk⊗E),which interchangesΩ0,even(X,Lk⊗E)andΩ0,odd(X,Lk⊗
E). We denote

(2.7) D+
k = Dk �Ω0,even, D−

k = Dk �Ω0,odd .
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LetRT
(1,0)X be the curvature of

(
T (1,0)X,∇1,0

)
. Let

ωd = −
∑
l,m

RL(wl, wm)wm ∧ iwl
,(2.8)

τ(x) =
∑
j

RL(wj , wj) .

Remark that by (2.1), atx ∈ X, there exists{wi}ni=1 an orthogonal basis of
T (1,0)X, such thatJ0 =

√−1 diag(a1(x), · · · , an(x)) ∈ End(T (1,0)X),
andai(x) > 0 for i ∈ {1, · · · , n}. So

ωd = −2π
∑
l

al(x)wl ∧ iwl
,(2.9)

τ(x) = 2π
∑
l

al(x) .

The following Lichnerowicz formula is crucial for us.

Theorem 2.2. The square of the Dirac operator satisfies the equation:

(2.10) D2
k =

(
∇Λ0,•⊗Lk⊗E

)∗ ∇Λ0,•⊗Lk⊗E − 2kωd− kτ + 1
4K + c(R),

whereK is the scalar curvature of(TX, gTX), and

c(R) =
∑
l<m

(
RE + 1

2 Tr
[
RT

(1,0)X
])
(el, em) c(el) c(em) .

Proof. By Lichnerowicz formula [3, Theorem 3.52], we know that

D2
k =

(
∇Λ0,•⊗Lk⊗E

)∗ ∇Λ0,•⊗Lk⊗E

+1
4K + c(R) + k

∑
l<m

RL(el, em) c(el) c(em) .(2.11)

Now, we identify RL with a purely imaginary antisymmetric matrix
−2π√−1J0 ∈ End(TX) by (2.1). AsJ0 ∈ End(T (1,0)X), by [3, Lemma
3.29], we get (2.10). ��
Remark 2.3.Let E = E+ ⊕E− be a Clifford module. Then it was observed
by Braverman [11,§ 9] that, with the same proof of [3, Proposition 3.35],
there exists a vector bundleW onX such thatE = Λ0,•⊗W as aZ2–graded
Clifford module.

As a simple consequence of Theorem 2.2, we recover the statement on
the drift of spectrum of the metric Laplacian first proved by Guillemin–Uribe
[13, Theorem 1], (see also [6, Theorem 2.1], [11, Theorem 4.4]), by passing
to the circle bundle ofL∗ and applying Melin’s inequality [14, Theorems
22.3.2–3].
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Corollary 2.4. There existsC > 0 such that fork ∈ N, the metric Lapla-
cian∆k =

(∇Lk⊗E)∗ ∇Lk⊗E onC∞(X,Lk ⊗ E) satisfies :

(2.12) ∆k − kτ � −C .

Proof. By (2.10),s ∈ C∞(X,Lk ⊗ E),

‖Dks‖2 = ‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s, s)
+

((1
4K + c(R)

)
s, s

)
.(2.13)

From (2.3), we infer that

∥∥∇Λ0,•⊗Lk⊗Es
∥∥2 =

∥∥∇Lk⊗Es
∥∥2 +

∥∥∥∑
l,m

〈
A2wl, wm

〉
wl ∧ wm ∧ s

∥∥∥2
.

and therefore there exists a constantC > 0 not depending onk such that

0 � ‖Dks‖2 �
∥∥∇Lk⊗Es

∥∥2 − k(τ(x)s, s) + C‖s‖2

=
(
(∆k − kτ(x))s, s

)
+ C‖s‖2 .

��

The following is our main technical result.

Theorem 2.5. There existsC > 0 such that for anyk ∈ N and anys ∈
Ω>0(X,Lk ⊗ E) =⊕

q�1Ω
0,q(X,Lk ⊗ E),

(2.14) ‖Dks‖2 � (2kλ− C)‖s‖2 .

Proof. By (2.10), fors ∈ Ω0,•(X,Lk ⊗ E) ,

‖Dks‖2 = {‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s, s)} − 2k(ωds, s)
+

((1
4K + c(R)

)
s, s

)
.(2.15)

We consider nows ∈ C∞(X,Lk ⊗ E′), whereE′ = E ⊗ Λ0,•. Estimate
(2.12) becomes

(2.16)
∥∥∇Lk⊗E′

s
∥∥2 − k(τ(x)s, s) � −C‖s‖2 .

If s ∈ Ω>0(X,Lk⊗E), the second term of (2.15),−2k(ωds, s) is bounded
below by2kλ‖s‖2. While the third term of (2.15) isO(‖s‖2). The proof of
(2.14) is completed. ��
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3. Applications of Theorem 2.5

Proof of Theorem 1.1.By (2.14), we get immediately (1.1). For the rest, we
use the trick of the proof of Mckean–Singer formula.

LetHµ be the spectral space ofD2
k corresponding to the interval(0, µ).

LetH+
µ ,H−

µ be the intersections ofHµ with the spaces of forms of even and
odd degree respectively. ThenHµ = H+

µ ⊕H−
µ . SinceD+

k commutes with
the spectral projection, we have a well defined operatorD+

k : H+
µ −→ H−

µ

which is obviously injective. But estimate (2.14) implies thatH−
µ = 0 for

everyµ < 2kλ−C, hence alsoH+
µ = 0, for this range ofµ. ThusHµ = 0,

for 0 < µ < 2kλ− C. The proof of our theorem is completed. ��
Proof of Corollary 1.2.Let Pk : Ω0,•(X,Lk ⊗ E) −→ C∞(X,Lk ⊗ E)
be the orthogonal projection. Fors ∈ Ω0,•(X,Lk ⊗ E), we will denote
s0 = Pks its 0– degree component. We will estimate∆#

k onPk(KerD+
k )

and(KerD+
k )

⊥ ∩ C∞(X,Lk ⊗ E).
In the sequel we denote withC all positive constants independent of

k, although there may be different constants for different estimates. From
(2.13), there existsC > 0 such that fors ∈ C∞(X,Lk ⊗ E),

(3.1)
∣∣‖Dks‖2 − (∆#

k s, s)
∣∣ � C‖s‖2 .

Theorem 1.1 and (3.1) show that there existsb > 0 such that fork ∈ N,
(3.2)
(∆#

k s, s) � (2kλ− b)‖s‖2 , for s ∈ C∞(X,Lk ⊗ E) ∩ (KerD+
k )

⊥.

We focus now on elements fromPk(KerD+
k ), and assumes ∈ KerDk.

Sets′ = s− s0 ∈ Ω>0(X,Lk ⊗ E). By (2.15), (2.16),

(3.3) −2k(ωds, s) � C‖s‖2 .

We obtain thus [6, Theorem 2.3] (see also [7], [11, Theorem 3.13]) for
k � 1,

(3.4) ‖s′‖ � Ck−1/2‖s0‖ .
(from (3.4), they gotKerD−

k = 0 for k � 1 ass0 = 0 if s ∈ Ker D−
k ). In

view of (2.15) and (3.4),

(3.5) ‖∇Λ0,•⊗Lk⊗Es‖2 − k(τ(x)s0, s0) � C‖s0‖2 .

By (2.3),

(3.6) ∇Λ0,•⊗Lk⊗Es = ∇Lk⊗Es0 +A′
2s2 + α ,
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wheres2 is the component of degree2 of s, A′
2 is a contraction operator

comming from the middle term of (2.3), andα ∈ Ω>0(X,Lk ⊗ E). By
(3.5), (3.6), we know

(3.7)
∥∥∇Lk⊗Es0 +A′

2s2
∥∥2 − k(τ(x)s0, s0) � C‖s0‖2 ,

and by (3.4), (3.7),

(3.8)
∥∥∇Lk⊗Es0

∥∥2 � Ck‖s0‖2 ,

By (3.4) and (3.8), we get∥∥∇Lk⊗Es0 +A′
2s2

∥∥2 �
∥∥∇Lk⊗Es0

∥∥2 − 2∥∥∇Lk⊗Es0
∥∥∥∥A′

2s2
∥∥

�
∥∥∇Lk⊗Es0

∥∥2 − C‖s0‖2.
(3.9)

Thus, (3.7) and (3.9) yield

(3.10)
∥∥∇Lk⊗Es0

∥∥2 − k(τ(x)s0, s0) � C‖s0‖2 .

By (2.12) and (3.10), there exists a constanta > 0 such that

(3.11)
∣∣(∆#

k s, s
)∣∣ � a‖s‖2 , s ∈ Pk(KerD+

k ) .

By (3.4), we know that fork � 1, Pk : KerD+
k −→ Pk(KerD+

k ) is
bijective, and

(3.12) C∞(X,Lk⊗E) = Pk(KerD+
k )⊕(KerD+

k )
⊥∩C∞(X,Lk⊗E) .

The proof is now reduced to a direct application of the minimax principle
for the operator∆#

k . It is clear that (3.2) and (3.11) still hold for elements
in the Sobolev spaceW 1(X,Lk⊗E), which is the domain of the quadratic
form Qk(f) =

∥∥∇Lk⊗Ef
∥∥2 − k(τ(x)f, f) associated to∆#

k . Let µk1 �
µk2 � · · · � µkj � · · · (j ∈ N) be the eigenvalues of∆#

k . Then, by the
minimax principle [18, pp.76–78],

(3.13) µkj = min
F⊂DomQk

max
f∈F , ‖f‖=1

Qk(f) .

whereF runs over the subspaces of dimensionj of DomQk.
By (3.11) and (3.13), we knowµkj � a, for j � dimKerD+

k . Moreover,
any subspaceF ⊂ DomQk with dimF � dimKerD+

k + 1 contains an
element0 �= f ∈ F ∩(KerD+

k )
⊥. By (3.2), (3.13), we obtainµkj � 2kλ−b,

for j � dimKerD+
k + 1.

By Theorem 1.1 and Atiyah–Singer theorem [2],

(3.14) dimKerD+
k = indexD

+
k = 〈ch(Lk ⊗ E) Td(X), [X]〉
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whereTd(X) is the Todd class of an almost complex structure compatible
with ω. The index is a polynomial ink of degreen and of leading term
kn(rankE) volω(X), wherevolω(X) is the symplectic volume ofX.

The proof of our corollary is completed. ��
Remark 3.1.If (X,ω) is Kähler and ifL,E are holomorphic vector bundles,

thenDk =
√
2
(
∂+∂ ∗)

where∂ = ∂ L
k⊗E

.D2
k preserves theZ–grading of

Ω0,•. By using the Bochner–Kodaira–Nakano formula, Bismut and Vasserot
[4, Theorem 1.1] proved Theorem 2.5. As∂ : (KerD+

k )
⊥ ∩ C∞(X,Lk ⊗

E) −→ Ω0,1(X,Lk ⊗ E) is injective, we infer

2
∥∥∂s∥∥2 � (2kλ− C)‖s‖2,

for s ∈ (KerD+
k )

⊥ ∩ C∞(X,Lk ⊗ E).(3.15)

By Lichnerowicz formula [4, (21)],2∂ ∗
∂ = ∆#

k +
1
4K+c(R)onC∞(X,Lk

⊗ E), and Corollary 1.2 follows immediately. This observation motivated
our work.

Remark 3.2.As in [5], we assume that(L, hL,∇L) is a positive Hermitian
vector bundle, i.e. the curvatureRL is anEnd(L)–valued(1, 1)–form, and
for anyu ∈ T (1,0)X � {0}, s ∈ L � {0}, 〈RL(u, u)s, s〉 > 0. Let Sk(L)
be thekth symmetric tensor power ofL. Then if we replaceLk in § 2, 3
by Sk(L), or by the irreducible representations ofL, which are associated
with the weightka (wherea is a given weight), whenk tends to+∞, the
techniques used in our paper still apply.

4. Covering manifolds

We extend in this section our results to covering manifolds.

4.1. Covering manifolds, von Neumann dimension

We present here some generalities about elliptic operators on covering man-
ifolds andΓ–dimension. For details, the reader is referred to [1,§ 4], [19,
§ 1,§ 3].

Let X̃ be a paracompact smooth manifold, such that there is a discrete
groupΓ acting freely onX̃ having a compact quotientX = X̃/Γ . LetgTX̃

be aΓ–invariant metric onTX̃. Let p : X̃ −→ X be the projection.
For aΓ–invariant hermitian vector bundle(F̃ , hF̃ ), we denote byC∞

c (X̃,
F̃ ) the space of compactly supported sections. ThengTX̃ , hF̃ define anL2–
scalar product onC∞

c (X̃, F̃ ) as in (2.5). The correspondingL2 space is
denoted byL2(X̃, F̃ ).
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We have a decompositionL2(X̃, F̃ ) ∼= L2Γ ⊗H whereH = L2(U, F̃ )
is theL2 space over the relatively compact fundamental domainU of theΓ
action. This makesL2(X̃, F̃ ) into a free HilbertΓ–module. SinceΓ acts
by left translationslγ onL2Γ , we obtain a unitary action ofΓ onL2(X̃, F̃ )
by left translationsLγ = lγ ⊗ Id. We will consider in the sequel closed
Γ–invariant subspaces ofL2(X̃, F̃ ) for this action, called (projective)Γ–
modules.

LetAΓ be the von Neumann algebra which consists of all bounded linear
operators inL2Γ ⊗H which commute to the action ofΓ . LetRΓ be the von
Neumann algebra of all bounded operators onL2Γ which commute with all
lγ . ThenRΓ is generated by all right translations. LetB(H) be the algebra
of all bounded operators onH. ThenAΓ = RΓ ⊗ B(H).

If we consider the orthonormal basis(δγ)γ in L2Γ , whereδγ is the
Dirac delta function atγ ∈ Γ , then the matrix of any operatorA ∈ RΓ has
the property that all its diagonal elements are equal. Therefore we define
a natural trace onRΓ as the diagonal element, that is,trΓ A = (Aδe, δe)
wheree is the neutral element. LetTr be the usual trace onB(H), then we
define a trace onAΓ byTrΓ = trΓ ⊗Tr.

For any closedΓ–invariant spaceV ⊂ L2Γ ⊗H i.e. for anyΓ–module,
the projectionPV ∈ AΓ and we definedimΓ V = TrΓ PV . In general the
Γ–dimension is an element of[0,∞]. We also need the following fact [20,
p.398].

Proposition 4.1. LetA : V1 −→ V2 be a bounded linear operator between
twoΓ–modules, commuting with the action ofΓ . ThenKerA = 0 implies
dimΓ V1 � dimΓ V2.

Consider an elliptic,Γ–invariant, formally self–adjoint differential op-
eratorP̃ defined in the first instance onC∞

c (X̃, F̃ ). By a theorem of Atiyah
[1, Proposition 3.1], the minimal extension of̃P (i.e. the operator closure
of P̃ ) and the maximal extension of̃P (i.e. P̃ ∗) coincide. Hence

Lemma 4.2 (Atiyah). P̃ defined onC∞
c (X̃, F̃ ) is essentially self–adjoint.

ThereforeP̃ has a unique self–adjoint extension, namely its closure.
From now on, we always work with this extension ofP̃ , which we will
denote with the same symbol.

Then the self–adjoint extensioñP , as well as its spectral projections com-
mute with the action ofΓ . In particular, the spectral spaces areΓ–modules.
For a Borel setB ⊂ R, we denote byE(B, P̃ ) the spectral projection cor-
responding to the subsetB, and forµ ∈ R, setEµ(P̃ ) = E

(
(−∞, µ], P̃ )

.
We introduce now a quantitative characteristic of the spectrum, namely the
von Neumann spectrum distribution function. Forµ ∈ R, set

NΓ (µ, P̃ ) := TrΓ Eµ(P̃ ) = dimΓ RangeEµ(P̃ ) .
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It is non–decreasing and the spectrum ofP̃ coincides with the points of
growth of NΓ (µ, P̃ ). If P̃ is semi–bounded from below, we have
RangeEµ(P̃ ) ⊂ Dom P̃m for m ∈ N. Using the uniform Sobolev spaces
[19, pp. 511–512], it is easily seen thatRangeEµ(P̃ ) ⊂ C∞(X̃, F̃ ), so that
Eµ(P̃ ) : L2(X̃, F̃ ) −→ C∞(X̃, F̃ ) is linear continuous. LetKµ(x̃, ỹ) be

the kernel ofEµ(P̃ ) with respect to the riemannian volumedv
X̃

of gTX̃ .
By Schwartz kernel theorem,Kµ(x̃, ỹ) is smooth. By [1, Lemma 4.16],

NΓ (µ, P̃ ) = TrΓ Eµ(P̃ ) =
∫
U
TrKµ(x̃, x̃) dvX̃ < +∞.

4.2. Thespinc Dirac operator on a covering manifold

Assume that there exists aΓ–invariant pre–quantum line bundlẽL onX̃ and
aΓ–invariant connection∇L̃ such that̃ω =

√−1
2π (∇L̃)2 is non–degenerate.

Let (Ẽ, hẼ) be aΓ–invariant hermitian vector bundle. Let∇Ẽ be aΓ -
invariant hermitian connection oñE. LetJ̃ be anΓ -invariant almost complex
structure onTX̃ such thatJ̃ is compatible withω̃ and gTX̃ . Let J̃0 ∈
End(TX) be defined by

ω̃(u, v) = gTX̃(J̃0u, v), for u, v ∈ TX̃.
ThenJ̃ commutes withJ̃0 andJ̃0, g

TX̃ , ω̃, J̃ are the pull-back of the corre-
sponding objects in Sect. 2 byp : X̃ → X.

We use in the sequel the same notation as in Sect. 2 for the corresponding
objects onX. Following Sect. 2, we introduce theΓ–invariantspinc Dirac
operatorD̃k on Ω0,•(X̃, L̃k ⊗ Ẽ) and theΓ–invariant Laplacian∆̃k =(∇L̃k⊗Ẽ)∗ ∇L̃k⊗Ẽ onC∞(X̃, L̃k ⊗ Ẽ). Let D̃+

k andD̃−
k be the restrictions

of D̃k toL0, even
2 (X̃, L̃k ⊗ Ẽ) andL0, odd

2 (X̃, L̃k ⊗ Ẽ), respectively.

Proposition 4.3. There existsC > 0 such that fork ∈ N, ∆̃k − k · τ ◦ p �
−C onL2(X̃, L̃k ⊗ Ẽ).
Proof. By applying Lichnerowicz formula (2.10) fors ∈ C∞

c (X̃, L̃
k ⊗ Ẽ),

we obtain as in the proof of Corollary 2.4, that there existsC > 0 such
that

(
(∆̃k − k · τ ◦ p)s, s

)
� −C‖s‖2. By Lemma 4.2, this is valid for any

s ∈ Dom(∆̃k − k · τ ◦ p). ��
In the same vein, we can generalize Theorem 2.5.

Theorem 4.4. There existsC > 0 such that fork ∈ N and anys ∈
Dom(D̃k) with vanishing degree zero component,

(4.1) ‖D̃ks‖2 � (2kλ− C) ‖s‖2 .
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As an immediate application of the estimate (4.1) for the Dirac operator
and Remark 2.3, we get the following asymptotic vanishing theorem which
is the main result in [12, Theorem 2.6].

Corollary 4.5. Ker D̃−
k = {0} for large enoughk.

We have also an analogue of Theorem 1.1.

Corollary 4.6. There existsC > 0 such that fork ∈ N, the spectrum of̃D2
k

is contained in the set{0} ∪ (2kλ− C,+∞).
Proof. The proof of Theorem 1.1 does not use the fact that the spectrum is
discrete. Therefore it applies in this context, too. ��
We study now the spectrum of theΓ–invariant Schr̈odinger operator̃∆k −
k · τ ◦ p.
Corollary 4.7. The spectrum of the Schrödinger operator∆̃#

k = ∆̃k − k ·
τ ◦p is contained in the union(−a, a)∪ (2kλ− b,+∞) , wherea andb are
positive constants independent ofk. For large enoughk, theΓ–dimension
dk of the spectral spaceE

(
(−a, a), ∆̃#

k

)
corresponding to(−a, a) satisfies

dk = 〈ch(Lk ⊗E) Td(X), [X]〉. In particulardk ∼ kn(rankE) volω(X).
Proof. By repeating the proof of Corollary 1.2, we get estimates (3.2) and
(3.11) for smooth elements with compact support. Lemma 4.2 yields then∣∣(∆̃#

k s, s
)∣∣ � a‖s0‖2 , s ∈ Dom(∆̃#

k ) ∩ Pk(Ker D̃+
k ) ,(4.2a)

(∆̃#
k s, s) � (2kλ− b)‖s‖2 , s ∈ Dom(∆̃#

k ) ∩ (Ker D̃+
k )

⊥ .(4.2b)

Recall thatPk represents the projectionL0, •
2 (X̃, L̃k ⊗ Ẽ) −→ L0,0

2 (X̃,
L̃k ⊗ Ẽ). Since the curvatures of all our bundles areΓ–invariant, estimate
(3.4) extends to the covering context with the same proof. In particular,
Pk : Ker D̃+

k −→ Pk(Ker D̃+
k ) is bijective,Pk �Ker D̃+

k
and its inverse are

bounded. SoPk(Ker D̃+
k ) is closed. By Proposition 4.1,

(4.3) dimΓ Ker D̃+
k = dimΓ Pk(Ker D̃+

k ) .

As in (3.12), we have

(4.4) Dom(∆̃#
k ) = Pk(Ker D̃

+
k )⊕ (Ker D̃+

k )
⊥ ∩Dom(∆̃#

k ) .

We use now a suitable form of the minimax principle from [20, Lemma 2.4]:

NΓ (µ, ∆̃
#
k ) = sup{dimΓ V : V ⊂ Dom ∆̃#

k(
∆̃#
k f, f

)
� µ‖f‖2 ,∀ f ∈ V }(4.5)
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whereV runs over theΓ–modules ofL2(X̃, L̃k ⊗ Ẽ).
By (4.1), (4.2a) and (4.5), we get

(4.6) NΓ (a, ∆̃
#
k ) � dimΓ Ker D̃+

k .

Let us considerν < 2kλ− b. We prove that

(4.7) NΓ (ν, ∆̃
#
k ) � dimΓ Ker D̃+

k .

LetV ⊂ Dom(∆̃#
k )be an arbitraryΓ–module with

(
∆̃#
k u, u

)
� ν‖u‖2.

If dimΓ V > dimΓ Ker D̃+
k , by Proposition 4.1 and (4.4), there exists0 �=

v ∈ V ∩ (KerD+
k )

⊥, which in view of (4.2b) is a contradiction. Therefore
dimΓ V � dimΓ Ker D̃+

k . By (4.5), we get (4.7).

By (4.6) and (4.7), we know that the functionNΓ (ν, ∆̃
#
k ) is constant

in the intervalν ∈ [a, 2kλ − b) and equal todimΓ Ker D̃+
k . Enlarging a

bit a if necessary, we see that the spectrum of∆̃#
k is indeed contained in

(−a, a) ∪ (2kλ − b,+∞), and theΓ–dimensiondk of the spectral space
E

(
(−a, a), ∆̃#

k

)
equalsdimΓ Ker D̃+

k .

By Corollary 4.5,dimΓ Ker D̃+
k = indexΓ D̃

+
k . Moreover, Atiyah’sL2

index theorem [1, Theorem 3.8] shows thatindexΓ D̃+
k = indexD

+
k .

By (3.14), the proof is achieved. ��
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