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Abstract. We study the asymptotic of the spectrum of¢hen© Dirac oper-

ator on high tensor powers of a line bundle. As application, we get a simple
proof of the main result of Guillemin—Uribe [13, Theorem 2], which was
originally proved by using the analysis of Toeplitz operators of Boutet de
Monvel and Guillemin [10].

1. Introduction

Let (X, w) be a compact symplectic manifold of real dimenstenAssume
that there exists a hermitian line bundl@ver X endowed with a hermitian
connectionv” with the property that%RL = w, whereRY = (VF)2is
the curvature of L, V%). Let E be a hermitian vector bundle o¥.

Let ¢”X be a riemannian metric oX. Let.J, : TX — TX be the
skew-adjointlinear map which satisfies the relatign, v) = g7 (Jou, v).
Let J be an almost complex structure which is compatible witk and
w. Then one can construct canonicallyan® Dirac operatorD;, acting on
2%*(X,LF @ E) = @,_, 29X, L* ® E), the direct sum of spaces of
(0, ¢)—forms with values in.* @ E. Let

A= (liOI)lf Ré(u,ﬂ)ﬂu@n( > 0.
ueTy, X, zeX

One of our main results is as follows:
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Theorem 1.1. There exist& > 0 such that fork € N, the spectrum ab?
is contained in the sef0} U (2kA — C, 400). SetD,” = Dj; [ o0, then
for k large enough, we have

(1.2) Ker D,” = {0}.

We recover with (1.1) the vanishing result of [6, Theorem 2.3], [11, Theo-
rem 3.2]. Another interesting application is to describe the asymptotics of
the spectrum of the metric Laplaciaty, = (VZ'®E)* vL*®E acting on
C>(X, L*¥ @ E). Introduce the smooth functiar(z) = 3 ; R" (w;, w;) >

0,z € X, where{w;}7_, is an orthonormal basis a0 x.

Corollary 1.2. The spectrum of the Sddinger operatorA? = A, — kr

is contained in the uniofa, a) U(2kA—b, +00), wherea andb are positive
constants independent &f For k large enough, the numbel;, of eigen-
values on the intervél—a, a) satisfiesd, = (ch(L* ® F) Td(X),[X]). In

particular dj, ~ k™(rank E) vol, (X).

In the caseF is a trivial line bundle, Corollary 1.2 is the main result of
Guillemin and Uribe [13, Theorem 3] The idea in [6], [11], [12], [13] is
that one first reduces the problem to a problem on the unitary circle bundle
of L*, then one applies Melin inequality [14, Theorem 22.3.2] to show that
Ak# is semi—bounded from below. In order to prove [13, Theorem 2], they
apply the analysis of Toeplitz structures of Boutet de Monvel-Guillemin
[10]. For the interesting applications of [13, Theorem 2], we refer the reader
to Borthwick and Uribe [6], [8], [9]. For the related topic on geometric
guantization, see [16], [21]. Our proof is based on a direct application of
Lichnerowicz formula.

This paper is organized as follows. In Sect. 2, we recall the construction
of the spin® Dirac operator and prove our main technical result, Theorem
2.5. In Sect. 3, we prove Theorem 1.1 and Corollary 1.2. In Sect. 4, we
generalize our result to thie, case. In particular, we obtain a new proof of
[12, Theorem 2.6].

2. The Lichnerowicz formula

Let (X,w) be a compact symplectic manifold. LéE, h%), (E, h”) be

two hermitian complex vector bundles endowed with hermitian connections
VE and V¥ respectively. LetR” and RF be their curvatures. We assume
rank L = 1 andRY = —27/—1w. Let g7X be an arbitrary riemannian
metric onT X . Let J be an almost complex structure which is compatible

Y In [13], they only knewd), ~ k™ vol,, (X). When.J, = J, Borthwick and Uribe [6, p.
854] got the precise valug;, for large enouglt, in this case.
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with ¢”* andw (For the existence of , we refer to [17, p.61]). Thed
defines canonically an orientation &f. Let J, : TX — TX be the
skew—adjoint linear map defined by

(2.1) w(u,v) = g7* (Jou,v), for u,v € TX.

ThenJ commutes withJj.

LetTX¢ = TX ®g C denote the complexification of the tangent bun-
dle. The almost complex structuseinduces a splitting’ X¢ = 7(1L0) X g
7O X whereT:9) X andT(*:) X are the eigenbundles dfcorrespond-
ing to the eigenvalueg’—1 and—+/—1 respectively. Accordingly, we have a
decomposition of the complexified cotangent bundteX © = 7(10)* X ¢
T+ X The exterior algebra bundle decomposed A X ¢ = @, , AP,
whereAP? .= APAT*X¢ = AP(T(L0)*X) @ AY(TOD*X),

Let VT be the Levi—Civita connection of the metgé X, and letv°
andV%! be the canonical hermitian connections B9 X and 7(%:1) x
respectively:

v =11 - v=1n)v¥ 1 -v-11),
Vi =11+ V=1V 1 +V-17).

Setd, = V¥ — (V10 g V9) € T*X ® End(TX) which satisfies
JAs =—As J.

Let us recall some basic facts about¢hn® Dirac operator on an almost
complex manifold [15, Appendix D]. The fundament spinor bundle
induced by.J is given by A% = A®eYT O+ Xx) @ A°dd(TOD* X)) For
anyv € TX with decomposition = vy g +vg1 € TH)X @ TOD X, let
v}y € TOD* X be the metric dual ofy o. Thenc(v) = v2(v} y A —iy,, )
defines the Clifford action of on A%*, whereA andi denote the exterior
and interior product respectively.

Formally, we may think

1/2
A = S(TX)® (det T<170>X) "

whereS (T'X) is the spinor bundle of the possibly non—existent spin struc-

ture on7'X, and (det T(LO)X)I/2 is the possibly non—existent square root
of det 710 X,

Moreover, by [15, pp.397-398Fy”¥ induces canonically a Clifford
connection onA%*. Formally, letvV5(TX) be the Clifford connection on
S(TX)induced byv ™, and letv 9t be the connection aflet 710 X )1/2
induced byv!°. Then

VI = 750X @ 1d + 1d @V .
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Let {w;}"_, be alocal orthonormal frame @' %) X. Then

e2j = J5(wj +5) and ey g = Yo (w; — ;).

(2.2) j=1....n,

form an orthonormal frame of' X. Let {wj}?:1 be the dual frame of
{w;}7_,. LetI" be the connection form 67 1:* & V%! in local coordinates.

ThenV?* = d + I' + A,. By [15, Theorem 4.14, p.110], the Clifford
connectionvC on A% has the following local form:

VoIt — g4 1 Z ((I' + Ag)e;, ej)c(ei)c(e))
.J
(2.3) - d+Z{<le,wm>wl A g+

lm

HAowy, wi) iw, 1w, + (Ao, W ) W A W™ A } .

Let VI*®E pe the connection od* ® E induced byVL, V. Let
VAT @LE®E he the connection on®* @ LF @ E,

(2.4) ATt eLtel _ ot ¢ 1q 4 1d @ VE O,

Along the fibers ofA%* @ L* @ E, we consider the pointwise scalar
product(-, -) induced byy” X, b’ andh”. Letdvx be the riemannian volume
form of (TX, g”¥). The Lo—scalar product o2 (X, L* ® E), the space
of smooth sections ol%* @ L* @ E, is given by

(2.5) (51, 85) = /X (51(2), 5a(x)) dvx ()

We denote the corresponding norm wjit.

Definition 2.1. Thespin® Dirac operatorD,, is defined by

(2.6)
2n

D= c(e))VATTBLSE 0 (X IF @ B) — 2°(X, L @ B).
j=1
Dy, is a formally self—adjoint, first order elliptic differential operator on
2% (X, L*®E),whichinterchange@®¢e\ X, L*® E) and2*°%( X, LF
E). We denote

(27) D,:— = Dk rQO,even7 D,; - Dk r_Qo,odd .
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Let R7""”X be the curvature of (19 X, v10). Let

(2.8) wa=— Y R*(w, W) 0" A i, ,
Im
() =Y R"(w;,w)).
j

Remark that by (2.1), at € X, there existw; }I_; an orthogonal basis of
T X, such thatly = /=1 diag(a;(z),-- - ,an(z)) € End(T10X),
anda;(z) > 0fori e {1,--- ,n}. So

(2.9) Wy = 7271'2 ai(z) W A i,
l

T(z) = 27rZal(x) .
!

The following Lichnerowicz formula is crucial for us.
Theorem 2.2. The square of the Dirac operator satisfies the equation:

(2.10) D} = (vAO"@’L’“@E) VAL OE oy — kr + 1K +o(R),
wherekK is the scalar curvature of X, g7 X), and

c(R) =Y (RE + 1Ty [RT“’O)XD (1, em) c(e1) c(em) -

l<m
Proof. By Lichnerowicz formula [3, Theorem 3.52], we know that

D2 — (VAW@L’C@E)* vA OLFQE
2 —

(2.11) +1K +c(R)+k > R*(er,em) cler) clem) .-

l<m

Now, we identify RY with a purely imaginary antisymmetric matrix
—21y/=1Jy € End(TX) by (2.1). AsJy € End(T(:0) X), by [3, Lemma
3.29], we get (2.10). a

Remark 2.3.Let€ = £ @ £~ be a Clifford module. Then it was observed
by Braverman [11§ 9] that, with the same proof of [3, Proposition 3.35],
there exists a vector bundi€ on X such that = A%*® W as aZ,—graded
Clifford module.

As a simple consequence of Theorem 2.2, we recover the statement on
the drift of spectrum of the metric Laplacian first proved by Guillemin—Uribe
[13, Theorem 1], (see also [6, Theorem 2.1], [11, Theorem 4.4]), by passing
to the circle bundle of.* and applying Melin’s inequality [14, Theorems
22.3.2-3].
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Corollary 2.4. There exist& > 0 such that fork € N, the metric Lapla-
cian Ay = (VX'@F)" vL'9F one>(X, LF © E) satisfies

(2.12) A —kr > —C'.
Proof. By (2.10),s € C®(X, LF @ E),
|1 Dgs||? = VA" EE S| — k(7 (2)s, s)
(2.13) +((3K +c(R)) s,s) .
From (2.3), we infer that
. 2
[ | = [ | 3 (g ) W AT A
Ilym

and therefore there exists a consta@nt- 0 not depending o such that

0 < || Des|? < | VE¥Fs||” = k(r(x)s, s) + C|s||?
= (A — k7(z))s,s) + C|1s|*.

The following is our main technical result.

Theorem 2.5. There exist€ > 0 such that for anyt € N and anys €
PUX, LF Q@ E) = @5, 279X, LF © E),

(2.14) | Dgs|* > (2kA = C)|s|* .
Proof. By (2.10), fors € 2°*(X,L*F @ E),

|1Dgs|? = {IVA" L EE |12 — k(7 (2)s, )} — 2k(was, 5)
(2.15) + ((3K +c(R)) s,s) .

We consider nows € C®(X, L* @ E'), whereE’ = E @ A%*. Estimate
(2.12) becomes

(2.16) |VEeE |2

— k(r(x)s,s) > —C||s||2.

If s € 2°0(X, LF @ E), the second term of (2.15),2k(wys, s) is bounded
below by2k\||s||2. While the third term of (2.15) i©)(||s||?). The proof of
(2.14) is completed. O



The spirf Dirac operator on high tensor powers of a line bundle 657

3. Applications of Theorem 2.5

Proof of Theorem 1.1y (2.14), we get immediately (1.1). For the rest, we
use the trick of the proof of Mckean-Singer formula.

LetH,, be the spectral space 157f,2€ corresponding to the intervé, ).
Let ”H;j ’H; be the intersections 6{,, with the spaces of forms of even and
odd degree respectively. Théf), = ”Hf{ eH,. SinceD,j/,r commutes with
the spectral projection, we have a well defined operﬂt@r: ’H:[ — H,
which is obviously injective. But estimate (2.14) implies tigf = 0 for
everyu < 2kA — C, hence aIsG—[fLr = 0, for this range of:. Thus#,, = 0,
for 0 < u < 2kX — C'. The proof of our theorem is completed. a

Proof of Corollary 1.2.Let P, : 2%*(X,LF ® E) — C®(X,L* ® E)
be the orthogonal projection. Ferc 2%*(X, L* @ E), we will denote
sg = Pys its 0—degree component. We will estimaﬂf on P (Ker D,j)
and(Ker D)1 nC>®(X, L* ® E).

In the sequel we denote with' all positive constants independent of
k, although there may be different constants for different estimates. From
(2.13), there exist€’ > 0 such that fos € C*(X, L* ® E),

3.1 [ Dgsl|* = (A s, 5)] < Clls||*.
Theorem 1.1 and (3.1) show that there exists 0 such that fork € N,
(3.2)

(AFs,5) > (2kA = b)||s||>, fors € C®°(X,L* ® E) N (Ker D).

We focus now on elements fro, (Ker D;"), and assume € Ker Dj.
Sets' = s — 59 € 2°°(X, L* ® ). By (2.15), (2.16),

(3.3) —2k(wgs, s) < C||s||?.

We obtain thus [6, Theorem 2.3] (see also [7], [11, Theorem 3.13]) for
k>1,

(34) Is'l < Ck™2]s0]l.

(from (3.4), they goKerD, = 0for k> 1assg = 0if s € Ker D,’). In
view of (2.15) and (3.4),

(3.5) VA SR OE 12 _ k(7 (2)s0, 50) < Cllsol| -
By (2.3),

(3.6) VAT OLIOE s VLk@Eso + Also +
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wheres; is the component of degreeof s, A} is a contraction operator
comming from the middle term of (2.3), and ¢ 2>°(X, L* @ E). By
(3.5), (3.6), we know

(3.7) VS s + Ayss|* — k(r(2)s0,50) < Cllsol?,
and by (3.4), (3.7),

(3.8) [V 50> < Ckl|so]|?,

By (3.4) and (3.8), we get
IV5 50+ Apsa|* > [[ V92 Eso|” = 2] V2P so ||| Ay

(3.9) ,
IV @ F 50|12 = Cllso]?.

> |
> |
Thus, (3.7) and (3.9) yield
(3.10) [ V2" ®E so||* = k(7 (x)s0, 50) < C]ls0l*.
By (2.12) and (3.10), there exists a constant 0 such that
(3.11) ‘(Ak#s,s)‘ <als|?, sé€ Py(Ker D).

By (3.4), we know that fork > 1, P, : Ker D} — Py(Ker D) is
bijective, and

(3.12) (X, L*® F) = Py(Ker D;}) @ (Ker D )*NC®(X,L*® E).

The proofis now reduced to a direct application of the minimax principle
for the operatoﬂk#. It is clear that (3.2) and (3.11) still hold for elements
in the Sobolev spadd’! (X, L* @ F), which is the domain of the quadratic
form Qi (f) = HVLk@EfHQ — k(r(x)f, f) associated ta\? . Let u} <
ph < oo < pf < --- (j € N) be the eigenvalues ah?. Then, by the
minimax principle [18, pp.76-78],

3.13 k— a .
(3.13) 1 chgng e 1Qk(f)

whereF’ runs over the subspaces of dimensjasf Dom Q.
By (3.11) and (3.13), we know’C < a, forj < dim Ker DjL Moreover,

any subspacé’ C Dom @y, with dim F' > dim Ker DJr + 1 contains an
elemend # f € FN(Ker D} )+. By (3.2), (3.13), we obtalpJ 2kA—b,

for j > dim Ker DJr + 1.
By Theorem 1. 1 and Atiyah-Singer theorem [2],

(3.14) dim Ker D} = index D} = (ch(L*F ® E) Td(X), [X])
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whereTd(X) is the Todd class of an almost complex structure compatible
with w. The index is a polynomial it of degreen and of leading term
E™(rank E) vol, (X ), wherevol,, (X) is the symplectic volume oX'.

The proof of our corollary is completed. O

Remark 3.1.If (X,w) is KéhlerandifZ, E are holomorphic vector bundles,

thenDj, = v2(0+9") whered = grier, D3 preserves thé—grading of
2%+, By using the Bochner—Kodaira—Nakano formula, Bismut and Vasserot
[4, Theorem 1.1] proved Theorem 2.5. Bs (Ker D; )+ N C®(X, LF ®

E) — 24X, L* ® E) is injective, we infer

2[[@s[|* > (2kx - O)]ls*,
(3.15) for s € (Ker D )- NC>®(X, L* ® E).

By Lichnerowicz formula[4, (21)R9 "0 = Af + 1K +c(R) onC>(X, L*
® F), and Corollary 1.2 follows immediately. This observation motivated
our work.

Remark 3.2.As in [5], we assume thatl, h*, V') is a positive Hermitian
vector bundle, i.e. the curvatur” is anEnd(L)-valued(1, 1)—form, and
foranyu € THOX < {0}, s € L~ {0}, (R (u,@)s,3) > 0. Let S¥(L)
be thek™ symmetric tensor power df. Then if we replacd.* in § 2, 3
by S*(L), or by the irreducible representationsiafwhich are associated
with the weightka (wherea is a given weight), whe# tends to+oo, the
techniques used in our paper still apply.

4. Covering manifolds

We extend in this section our results to covering manifolds.

4.1. Covering manifolds, von Neumann dimension

We present here some generalities about elliptic operators on covering man-
ifolds andI"'—-dimension. For details, the reader is referred t&; @], [19,

§183]. _

Let X be a paracompact smooth manifold, such that there is a discrete
group!” acting freely onX having a compact quotiet = X/F. LethX
be al~invariant metric ot X. Letp : X — X be the projection.

For al—invariant hermitian vector bund(é’, 1), we denote bg>° (X,
~) the space of compactly supported sections. Tg%"e% W define anlo—
scalar product onfoo(X F) as in (2.5). The correspondink, space is
denoted byLy (X, F).
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We have a decompositiaiy, (X, F) = LoI" @ H whereH = Ly (U, F)
is the L, space over the relatively compact fundamental dorbaof the I”
action. This maked.»(X, F') into a free Hilbert/"-module. Sincd" acts
by left translationg., on Ly 1", we obtain a unitary action df on Ly(X , F)
by left translations., = [, ® Id. We will consider in the sequel closed
I—invariant subspaces df (X, F) for this action, called (projectivel—
modules.

Let A be the von Neumann algebra which consists of all bounded linear
operators inLsI" ® H which commute to the action df. Let R i be the von
Neumann algebra of all bounded operatordef’ which commute with all
l,. ThenR  is generated by all right translations. L&t# ) be the algebra
of all bounded operators oi. ThenAr = R @ B(H).

If we consider the orthonormal bas{s,), in L.I", whered, is the
Dirac delta function at € I", then the matrix of any operater € R has
the property that all its diagonal elements are equal. Therefore we define
a natural trace ofR - as the diagonal element, that is; A = (Ade, d.)
wheree is the neutral element. L&t be the usual trace ofi(#), then we
define a trace ol by Trp = trp ® Tr.

For any closed —invariant spac® C LI’ ® H i.e. for any/'—-module,
the projectionPy, € Ar and we definelimp V' = Trp Py . In general the
I'-dimension is an element @f, oo]. We also need the following fact [20,
p.398].

Proposition 4.1. Let A : V; — V5 be a bounded linear operator between
two I"'-modules, commuting with the actioniof ThenKer A = 0 implies
dimp V1 § dimp VQ

Consider an elliptic/"—invariant, formally self-adjoint differential op-
eratorP defined in the first instance @ (X, F). By a theorem of Atiyah
[1, Proposition 3.1], the minimal extension Ef(i.e. the operator closure
of P) and the maximal extension &f (i.e. P*) coincide. Hence

Lemma 4.2 (Atiyah). P defined or¢>°(X, F) is essentially self-adjoint.

ThereforeP has a unique self-adjoint extension, namely its closure.
From now on, we always work with this extension féf which we will
denote with the same symbol.

Thenthe self-adjoint extensidh as well as its spectral projections com-
mute with the action of . In particular, the spectral spaces aremodules.

For a Borel sefB C R, we denote by¥(B, ]5) the spectral projection cor-
responding to the subs@, and fory € R, setE,(P) = E((—oc, u], P).

We introduce now a quantitative characteristic of the spectrum, namely the
von Neumann spectrum distribution function. ko€ R, set

Nr(p, P) :=Trp E,(P) = dimy Range E,(P) .
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It is non—decreasing and the spectrumR)f:omudes with the points of
growth of NF(M,P). If P is semi~bounded from below, we have
Range E,, (P) C Dom P™ for m € N. Using the uniform Sobolev spaces
[19, pp. 511-512], itis easily seen thiainge £, (P P) C C=(X, F), so that
E.(P) : Ly(X, F) — C™(X, F) is linear continuous. Lek (%, 7) be
the kernel ofE,,(P) with respect to the riemannian volurde ; of gTx.

By Schwartz kernel theoren,(z, y) is smooth. By [1, Lemma 4.16],

Np(p, P) = Trp E,(P) = / Tr K,(%,7) dvg < +oo.
U

4.2. Thespin® Dirac operator on a covering manifold

Assume that there existda-invariant pre—quantum line bundleon X and
a I'—invariant connectio’ such thats = F(VL) is non—degenerate.
Let (E,hE) be al-invariant hermitian vector bundle. L& be arl-
invariant hermitian connection dt. Let.J be anl-invariant almost complex

structure onT'X such that/ is compatible with and ¢7X. Let J, €
End(T'X) be defined by

w(u,v) = gTX(jou, v), for w,v € TX.

Then.J commutes with/y andJo, g7, &, J are the pull-back of the corre-
sponding objects in Sect. 2 y: X — X.

We use inthe sequel the same notation as in Sect. 2 for the corresponding
objects onX. Following Sect. 2, we introduce thfé-invariantspin® Dirac

operatorD;, on 2%*(X,L* @ F) and theI—invariant LaplacianA, =
(VLk@E) VL'®E onc> (X, I* @ E). Let D; andDj, be the restrictions
of Dy, to LY ®*(X, L* ® E) and LY °*(X, L’f ® E), respectively.

Proposition 4.3. There exist€' > 0 such that fork € N, Ap—k-Top>
—ConlLy(X,LF®E).

Proof. By applying Lichnerowicz formula (2.10) fore C°(X, L* ® E),
we obtain as in the proof of Corollary 2.4, that there ex(Sts> 0 such
that((Ar — k- Top)s,s) > —C|s|*>. By Lemma 4.2, this is valid for any
s € Dom(Ag — k-7 op). 0
In the same vein, we can generalize Theorem 2.5.

Theorem 4.4. There existsC > 0 such that fork € N and anys €
Dom(Dy,) with vanishing degree zero component,

(4.1) 1Ds||* = (2kx = C) ||s]*
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As an immediate application of the estimate (4.1) for the Dirac operator
and Remark 2.3, we get the following asymptotic vanishing theorem which
is the main resultin [12, Theorem 2.6].

Corollary 4.5. Ker D;. = {0} for large enoughk.
We have also an analogue of Theorem 1.1.

Corollary 4.6. There exist€' > 0 such that fork € N, the spectrum of),%
is contained in the seit0} U (2kA — C, +00).

Proof. The proof of Theorem 1.1 does not use the fact that the spectrum is
discrete. Therefore it applies in this context, too. O

We study now the spectrum of thié-invariant Schisdinger operatort;, —
k-Top.

Corollary 4.7. The spectrum of the Sdbttinger operatorA’ = A, — k -
Topis contained in the uniofra, a) U (2kA — b, +00) , wherea andb are
positive constants independentkoffor large enoughk, the I'-dimension
dy, of the spectral spacE((—a, a), ANk#) corresponding td—a, a) satisfies
dj, = (ch(L* @ E) Td(X),[X]). In particular dj, ~ k™ (rank E) vol,,(X).

Proof. By repeating the proof of Corollary 1.2, we get estimates (3.2) and
(3.11) for smooth elements with compact support. Lemma 4.2 yields then

(4.2a) ‘(ANZES, s)| < allsol|®, se€ Dom(ANk#) N Pk(Kerf),j) ,
(4.2b) (Afs,s) > (2kx —b)|s||>, s € Dom(A¥)N (Ker Df)*.

Recall thatP,, represents the projectioi) * (X, L* ® E) — LI°(X,
LF & E). Since the curvatures of all our bundles @keinvariant, estimate
(3.4) extends to the covering context with the same proof. In particular,
Py, : Ker D7 — Py(Ker Dy7) is bijective, Py, I, b+ and its inverse are

bounded. S&P; (Ker D;') is closed. By Proposition 4.1,

(4.3) dimy Ker D;f = dimp Py(Ker D).

Asin (3.12), we have

(4.4) Dom(A#) = Py(Ker Df) @ (Ker D )* N Dom(AF).

We use now a suitable form of the minimax principle from [20, Lemma 2.4]:
Nr(u, ANf) = sup{dimp V' : V C Dom A~k#

(4.5) (AL 0) <ullfI? v fevy
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whereV runs over the"—modules ofL, (X, L* @ E).
By (4.1), (4.2a) and (4.5), we get

(4.6) Nr(a, A¥) > dimp Ker D} .
Let us consider < 2kA — b. We prove that
4.7) Nr(v, A~k#) < dimp Ker 5,‘: .

LetV C Dom(Af) be an arbitrary"—module with( A u, u) < vl|ul/%.
If dimp V' > dimp Ker f),j, by Proposition 4.1 and (4.4), there exiBts
v € V N (Ker D)+, which in view of (4.2b) is a contradiction. Therefore
dimp V < dimp Ker D}f. By (4.5), we get (4.7).

By (4.6) and (4.7), we know that the functiav,(v, A7*) is constant
in the intervalv € [a, 2k — b) and equal talimp Ker 5,‘;. Enlarging a
bit a if necessary, we see that the spectrum&j‘f is indeed contained in
(—a,a) U (2kXA — b, +00), and theI"'—dimensiond;, of the spectral space
E((—a,a),ﬁk#) equalsdimp Ker 5:

By Corollary 4.5dim Ker D;" = indexp D;. Moreover, Atiyah'sL,
index theorem [1, Theorem 3.8] shows thadex D} = index Dj .

By (3.14), the proof is achieved. O
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