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K-THEORY ASSOCIATED TO VERTEX OPERATOR
ALGEBRAS

Chongying Dong, Kefeng Liu, Xiaonan Ma, and Jian Zhou

Abstract. We introduce two K-theories, one for vector bundles whose fibers are
modules of vertex operator algebras, another for vector bundles whose fibers are
modules of associative algebras. We verify the cohomological properties of these
K-theories, and construct a natural homomorphism from the VOA K-theory to
the associative algebra K-theory.

1. Introduction

Since its introduction by Grothendieck, Atiyah and Hirzebruch, K-theory
has found many applications in algebraic geometry, topology and differential
geometry. K-theories in different settings lead to the Grothendieck-Hirzebruch-
Riemann-Roch theorem and the Atiyah-Singer index theory. Originally such
theory was developed starting from vector bundles. Note that one can regard
vector spaces, which are fibers of vector bundles, simply as C-modules. It is
natural to consider bundles of modules over other algebras.

The theory of vertex operator algebras has been very much developed in
the last eighteen years. Playing important roles in the study of elliptic genus
and Witten genus, the highest weight representations of Heisenberg and affine
Kac-Moody algebras provide important examples of vertex operator algebras.
In this note we introduce a K-theory for vector bundles of modules of vertex
operator algebras, and a K-theory for vector bundles of modules of associative
algebras. We verify the cohomology theory properties of these K-theories – the
exact sequences. We also give a natural homomorphism from the vertex operator
algebra K-group to the associative algebra K-group when the associative algebra
is the Zhu’s algebra of the vertex operator algebra.

We follow closely the construction of topological K-theory by Atiyah in [1] to
verify the cohomological properties of the two new K-groups. We need certain
deep property of vertex operator algebras, such as the existence of the nondegen-
erate symmetric bilinear form, to get exact sequences. Our original motivation
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for this work is to understand elliptic cohomology which only has homotopy-
theoretical construction. We plan to study the applications of such K-theories,
in particular their relationship to the elliptic genus and elliptic cohomology.

2. Vertex operator algebras and modules

We recall the definitions of vertex operator algebras and their modules (cf.
[2], [4], [9], [8],[15]) in this section. Rational vertex operator algebras and con-
tragredient modules are discussed. We will also introduce the category OV of
ordinary V -modules for the purpose of K-theory developed in this paper. The
Heisenberg vertex operator algebras and vertex operator algebras associated to
the highest weight representations for affine Kac-Moody algebras are reviewed.
They have played important roles in the study of elliptic genus and Witten genus
in the literature (cf.[14]).

2.1. Vertex operator algebras and modules. Let z, z0, z1, z2 be com-
muting formal variables. We shall use the formal power series δ(z) =

∑
n∈Z

zn

which is formally the expansion of the δ-function at z = 1. For the properties of
the δ-function see e.g. [9], [8] and [3].

A vertex operator algebra is a Z-graded vector space:

V =
⊕
n∈Z

Vn; for v ∈ Vn, n = wt v;(2.1)

such that dimVn <∞ for all n ∈ Z and Vn = 0 if n is sufficiently small; equipped
with a linear map

V → (EndV )[[z, z−1]](2.2)

v �→ Y (v, z) =
∑
n∈Z

vnz−n−1 (vn ∈ EndV )

and with two distinguished vectors 1 ∈ V0, ω ∈ V2 satisfying the following
conditions for u, v ∈ V :

unv = 0 for n sufficiently large;(2.3)

Y (1, z) = 1;(2.4)

Y (v, z)1 ∈ V [[z]] and lim
z→0

Y (v, z)1 = v;(2.5)

and there exists a nonnegative integer n depending on u, v such that

(z1 − z2)n[Y (u, z1), Y (v, z2)] = 0;(2.6)

[L(m), L(n)] = (m− n)L(m + n) +
1
12

(m3 −m)δm+n,0(rankV ),(2.7)

for m, n ∈ Z, and

L(0)v = nv = (wt v)v for v ∈ Vn (n ∈ Z),(2.8)
d

dz
Y (v, z) = [L(−1), Y (u, z)] = Y (L(−1)v, z)(2.9)
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where

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, z) =
∑
n∈Z

L(n)z−n−2.(2.10)

This completes the definition. We denote the vertex operator algebra just defined
by (V, Y,1, ω) (or briefly, by V ). The series Y (v, z) are called vertex operators.

Remark 2.1. Any commutative associative algebra V over C is a vertex operator
algebra with 1 = 1, ω = 0 and Y (u, z)v = uv for u, v ∈ V. In particular, C itself
is a vertex operator algebra.

An automorphism g of the vertex operator algebra V is a linear automor-
phism of V preserving 1 and ω such that the actions of g and Y (v, z) on V are
compatible in the sense that gY (v, z)g−1 = Y (gv, z) for v ∈ V. Then gVn ⊂ Vn

for n ∈ Z. The group of all automorphisms of the vertex operator algebra V is
denoted by Aut(V ).

We now define admissible modules and ordinary modules for vertex operator
algebras. An admissible V -module

M =
∞⊕

n=0

M(n)

is a Z-graded vector space equipped with a linear map

V −→ (EndM)[[z, z−1]](2.11)

v �−→ YM (v, z) =
∑
n∈Z

vnz−n−1 (vn ∈ EndM)

which satisfies the following conditions; for u, v ∈ V, w ∈M , n ∈ Z,

unw = 0 for n� 0,
YM (1, z) = 1,

(2.12)

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1)YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2)YM (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2),

(2.13)

which is called the Jacobi identity. Here all binomial expressions (zi−zj)n are to
be expanded in nonnegative integral powers of second variable zj . This identity
is interpreted algebraically as follows: if this identity is applied to a single vector
of M then the coefficient of each monomial in z0, z1, z2 is a finite sum in M ;

umM(n) ⊂M(wtu−m− 1 + n)(2.14)

if u is homogeneous. We denote the admissible V -module by M = (M, YM ).
Homomorphisms and isomorphisms of admissible modules are defined as ex-

pected. It is easy to see that a grading shift of M does not change the module
structure. So we will assume that the top level M(0) of M is nonzero.
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Remark 2.2. Let (M, YM ) be an admissible V -module. Then L(−1)-derivation
property

YM (L(−1)v, z) =
d

dz
YM (v, z)(2.15)

holds. Moreover, the component operators of YM (ω, z) generate a copy of the
Virasoro algebra of central charge rankV (see [4]).

Definition 2.3. Let G be a subgroup of Aut(V ) and M = (M, YM ) an admissi-
ble V -module. We say that G acts on M as automorphisms if M is a G-module
and gYM (v, z)g−1 = YM (gv, z) on M for all g ∈ G, v ∈ V.

Remark 2.4. In general G does not act on an admissible module. Assume that
V =

∑∞
n=0 Vn with V0 = C1. Then V1 is a Lie algebra. Let N be the subgroup

of Aut(V ) generated by eu0 for u ∈ V1. The group N acts on any admissible
module.

An (ordinary) V -module is an admissible V -module M which carries a C-
grading induced by the spectrum of L(0). That is, we have

M =
⊕
λ∈C

Mλ

where Mλ = {w ∈ M |L(0)w = λw}. Moreover we require that dimMλ is finite
and for fixed λ, Mn+λ = 0 for all small enough integers n. Let P (M) = {λ ∈
C|Mλ �= 0}. An element λ ∈ P (M) is called a weight of M.

Definition 2.5. A vertex operator algebra V is called rational if any admissible
V -module is a direct sum of irreducible admissible V -modules.

It is proved in [5, Theorem 8.1] (also see [15]) that if V is a rational ver-
tex operator algebra then every irreducible admissible V -module is an ordinary
V -module and V has only finitely many irreducible admissible modules up to
isomorphism.

Definition 2.6. For each λ ∈ C we set D(λ) = {λ + n|0 ≤ n ∈ Z}. We define
a category OV of ordinary V -modules such that for each M ∈ OV there are
finitely many complex numbers λ1, ..., λs such that P (M) ⊂ ∪s

i=1D(λi).

Note that if M is an irreducible V -module then there exists λ ∈ C such that
M =

⊕
n≥0 Mλ+n. Thus any irreducible V -module lies in the category OV .

The definition of category OV is very similar to the category O in the rep-
resentation theory for Kac-Moody algebras (cf. [12]). The purpose for such
definition will be clear from the discussion in the next section.

Remark 2.7. (1) If V is rational then the category OV is exactly the category
of ordinary V -modules.

(2) If U and V are two vertex operator algebras, there is a functor from
OU ×OV → OU⊗V such that (M, N) is mapped to M ⊗N.
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Next we recall the notion of contragredient module from [8]. Let M =⊕
λ∈C

Mλ be a V -module and M ′ =
⊕

λ∈C
M∗

λ the graded dual. We denote
the natural pairing on M ′ × M by (w′, w) for w′ ∈ M ′ and w ∈ M. Then
(M ′, Y ) is also a V -module such that

(Y (v, z)w′, w) = (w′, Y (ezL(1)(−z−2)L(0)v, z−1)w)(2.16)

for v ∈ V, w′ ∈ M ′ and w ∈ W (see [8, Theorem 5.2.1]). Moreover, M ′ is
irreducible if and only if M is irreducible.

Let W be a V -module. A bilinear form on W is called invariant if

(Y (v, z)w1, w2) = (w1, Y (ezL(1)(−z−2)L(0)v, z−1)w2)

for wi ∈W and v ∈ V.

Lemma 2.8. For any V -module M, M ⊕M ′ has a natural nondegenerate sym-
metric invariant bilinear form defined by

(u + u′, w + w′) = (u, w′) + (w, u′)

for any u, w ∈M and u′, w′ ∈M ′. In particular, any V -module can be embedded
into a module with a nondegenerate symmetric invariant bilinear form.

2.2. Examples. In order to discuss examples of vertex operator algebra
bundles in the next few sections we recall some well-known vertex operator
algebras.

(a) Heisenberg vertex operator algebra M(1) of dimension d (cf. [9]). Let h be
complex vector space of dimension d with a nondegenerate symmetric bilinear
from (, ). Viewing h as an abelian Lie algebra, we consider the corresponding
affine Lie algebra ĥ = h⊗ C[t, t−1]⊕ CK with bracket

[x⊗ tm, y ⊗ tn] = δm+n,0(x, y)K,

[K, ĥ] = 0,

where x(m) = x⊗ tm for x ∈ h and m ∈ Z. Form the induced module

M(1) = U(ĥ)⊗U(h⊗C[t]⊕CK) C,

where h ⊗ C[t] acts trivially on C and K acts as 1. Let {α1, ..., αd} be an
orthonormal basis of h. Then M(1) is isomorphic linearly to the symmetric
algebra

S(h⊗ t−1C[t−1]) = C[αi(−n)|i = 1, ..., d, n > 0].

Set 1 = 1 and ω = 1
2

∑d
i=1 αi(−1)2. Then M(1) is the Heisenberg vertex operator

algebra with vacuum 1 and Virasoro element ω (cf. [9, Chapter 8]). Let O(h)
be the orthogonal group of h. The automorphism group of M(1) is exactly O(h)
(cf. [6, Proposition 2.3]).

(b) Vertex operator algebra associated to the highest weight modules for affine
Kac-Moody algebras (cf. [3], [10], [13]). Let g = h⊕⊕α∈∆gα be a finite dimen-
sional simple Lie algebra with a Cartan subalgebra h and the corresponding root
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system ∆. We fix the positive roots ∆+ and assume that θ is the longest posi-
tive root. Denote P+ the set of dominant weights. Let (·, ·) be a nondegenerate
symmetric invariant bilinear form on g such that (θ, θ) = 2.

The affine Kac-Moody algebra is

ĝ = g⊗ C[t, t−1]⊕ CK,

with bracket

[a(m), b(n)] = [a, b](m + n) + mδm+n,0(a, b)K,

[K, ĝ] = 0,

where a(m) = a⊗ tm for a ∈ g and m ∈ Z. If M is an irreducible ĝ-module then
the center K acts as a constant k which is called the level of the module.

Let M be a g-module and k a complex number. The generalized Verma
modules of level k associated to M is

M̂k = U(ĝ)⊗U(g⊗C[t]⊕CK) M

where g⊗ tC[t] ·M = 0, g⊗ t0 acts on M as g and K = k on M.

Let L(λ) be the highest weight module for g with highest weight λ ∈ h.

Set V (k, λ) = L̂(λ)k and denote L(k, λ) the unique irreducible quotient. Then
L(k, λ) is integrable or unitary if and only if k is a nonnegative integer, λ ∈ P+,
and (λ, θ) ≤ k.

Denote the dual Coxeter number of g by h∨. Then h∨ can be defined by∑
α∈∆

(α,α)
2 = dh∨ where d is the rank of g. Then we have

(a) Any ĝ-quotient module of V (k, 0) is a vertex operator algebra if k+h∨ �= 0.

(b)L(k, 0) is rational if and only if k is a nonnegative integer. In this case,
the irreducible L(k, 0)-modules are exactly the level k unitary highest weight
modules. In particular, if g is the Lie algebra of type Dd, then g is the affine Lie
algebra D

(1)
d which has exactly 4 level 1 unitary highest weight modules. These

modules are used in the construction of elliptic genera.
The automorphism groups of V (k, 0) and L(k, 0) are exactly the automor-

phism group of the Lie algebra g (cf. [6]).

3. Vertex operator algebras bundles

In this section we use the category OV to define vertex operator algebra
bundles over a compact space. This generalizes the notion of complex vector
bundles. The main result in this section is that for any V -bundle E there is
another V -bundle F such that E⊕F is a trivial bundle. As in the classical case,
this result is crucial in defining VOA K-groups and studying the cohomology
properties of the K-groups. We also prove that a V -bundle is essentially a vector
bundle if V is rational.
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3.1. Definition of a VOA bundles and some consequences. We now
fix a vertex operator algebra V . Let X be a compact topological space.

Definition 3.1. Let M ∈ OV . A V -bundle E over X with fiber M is a direct
sum of vector bundles E = ⊕λ∈CEλ over X such that all transition functions
are V -module isomorphisms. That is, there exists an open covering {Xα}α∈I

of X and a family of continuous isomorphism of vector bundles Hα = (Hλ
α :

Eλ|Xα
→ Xα ×Mλ)λ∈C with M = ⊕λ∈CMλ a V -module such that if we denote

by (Hλ
α ◦ (Hλ

β )−1)λ∈C = (gλ
αβ)λ∈C, then gαβ(x) = (gλ

αβ(x))λ∈C : M → M is a
V -module isomorphism for any x ∈ Xα ∩Xβ .

Remark 3.2. (1) If V = C as in Remarks 2.1, the V -bundle defined here is
exactly the classical complex vector bundle over X.

(2) Let U and V be two vertex operator algebras and E, F be the U and
V -bundles over X respectively. Then E ⊗ F is a U ⊗ V -bundle over X (see
Remark 2.7). In particular, If U = C then E ⊗ F again is a V -bundle over X.

(3) One could use the full module category of V -modules to define a V -
bundle but the property (2) in this remark would not be true. But this property
is fundamental if one wants to construct a ring instead of a group from vertex
operator algebra bundles (see Corollary 4.3).

(4) One can give a different definition of V -bundle using a subgroup G of
Aut(V ). In this case, we denote OV,G the subcategory of OV consisting of V -
modules M such that G acts on M as automorphisms. The transition functions
gα,β(x) now are required to be in G. Most results in this paper hold for this
definition of V -bundles.

(5) There was a notion of vertex operator algebra bundle given in [7]. But
our definition is different from theirs.

Sub-bundles and quotient bundles, direct sum of bundles are defined as ex-
pected. Let E, F be two V -bundles on X, a map f : E → F is called a V -bundle
homomorphism if there exist a family of continuous homomorphisms of vector
bundles fλ : Eλ → Fλ such that f = (fλ)λ∈C : E → F is a V -module homo-
morphism for any x ∈ X. We call a V -bundle homomorphism f : E → F an
epimorphism, monomorphism and isomorphism of V -bundles if fλ is so for any
λ ∈ C.

We say a V -bundle E is trivial if there exists a V -bundle isomorphism ϕ :
E → X ×M , here X ×M is the natural V -bundle on X with the V -module M
as fibers.

We now discuss some well known examples of vertex operator algebra bundles
which have been used in the literature to study elliptic genus and Witten genus.

(a) If X is an oriented Riemannian manifold, then the transition functions of
the complexified tangent bundle TCX lie in the special orthogonal group SO(d)
where d is the dimension of X. Then⊗n>0Sqn(TCX) is a M(1)SO(d)-bundle. Here
and below, St(E) = 1+ t E + t2Sym2(E)+ · · · , Λt(E) = 1+ t E + t2Λ2(E)+ · · ·
are respectively the symmetric and wedge operation of a complex vector bundle
E. M(1) is the Heisenberg vertex operator algebra of dimension d with SO(d)
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as a subgroup of Aut(M(1)) and M(1)SO(d) is the SO(d)-invariants of M(1)
which is a vertex operator subalgebra of M(1). Similarly, ⊗n≥0Λqn+1/2(TCX) is
an L(1, 0)SO(d)-bundle where L(1, 0) is the level one module for the affine algebra
D

(1)
d/2. Here we assume that d is even in this case.

(b) If X is further assumed to be a spin manifold, we denote the spin bundle
by S. Then S ⊗⊗n>0Λqn(TCX) is also a L(1, 0)SO(d)-bundle.

Let E be a V -bundle over X. Set E′ = ⊕λ∈C(Eλ)∗. Then E′ is also a V -bundle
in an obvious way.

Lemma 3.3. Let E be a V -bundle on X. Then
(1) E ⊕ E′ is a V -bundle with a nondegenerate symmetric invariant bilinear

form induced from the natural bilinear from on M ⊕M ′. In particular, any V -
bundle on X can be embedded into a bundle with a nondegenerate symmetric
invariant bilinear form.

(2) Let {g∗αβ} be the transition functions of E′. Then we have

(g∗αβ(x)s∗, gαβ(x)s) = (s∗, s)

for any α, β ∈ I, x ∈ Xα ∩Xβ and s ∈M, s∗ ∈M ′.

Proof : (1) follows from Lemma 2.8 and (2) is clear. �

Proposition 3.4. For any V -bundle E there exists another V -bundle F such
that E ⊕ F is a trivial V -bundle.

Proof : By Lemma 3.3 we can assume that there is a nondegenerate invariant
symmetric bilinear form on E.

Certainly we can take a finite covering {Xα}α∈I in the Definition 3.1. Write
Hα = (π, hα) for α ∈ I where π : E → X is the natural projection map and
hα(e) ∈ M . Let {pα : X → R+}α∈I be a family of continuous functions on
X such that {p2

α}α∈I is a partition of unity on X associated to the covering
{Xα}α∈I . Define a V -bundle homomorphism

σ : E → X ×M⊕n

by σ(e) = (x, (pα(x)hα(e))α∈I) where x = π(e) and n is the cardinality of I.
Since pα(x) > 0 for some α ∈ I, we see that σ is a monomorphism. So we can
identify E with its image σ(E) in the trivial V -bundle X ×M⊕n.

By extending the bilinear form from M to M⊕n componentwisely, we have a
nondegenerate invariant symmetric bilinear form on X ×M⊕n. By Lemma 3.3,
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the transition functions preserve the bilinear form on M , thus for any e, f ∈ Ex

(σ(e), σ(f))x =
∑
α∈I

(
pα(x)hα(e), pα(x)hα(f)

)

=
∑
α∈I

(
gαβ(x)hβ(e), gαβ(x)hβ(f)

)
p2

α(x)

= (hβ(e), hβ(f))
∑
α∈I

p2
α(x)

= (e, f)x,

where β ∈ I is fixed such that x ∈ Xβ . Thus the homomorphism σ preserves the
bilinear form and the restriction of the bilinear form to σ(E) is nondegenerate.
Set F = σ(E)⊥. Then F is still a V -bundle on X and X ×M⊕n = σ(E)⊕ F ∼=
E ⊕ F, as desired. �

3.2. The structure of V -bundles for rational VOA V . Next we discuss
a special case when V is a rational vertex operator algebra. Then V has only
finitely many irreducible modules up to isomorphisms, say {M1, ..., Mp}. Any
V -module W is isomorphic to ⊕p

i=1niM
i. The nonnegative integer ni is called the

index of M i in W and is denoted by [W : M i]. Given another V -module M we
define the Grassmannian variety G(W, M) of W to be the set of V -submodules of
W isomorphic to M. It is clear that if [M : M i] > [W : M i] for some i, G(W, M)
is an empty set. So we restrict ourselves to the case when M is a submodule of
W. Let W =

⊕p
i=1 kiM

i with ki ≤ ni. Then

G(W, M) ∼= G(n1, k1)× · · · ×G(np, kp)

as varieties where G(n, k) is the classical Grassmann variety. That is G(n, k) is
the set of k-dimensional subspaces of an n-dimensional complex vector space.
Clearly, G(W, M) is compact as each G(ni, ki) is compact.

Note that over G(W, M) there is a canonical V -bundle E(W, M) whose total
space consists of (H, x) where H is a V -submodule of W isomorphic to M and
x ∈ H.

Proposition 3.5. Let E be a V -bundle over X whose fiber is isomorphic to a
V -module M. Then there is a bundle homomorphism f from E to E(M⊕n, M)
such that E is isomorphic to f∗E(M⊕n, M).

Proof : Recall that {Xα|α ∈ I} is an open covering of X and {p2
α}α∈I is a par-

tition of the unity with pα being supported by Xα. Also recall the isomorphism

Hα : E|Xα → Xα ×M

which sends e to (π(e), hα(e)).
In order to construct the bundle homomorphism f it is enough to define a V -

module monomorphism f̄ : Ex →M⊕n. Let e ∈ Ex. As in the classical case, we
set f̄(e) = (pα(e)hα(e))α∈I ∈M⊕n. It is clear f̄ is a V -module monomorphism.
As usual, f(e) = (f̄(Ex), f̄(e)). Then f is a bundle homomorphism from E to
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E(M⊕n, M) such that E is isomorphic to f∗E(M⊕n, M). �

The result in Proposition 3.5 is not surprising. Such a result is well known
for ordinary vector bundles.

Next we show that if V is rational, any V -bundle is determined by certain
vector bundles. Let E be a V -bundle with fiber M. Let M = ⊕p

i=1Wi⊗M i where
as before {M1, ..., Mp} is a complete list of inequivalent irreducible V -modules
and Wi is the space of multiplicity of M i in M. Then each gαβ defines a map
hαβ : Xα ∩ Xβ →

⊕p
i=1 End(Wi). For each i we define a vector bundle V (E)i

over X with fiber Wi and transition functions {hαβ |α, β ∈ I}. For any V -module
N ∈ OV we denote the trivial V -bundle on X by N . That is, N = X×N. From
Remark 3.2, we have a V -bundle V (E)i ⊗M i. So we have proved the following
proposition.

Proposition 3.6. If V is rational then for any V -bundle E over X there are
vector bundles V (E)i for i = 1, ..., p such that E is isomorphic to ⊕p

i=1V (E)i ⊗
M i.

4. Definition of VOA K-group

In this section we define a K-group associated to V -bundles for a vertex
operator algebra V . We follow closely the set-up of [1] with certain necessary
extensions.

4.1. Definition of KV (X). Let X be a compact space, we denote by VV (X)
the set of isomorphic classes of V -bundles over X. VV (X) is an abelian semigroup
with addition given by the direct sum. We also denote by KV (X) the abelian
group generated by the equivalence classes of V -bundle [E]. Then the elements
of KV (X) are of the form [E]− [F ].

Remark 4.1. If V = C, the KV (X) is the classical K(X) as defined in [1].

First from Remark 3.2 we have the following:

Lemma 4.2. If U, V are two vertex operator algebras then the tensor product
of the bundles induces a natural group homomorphism KU (X) ⊗Z KV (X) →
KU⊗V (X). In particular, if U = C, then KV (X) is a natural K(X)-module (cf.
Remark 4.1).

The following corollary is an immediate consequence of Lemma 4.2.

Corollary 4.3. For any vertex operator algebra V ,

⊕n≥0KV ⊗n(X)

is a commutative algebra over K(X) where V ⊗0 is understood to be C.

The following proposition is crucial to prove the cohomological properties of
KV (X). We follow the argument of [11, Proposition 1.7] which avoids the use
of the extension of the section of AutV (E) from a compact subset to a open
neighborhood, as AutV (E) may be infinite dimensional.
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Lemma 4.4. Let Y be a compact Hausdorff space, ft : Y → X (0 ≤ t ≤ 1) a
homotopy and E a V -bundle over X. Then

f∗
0 E � f∗

1 E.(4.1)

Proof : Denote by I the unit interval and let f : Y × I → X be the homotopy,
so that f(y, t) = ft(y), and let π : Y × I → Y denote the projection onto the
first factor.

At first, we can choose a finite open covering {Yxi
}ni=1 of Y so that f∗E is

trivial over each Yxi
× I. In fact, for each x ∈ Y we can find open neighborhood

Ux,1, · · · , Ux,k in Y and a partition 0 = t0 < t1 · · · < tk = 1 of [0, 1] such that
the bundle is trivial over each Ux,i × [ti−1, ti]. Set Yx = Ux,1 ∩ · · · ∩ Ux,k. Now
we claim that f∗E is trivial over Yx × I. To see this, let hi : f∗E|Yx×[ti−1,ti] →
Yx × [ti−1, ti] × M be the trivializing isomorphisms. We take the V -bundle
isomorphism h′

2(y, t) = (h0 ◦h−1
1 )(y, t1)◦h1(y, t) : f∗E|Yx×[t1,t2] → Yx× [t1, t2]×

M , then h1 = h′
2 on Yx × {t1}, thus they define a trivialization on Yx × [t0, t2],

and in this way, we know that f∗E is trivial over Yx× I. Now, as Y is compact,
there exist {Yxi}ni=1 which cover Y .

Let pi be a partition of unity of Y with support of pi contained in Yxi
. For

i ≥ 0, set qj =
∑j

i=1 pi. In particular q0 = 0 and qn = 1. Let Wi be the
graph of qi, the subspace of Y × I consisting of points of the form (x, qi(x)),
and let πi : Ei → Wi be the restriction of the bundle E over Wi. Since E is
trivial on Yxi

× I, the natural projection homeomorphism Wi → Wi−1 lifts to
a homeomorphism gi : Ei → Ei−1 which is identity outside πi(Yxi) and which
takes each fiber of Ei isomorphically onto the corresponding fiber of Ei−1. The
composition g = g1 ◦ g2 · · · ◦ gn is then an isomorphism from the restriction of E
over Y × {1} to the restriction on Y × {0}. �

Lemma 4.5. (1) Any element of KV (X) can be represented by an element of
the form [E]− [M ], where E is a V -bundle and M is a V -module.

(2) If [E] = [F ] in KV (X) then there is a V -module M such that E ⊕M ∼=
F ⊕M.

Proof : As we have mentioned already, every element of KV (X) is of the form
[H] − [G]. By Proposition 3.4, there exists a V -bundle F and a V -module M
such that H ⊕ F ∼= M. Thus we have

[G]− [H] = [G + F ]− [H + F ] = [G + F ]− [M ].

This proves (1).
If [E] = [F ], then there exists a V -bundle G such that E ⊕ G ∼= F ⊕ G. Let

H be a V -bundle such that G ⊕H ∼= M for some V -module M. Then we have
E ⊕M ∼= F ⊕M. This proves (2). �

Clearly, KV (pt) is just the the Grothendieck group of V -modules. From
Proposition 3.6 we have the following proposition.
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Proposition 4.6. If V is rational, then

KV (X) = K(X)⊗Z KV (pt).(4.2)

Remark 4.7. If V is rational and {M1, ..., Mp} is the set of irreducible inequiva-
lent V -modules up to isomorphisms, then KV (pt) is isomorphic to the group Zp

with generators [M1], ..., [Mp]. In particular, for V -modules M and N, [M ] = [N ]
if and only if M ∼= N as V -modules.

4.2. Definition of KV (X, Y ). We next define KV (X, Y ) for a compact pair
(X, Y ). Let C denote the category of compact spaces, C+ the category of compact
spaces with distinguished basepoint, and C2 the category of compact pairs. We
define a functor C2 → C+, by sending a pair (X, Y ) to X/Y with base point
Y/Y (if Y = ∅, the empty set, X/Y is understood to be the disjoint union of X
with a point.). If X ∈ C, we denote (X, ∅) ∈ C2 by X+.

If X is in C+, we define K̃V (X) to be the kernel of the map i∗ : KV (X) →
KV (x0) where i : x0 → X is the inclusion of the basepoint. If c : X → x0 is the
collapsing map then c∗ induces a splitting KV (X) = K̃V (X) ⊕ KV (x0). This
splitting is clearly natural for maps in C+. Thus K̃V is a functor on C+. Also, it is
clear that KV (X) � K̃V (X+). We define KV (X, Y ) by KV (X, Y ) = K̃V (X/Y ).
In particular K(X, ∅) � KV (X). Since K̃V is a functor on C+ it follows that
KV (X, Y ) is a contravariant functor of (X, Y ) in C2.

We now introduce the smash product operator in C+, if X, Y ∈ C+, we put
X ∧ Y = X × Y/X ∨ Y where X ∨ Y = X × {y0} ∪ {x0} × Y , x0, y0 being the
base-points of X, Y respectively. For any three spaces X, Y, Z ∈ C+, we have a
natural homeomorphism X ∧ (Y ∧Z) � (X ∧ Y )∧Z and we shall identify these
spaces by the homeomorphism.

Let I denote the unit interval [0, 1] and let ∂I = {0}∪{1} be its boundary. We
take I/∂I ∈ C+ as our standard model of the circle S1. For X ∈ C+ the space
S1 ∧ X ∈ C+ is called the reduced suspension of X, and often written as SX.
The n-th iterated suspension SS · · ·SX (n times) is naturally homeomorphic to
Sn ∧X and is written briefly as SnX.

Definition 4.8. For n ≤ 0,

K̃−n
V (X) = K̃V (SnX) for X ∈ C+,(4.3)

K−n
V (X, Y ) = K̃−n

V (X/Y ) = K̃V (Sn(X/Y )) for (X, Y ) ∈ C2,
K−n

V (X) = K−n
V (X, ∅) = K̃V (Sn(X+)) for X ∈ C.

By proceeding further, we define the cone on X by

CX = I ×X/{0} ×X.

Thus C is a functor C : C → C+. We identify X with the subspace {1} ×X of
CX. The space CX/X = I ×X/∂I ×X is called the unreduced suspension of
X.
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5. Cohomological properties of K

In this section, we assume that X is a finite CW-complex and Y ⊂ X
is a CW sub-complex. This condition allows us to extend a trivialization of
V -bundles on Y to a neighborhood of Y which is crucial in the proof of Lemma
5.1, Theorem 5.3. We will establish the basic cohomological properties of KV

for these compact pairs (X, Y ).

Lemma 5.1. We have an exact sequence

KV (X, Y )
j∗
→ KV (X) i∗→ KV (Y ),(5.1)

where i : Y → X and j : (X, ∅)→ (X, Y ) are the inclusions.

Proof : The composition i∗ ◦ j∗ is induced by the composition j ◦ i : (Y, ∅) →
(X, Y ) and so factor through the zero group. Thus i∗ ◦ j∗ = 0. Suppose now
that ξ ∈ Keri∗. We may represent ξ in the form [E]− [M ] where E is a V -bundle
over X and M is a V -module. Since i∗ξ = 0, it follows that [E]|Y = [M ] in
KV (Y ). This implies that there exists a V -module N such that we have

(E ⊕N)|Y = M ⊕N.(5.2)

Now as Y is a CW sub-complex of X, there exists an open neighborhood U
of Y in X such that Y is a strong deformation retract of U , i.e. there exists
ft : U → U (t ∈ [0, 1]) such that f1 = IdU , f0|Y = IdY and f0(U) = Y . By
Lemma 4.4, (5.2), (E ⊕N)|U is trivial on U . This defines a bundle E ⊕N/α on
X/Y and so an element

τ = [E ⊕N/α]− [M ⊕N ] ∈ K̃V (X/Y ) = KV (X, Y ).(5.3)

Then

j∗(τ) = [E ⊕N/α]− [M ⊕N ] = [E]− [M ] = ξ.(5.4)

Thus Keri∗ = Imj∗ and the exactness is established. �
Corollary 5.2. If (X, Y ) ∈ C2 and Y ∈ C+, then the following sequence is
exact,

KV (X, Y )→ K̃V (X)→ K̃V (Y ).(5.5)

Proof : This is immediate from Lemma 5.1 and the natural isomorphisms

KV (X) � K̃V (X)⊕KV (y0),(5.6)

KV (Y ) � K̃V (Y )⊕KV (y0).

�
Our main proposition of this section is following,

Theorem 5.3. There is a natural exact sequence (infinite to the left )

(5.7) · · · → K−2
V (Y ) δ→ K−1

V (X, Y )
j∗
→ K−1

V (X) i∗→ K−1
V (Y )

δ→ K0
V (X, Y )

j∗
→ K0

V (X) i∗→ K0
V (Y ).
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Proof : First we observe that it is sufficient to show that

K−1
V (X, Y )

j∗
→ K−1

V (X) i∗→ K−1
V (Y ) δ→ K̃0

V (X, Y )
j∗
→ K̃0

V (X) i∗→ K̃0
V (Y )(5.8)

is exact. In fact, if this has been established then, by replacing (X, Y ) by
(SnX, SnY ) for n = 1, 2, · · · , we obtain an infinite sequence continuing (5.8).
Then by replacing (X, Y ) by (X+, Y +) where (X, Y ) is any pair in C2 we get the
infinite sequence of the enunciation. Now, Corollary 5.2 gives the exactness of the
last three terms of (5.8). To get exactness at the remaining places we shall apply
Corollary 5.2 in turn to the pairs (X ∪CY, X) and ((X ∪CY ) ∪CX, X ∪CY ).
First, by taking the pair (X ∪ CY, X), we get an exact sequence

KV (X ∪ CY, X)
τ∗
1→ K̃V (X ∪ CY )

τ∗
2→ K̃V (X),(5.9)

where τ1, τ2 are the natural inclusions. Let U be the neighborhood of Y in X as in
Lemma 5.1. Since CY is contractible, by Lemma 4.4, any V -bundle E on X∪CY

is trivial on U ∪ CY , thus p∗ : K̃V (X/Y ) → K̃V (X ∪ CY ) is an isomorphism
where p : X ∪ CY → X ∪ CY/CY = X/Y is the collapsing map. Also the
composition τ∗

2 ◦ p∗ coincides with j∗. Let θ : KV (X ∪ CY, X) → K−1
V (Y ) be

the isomorphism introduced earlier. Then by defining δ : K−1
V (Y )→ KV (X, Y )

by δ = τ∗
1 ◦ θ−1, we obtain the exact sequence

K−1
V (Y ) δ→ KV (X, Y )

j∗
→ K̃V (X),(5.10)

which is the middle part of (5.8).
Finally, we apply Corollary 5.2 to the pair (X ∪C1Y ∪C2X, X ∪C1Y ), where

we have labeled the cones C1 and C2 in order to distinguish between them. Thus
we obtain an exact sequence

KV (X ∪ C1Y ∪ C2X, X ∪ C1Y )→ K̃V (X ∪ C1Y ∪ C2X)→ K̃V (X ∪ C1Y ).
(5.11)

It will be sufficient to show that this sequence is isomorphic to the sequence
obtained from the first three terms of (5.8). In view of the definition of δ, it will
be sufficient to show that the following diagram commutes up to sign.

KV (X ∪ C1Y ∪ C2X, X ∪ C1Y ) = K̃V (C2X/X) =K−1
V (X)(5.12)

↓
K̃V (X ∪ C1Y ∪ C2X) = K̃V (C1Y/Y ) =

i∗↓
K−1

V (Y ) .

As in [1, p74], we will get (5.12) if we can prove that the following diagram
commutes up to sign,

KV (C1Y ∪ C2Y )←KV (C1Y/Y )← K̃V (SY )(5.13)

↖KV (C2Y/Y )←
‖

K̃V (SY ) .

This follow from the following lemma 5.4. �
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Lemma 5.4. Let T : S1 → S1 be defined by T (t) = 1− t, t ∈ I = [0, 1]. Recall
that S1 = I/∂I. Let T ∧ 1 : SY → SY be the map induced by T on S1 and the
identity on Y for Y ∈ C+. Then (T ∧ 1)∗a = −a for a ∈ K̃V (SY ).

Proof : By the construction and Lemma 4.5, for any a ∈ K̃V (SY ), there exist
a V -module M and a V -bundle E on SY such that a = [E] − [M ]. We define
E first. As SY = C1Y ∪Y C2Y , and CiY (i = 1, 2) is contractible, we know
that E|CiY are trivial, thus there are maps fi : E|CiY → CiY ×M of V -module
isomorphism. The composite f = f2 ◦ f−1

1 = (fλ)λ∈C : Y → AutV (M) is well
defined. Now, the operation (T ∧ 1)∗ on [E] corresponds to the operation of
replacing the map y → f(y) by y → f(y)−1 = ((fλ)−1)λ∈C. We denote the
corresponding bundle by E1 ∈ KV (SY ). We need to prove that in KV (SY ),

[E]⊕ [E1] = [M ]⊕ [M ].(5.14)

For 0 ≤ t ≤ π/2, y ∈ Y , set

Ft(y) =
(

f(y) 0
0 1

) (
cos(t) sin(t)
− sin(t) cos(t)

) (
1 0
0 f(y)−1

) (
cos(t) − sin(t)
sin(t) cos(t)

)
.

(5.15)

Then

Fπ/2(y) =
(

1 0
0 1

)
, F0(y) =

(
f(y) 0

0 f(y)−1

)
.(5.16)

This means that Ft is a homotopy from
(

1 0
0 1

)
to

(
f(y) 0

0 f(y)−1

)
. Thus we

get (5.14) from Lemma 3.3. �
Now, by Lemma 4.4 and Theorem 5.3, we get

Corollary 5.5. If Y is a retract of X, then for all n ≤ 0, the sequence

K−n
V (X, Y )→ K−n

V (X)→ K−n
V (Y )

is a split short exact sequence, and

K−n
V (X) � K−n

V (X, Y )⊕K−n
V (Y ).(5.17)

6. Associative algebra bundles

This section is motivated by the relation between a vertex operator algebra
V and its Zhu’s algebra A(V ). It turns out we can define associative algebra
bundles for a large class of associative algebras.

6.1. Definition of associative algebra bundles. We assume that A is an
associative algebra over C with an anti-involution σ. The setting and results in
Sections 2-5 hold in the present situation with suitable modifications.

Let M be an A-module and we denote the dual space of M by M ′ as before.
We also denote the natural pairing M ′ ×M → C by (m′, m) for m′ ∈ M ′ and
m ∈M. The following lemma is obvious.
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Lemma 6.1. M ′ is also a A-module such that (am′, m) = (m′, σ(a)m) for a ∈
A, m′ ∈M ′ and m ∈M.

As in Section 2 a form ( , ) on an A-module W is called invariant if (aw1, w2) =
(w1, σ(a)w2) for wi ∈W and a ∈ A.

Lemma 6.2. Lemma 2.8 holds for an A-module M.

We also need to define the category OA of A-modules. An A-module W is
in OA if there exist λ1, ..., λs ∈ C such that W =

⊕s
i=1

⊕
n≥0 Wλi+n is a direct

sum of finite dimensional A-modules and such that HomA(Wλ, Wµ) = 0 if µ �= λ.
Such definition of category OA is well justified by Remark 6.4, Theorems 6.7 (7)
and 6.8 below.

Definition 6.3. Let X be a compact space and W ∈ OA. An A-bundle E over
X with fiber W is a direct sum of vector bundles E = ⊕λ∈CEλ over X such
that all transition functions are A-module isomorphisms. That is, there exists
an open covering {Xα}α∈I of X and a family of continuous isomorphisms of
vector bundles Hα = (Hλ

α : Eλ|Xα
→ Xα ×Mλ)λ∈C with M = ⊕λ∈CMλ an

A-module such that if we denote by (Hλ
α ◦ (Hλ

β )−1)λ∈C = (gλ
αβ)λ∈C, then each

gλ
αβ(x) : Mλ → Mλ is an A-module isomorphism for any x ∈ Xα ∩Xβ , λ ∈ C.

In particular, each Eλ is an A-bundle.

The analogues of Remark 3.2 are as follows:

Remark 6.4. (1) If A = C, then σ is necessarily the identity map, the A-bundle
defined here is exactly the classical complex vector bundle over X.

(2) Let A and B be two associative algebras with anti-involutions σA and σB

respectively. Then A⊗CB is an associative algebra with anti-involution σA⊗σB .
Assume E, F are the A and B-bundles over X, then E ⊗ F is a A⊗C B-bundle
over X. In particular, If A = C then E ⊗ F again is a B-bundle over X.

We can also define subbundles, quotient bundles, direct sum of bundles. Var-
ious bundle homomorphisms are also defined as expected.

Let E be an A-bundle over X. Regarding E as a vector bundle over X, the
dual bundle E′ is also an A-bundle.

Lemma 3.3 and Proposition 3.4 hold with V replaced by A.
We also define the K-group KA(X) to be the abelian group generated by the

equivalence classes of A-bundles. Then Lemmas 4.2, 4.4, 4.5 and Corollary 4.3
hold with obvious changes. Proposition 4.6 is also true if A is semisimple (that
is, A is a direct sum of full matrix algebras) and with V replaced by A. That is
KA(X) = K(X)⊗Z KA(pt).

We can also define KA(X, Y ) and related objects as in Section 4 and the
cohomological properties in Section 5 also hold in the present setting.

6.2. Zhu’s algebra A(V ). We review the Zhu’s algebra A(V ) in this sub-
section following [15] and [5].
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Let V be a vertex operator algebra. For any homogeneous vectors a ∈ V , and
b ∈ V , we define

a ∗ b =
(

Resz
(1 + z)wta

z
Y (a, z)

)
b,

a ◦ b =
(

Resz
(1 + z)wta

z2
Y (a, z)

)
b,

and extend to V ×V bilinearly, here Resz denotes the coefficient of z−1. Denote
by O(V ) the linear span of a ◦ b (a, b ∈ V ) and set A(V ) = V/O(V ). We write
[a] for the image a + O(V ) of a ∈ V .

For homogeneous a ∈ V we set o(a) = awta−1 and extend linearly to all
a ∈ V. If M =

⊕
n≥0 M(n) is an admissible module then o(a)M(n) ⊂M(n) for

all a ∈ V and n ∈ Z. We now define the space of lowest weight vectors of M :

Ω(M) = {w ∈M |awta+mw = 0, a ∈ V, m ≥ 0}.
Remark 6.5. If M =

⊕
λ∈C

Mλ is a V -module then Ω(M) =
⊕

λ∈C
Ω(M)λ is

naturally graded and each homogeneous subspace Ω(M)λ = Ω(M)∩Mλ is finite
dimensional.

The following lemma is evident.

Lemma 6.6. If M and W are admissible V -modules and f : M → W is a
V -module homomorphism then f(Ω(M)) ⊂ Ω(W ). In particular, if f is an iso-
morphism then f(Ω(M)) = Ω(W ).

The following theorem is due to [15, §2] (also see [5]).

Theorem 6.7. (1) The bilinear operation ∗ induces on A(V ) an associative
algebra structure. The vector [1] is the identity and [ω] is in the center of A(V ).

(2) The linear map
φ : a �→ eL(1)(−1)L(0)a

induces an anti-involution of A(V ).
(3) Let M =

⊕∞
n=0 M(n) be an admissible V -module with M(0) �= 0. Then

the linear map

o : V → End(Ω(M)), a �→ o(a)|Ω(M)

induces an algebra homomorphism from A(V ) to End(Ω(M)). Thus Ω(M) is a
left A(V )-module.

(4) The map M �→M(0) induces a bijection from the set of equivalence classes
of irreducible admissible V -modules to the set of equivalence classes of irreducible
A(V )-modules.

(5) If M =
⊕

λ∈C
Mλ is a V -module, then each Ω(M)λ is an finite-dimensional

A(V )-module.
(6) If V is rational then A(V ) is a finite dimensional semisimple algebra.

Moreover, M → Ω(M) gives an equivalence of the category of admissible V -
modules and the category of A(V )-modules and the same functor also gives an
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equivalence of the category of V -modules and the category of finite dimensional
A(V )-modules.

(7) If M ∈ OV then Ω(M) ∈ OA(V ).

Note that if M is a V -module and λ �= µ then HomA(V )(Ω(M)λ,Ω(M)µ) = 0
as [ω] acts on Ω(M)µ as scalar µ. Thus Ω(M) is an element of OA(V ). In fact,
the definition of OA for an associative algebra A reflects well the properties of
Ω(M).

6.3. Relationship between KV (X) and KA(V )(X). The relationship be-
tween KV (X) and KA(V )(X) is a reflection of the relation between V and A(V )
for any vertex operator algebra V and compact space X.

Recall Definition 3.1. Let E be a V -bundle over X with fiber M =
⊕

λ∈C
Mλ.

Let {Xα|α ∈ I} be an open covering of X which gives a local trivialization of
E. We define a graded vector bundle Ω(E) =

⊕
λ∈C

Ω(E)λ in the following way:
set Ω(E)λ|Xα = (Hλ

α)−1(Xα×Ω(M)λ) and Ω(Hα)λ = Hα|Ω(E)λ . Then Ω(Hα)λ :
Ω(E)λ|Xα → Xα × Ω(M)λ is an isomorphism. Set Ω(Hα) = (Ω(Hα)λ)λ∈C and
Ω(gαβ)λ = Ω(Hα)λ ◦ (Ω(Hβ)λ)−1 for λ ∈ C.

Then Ω(gαβ)(x) = (Ω(gαβ)λ(x))λ∈C : Ω(M) → Ω(M) is an A(V )-module
isomorphism for any x ∈ Xα ∩Xβ by Lemma 6.6. By Theorem 6.7 (7), Ω(E) is
an A(V )-bundle over X.

Theorem 6.8. The map Ω : E → Ω(E) from the set of V -bundles over X to the
set of A(V )-bundles over X induces a homomorphism, which we still denote by
Ω, from the group KV (X) to the group KA(V )(X). In particular, if V is rational,
Ω is an isomorphism.

Proof : It is clear that Ω is a group homomorphism. Now we assume that
V is rational. Recall Proposition 4.6 and its analogue KA(V )(X) = K(X) ⊗Z

KA(V )(pt) for A(V ). Using Theorem 6.7 (5) we need to prove that KV (pt) and
KA(V )(pt) are isomorphic groups under the map Ω. But this is clear from The-
orem 6.7 (5) again by noting that the category OA(V ) is exactly the category of
finite dimensional A(V )-modules. �
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