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ON FAMILY RIGIDITY THEOREMS, |

KEFENG LIU anp XIAONAN MA

0. Introduction. LetM, B be two compact smooth manifolds, andtetM — B
be a submersion with compact fib&. Assume that a compact Lie group acts
fiberwise onM, that is, the action preserves each fibetrofLet P be a family of
elliptic operators along the fibéf, commuting with the action of;. Then the family
index of P is

(0.1 Ind(P) = Ker P —CokerP € Kg(B).

Note that IndP) is a virtualG-representation. Let ¢lilnd(P)) with g € G be the
equivariant Chern character of Io#®l) evaluated ag.

In this paper, we first prove a family fixed-point formula that expressg@mti( P))
in terms of the geometric data on the fixed poiKts of the fiber ofr. Then by ap-
plying this formula, we generalize the Witten rigidity theorems and several vanishing
theorems proved in [Liu3] for elliptic genera to the family case.

Let G = S1. A family elliptic operatorP is called rigid on the equivariant Chern
character level with respect to th§s-action, if ch,(Ind(P)) € H*(B) is independent
of g € S1. When the bas® is a point, we recover the classical rigidity and vanishing
theorems. WherB is a manifold, we get many nontrivial higher-order rigidity and
vanishing theorems by taking the coefficients of certain expansion offalr the
history of the Witten rigidity theorems, we refer the reader to [T], [BT], [K], [L2],
[H], [Liul], and [Liu4]. The family vanishing theorems that generalize those vanishing
theorems in [Liu3], which in turn give us many higher-order vanishing theorems
in the family case. In a forthcoming paper, we extend our results to general loop
group representations and prove much more general family vanishing theorems that
generalize the results in [Liu3]. We believe there should be some applications of our
results to topology and geometry, which we hope to report on a later occasion.

This paper is organized as follows. In Section 1, we prove the equivariant family
index theorem. In Section 2, we prove the family rigidity theorem. In the last part
of Section 2, motivated by the family rigidity theorem, we state a conjecture. In
Section 3, we generalize the family rigidity theorem to the nonzero anomaly case. As
corollaries, we derive several vanishing theorems.
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1. Equivariant family index theorem. The purpose of this section is to prove
an equivariant family index theorem. As pointed out by Atiyah and Singer, we can
introduce equivariant families by proceeding as in [AS1] and [AS2]. Here we prove
it directly by using the local index theory as developed by Bismut.

This section is organized as follows: In Section 1.1, we state our main result,
Theorem 1.1. In Section 1.2, by using the local index theory, we prove Theorem 1.1.

1.1. The index bundleLet M, B be two compact manifolds, let : M — B be
a fibration with compact fibek, and assume that dim = 2k. Let T X denote the
relative tangent bundle. Le¥ be a complex vector bundle a¥ and letz" be a
Hermitian metric onw'.

Let »TX be a Riemannian metric dfiX and letvV’X be the corresponding Levi-
Civita connection o’ X along the fiberX. Then the Clifford bundleC (T X) is the
bundle of Clifford algebras oveM whose fiber atc € M is the Clifford algebra
C(TX) of (TX,hTX).

We assume that the bundleX is spin as a bundle oM. Let A = AT @ A~ be
the spinor bundle of' X. We denote by:(-) the Clifford action ofC(T X) on A.

Let V be the connection oA induced byv 7. Let VY be a Hermitian connection
on (W, h") with curvatureR". Let VA®W be the connection on®W along the
fiber X:

(1.1) VAW —ye1+1VY.

Forb € B, we denote by, E4 ;, the set of¢>°-sections oIAQ W, AL ® W over
the fiberX,. We regard the&;, as the fiber of a smoothy-graded infinite-dimensional
vector bundle oveB. Smooth sections af over B are identified to smooth sections
of AQW overM.

Let {¢;} be an orthonormal basis 6T X, h7X); let {¢'} be its dual basis.

Definition 1.1. Define the twisted Dirac operator to be

(1.2) DX = "c(en)V5®Y.

i
ThenDX is a family Dirac operator that acts fiberwise on the fibers oForb € B,
D}, denote the restriction ab* to the fiberE,. DX interchange€£; andE_. Let

DX be the restrictions oD* to E.. By Atiyah and Singer [AS2], the difference
bundle overB,

(1.3) Ind(D¥) = KerD¥ , —KerDX |

is well defined in theK -groupK (B).

Now let G be a compact Lie group that acts fiberwise &n We consider that
G acts as identity orB. Without loss of generality, we can assume tfaacts on
(T X, hTX) isometrically. We also assume that the actiorGalifts to A andW, and
that theG-action commutes witiv".
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In this case, we know that If®*) € K5 (B). Now we start to give a proof of a
local family fixed-point formula that extends [AS2, Proposition 2.2].

ProposITION 1.1 There exisV; e awithj =1, ..., r,afinite number of sections
(Si ;415 -1 8ij 1) Withij 1 —i; = dimV; of €*°(B, E_) such that we can find a basis
{e;.1} of V;, under which the map. , : €*°(B, ELp) @1 Vj —> € (B, E_p)
given by

—X
(1.4) D_H,(s + Ej,l)\j,lej,l) = D_{S + Zj,l)\j,lsij-i-l

is G-equivariant and surjective. The vector spamﬁf,b form aG-vector bundle
Kerﬁi on B, and the eIemer[IKerﬁi] —@',_,V; € Kg(B) depends only omX
and not on the choice d#;} and the sectionss; }.

Proof. Givenbg € B, we can finda > 0 and a ballU (bg) C B aroundbg, such
that for anyb € U (bg), a is not an eigenvalue lef’z.

Let E)>l = ER“ @ E'%“! be the direct sum of the eigenspacesyf* associated
to the eigenvalues € [0, a[. By [BeGeV, Proposition 9.10]E%4l forms a finite-
dimensional subbundI&®4l c E over U (bg). Clearly, E[%l is a G-vector bundle
onU (bo). By [S, Proposition 2.2], we have an isomorphism of vector bundleB,on

(1.5) EP = @y gHomg (V. E®“N) eV,

whereG denotes the space of all irreducible representatiorG.diVe can also find

ti k € €°°(U (bo), Homg (V, E[_O’“[)) such that fob € U (bg), the elements ; form a

basis of Hong; (V, E[,O’a[);,. Let{e; ;} be a basis o¥;. Then we can choose the sections

tixei € €°(B, EE)’“[) to be ours;. This proves the first part of the proposition locally.
The global version now follows easily by extending the above local sections of

©>° (U (bo), E—) together with a use of the partition of unity argument. This is essen-

tially the same as the proof of [AS2, Proposition 2.2]. O

By [S, Proposition 2.2], we have
(1.6) Ind(D¥) = @ .gHomg (V. Ind(D¥))®@V

and Homg; (V, Ind(D%X)) € K (B). We denote byind(DX))¢ € K (B) theG-invariant
part of Ind D¥).

By composing the action a& and the Chern character of HertV, Ind(DX)), we
get the equivariant Chern characteg, dnd(D¥)) € H*(B).

Definition 1.2. We say that the operatdd¥ is rigid on the equivariant Chern
character level if cp(Ind(D¥)) is constant org € G. More generally, we say that
DX is rigid on the equivariank -Theory level if Ind DX) = (Ind(DX))°.

In the rest of this paper, when we say tlixt is rigid, we always mean tha¥X is
rigid on the equivariant Chern character level.
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Now let us calculate the equivariant Chern characteridia(D%)) in terms of the
fixed-point data of;.
Let T# M be aG-equivariant subbundle & M such that

(1.7) TM=TY'M®TX.

Let PTX denote the projection frorfiM to TX. If U € TB, let U denote the lift
of Uin T M, so thatr,U" = U.

Let n78 be a Riemannian metric oB, and assume tha¥ has the Riemannian
metric ™™ = KX @ 7*hTB. Note that our final results are independenthéf.
Let vIM vTB denote the corresponding Levi-Civita connectionsirand B. Put
vIX = pTXyTM which is a connection off X. As shown in [B1, Theorem 1.9],
vTX is independent of the choice bf 2. Now the connectiov’¥ is well defined
on TX and onM. Let RTX be the corresponding curvature. We denotevbgand
VA®W the corresponding connections anand A@W induced byv X andv".

Takeg € G and set

(1.8) ME&={xeM, gx =x}.

Thenr : M8 — B is a fibration with compact fibek8. By [BeGeV, Proposition
6.14], T X8 is naturally oriented inV/8.

Let N denote the normal bundle di7¢; then N = TX/T X$. We denote the
differential of g by dg, which gives a bundle isometwg : N — N. Sinceg lies
in a compact abelian Lie group, we know that there is an orthogonal decomposition
N = N(7) ® Po<o<x N (0), Wheredgnr) = —id, and for eacld, O <O <m, NO)
is a complex vector bundle on whiet acts by multiplication by, and dimn ()
is even. SaV (ir) is also naturally oriented.

As the Levi-Civita connectiorV”¥ preserves the decompositidhf = T M?
Bo<o<z N(9), the connectiorv’X also preserves the decompositiBiX = 7 X8
@o-o<x N(0) on M8, Let VX! VN vN©® pe the corresponding induced connec-
tions onT X¢, N, N(9), and letR"X*, RN RN® be the corresponding curvatures.
Here we consideN (9) as a real vector bundle. Then we have the decompositions:

(1.9) RTX — RTX® @RN, RN — 69GRN(Q)_

Definition 1.3. For 0< 0 < 7, we write
w —RY
ch, (W, V") =Tr|gexp| —— | |,
0 9) =W o )

. TXS8
1.10 AT x4, VX = def2( /4R )
(1.10) A(T X8, VTX") = dett (sinh((i/4n)RTXg) :

Ag(N@©), VN = !
0 ’ iW/2dmN©) def/?(1— gexp((i /27) RN ®))
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Letch, (W), A(T X%), Ag(N(6)) denote the corresponding cohomology classetén
If we denote by{x;, —x;} (j =1,...,1) the Chern roots oN (9), T X¢ such that

I1x; define the orientation a¥ (¢) and7 X ¢, then
—~ IMix;/2

A(TXg) — _JL/’

sinh(x;/2)

(1.12) R . 1 z o(L/2)(xj+i6)

Ag(NO))=2"'T'_ ,—-—— =TIl  ——.
o(N®) I=lsinh1/2(x; +i6) J=1 xj+i0 _q

We denote byr, : H*(M8) — H™*(B) the intergration along the fibexs.
TueoreM 1.1 We have the following identity iH*(B):

(1.12)  chy(Ind(DX)) = 7 { Moo=z Ag (N (6)) A(T X¥) chy (W)}.

1.2. Aheat kernel proof of Theorem 1.As Atiyah and Singer indicated in the end
of [AS2], we can proceed as in [AS1] and [AS2] to introduce an equivariant family,
and then to find a formula for the equivariant Chern character of the index bundle.
Here we use a different approach by combining the local relative index theory and
the equivariant technique to give a direct proof of the local version of Theorem 1.1.
We denote byY'V = VX @ 7*VT8 the connection o M. Let § = VI'M 0y,
By [B1, Theorem 1.9]{S(-),),ru is a tensor independent 6f 8. ForU e T M,
we define a horizontal 1-forthon M by

(1.13) k(U) =) (SW)ei.ei).

i

Definition 1.4. Let VZ denote the connection af such that ifU € T B ands is
a smooth section of over B, then

(1.14) Vis=VoEVs.
If U,V are smooth vector fields aB, we write
(1.15) (U, vH)=—pTX[UuH vH],

which is a tensor.
Let f1,..., fi» be a basis of' B, and Ietfl,...,f’” be the dual basis. Define

(1.16) o(T) = %Za,ﬂfafﬂc(T(faH 1)-

Definition 1.5. Forz > 0, let A, be the Bismut superconnection constructed in
[B1, 83

o gee 1 1
(1.17) A, =iD +(v +Ek)—4—ﬁc(T).
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It is clear that4; is alsoG-invariant.
Let dvy denote the Riemannian volume element on the fibelLet ® be the
scaling homomorphism from (T*B) into itself: w — (2ri)~(@e92)/2,

Tueorem 1.2 For anyt > 0, the formd Try[gexp(—A?)] is closed and its coho-
mology class is independentoénd representsh, (Ind(D¥)) in cohomology.

Proof. Just proceed as in [B1, 82(d)]. O

THEOREM 1.3 We have the following identity:
; 42
(1.18) [Il)naqﬂrs[gexp( A7)]
:f A(T X8, VTX ) Moog<r Ap (N (), VN @) chy (W, VY).
X8

Proof. If A is a smooth section of *X ® A(T*B) @ End(A ® W), we use the
notation

2k
(VAOY 1 Aen) = (VAW 4 Aen)* — Vggl“;”e —A(ZE,VIXe).
i—1 i=1"e “1

1

Let V/ be the connection oA (T*B)®A®W on the fiberX as given by

1
(119) vy =VA (SO £ elep £+ o {SOLT 1)1 S

1
2/t
Let K denote the scalar curvature of the filgar, »7X). By the Lichnerowicz for-
mula [B1, Theorem 3.5], we get

2 t t
AZ=—1(V],) +ZKX+ Ec(e,-)c(ej)RW(ei,ej)

(1.20) 1
+reen fURY (eis 1) + 57 FPRY (£ £5)-

Let P, (x,x',b)(b € B, x,x" € X;,) be the smooth kernel associated toexa?) with
respect talvy (x’). Then

(1.21) ®Try [gexp(—A,Z)] = / O Try [gP,(g_lx,x,b)]de(x).
X

By using standard estimates on the heat kerneh toB, we can reduce the problem
of calculating the limit of (1.21) when — 0 to an open neighbourhodd, of X;‘,’
in Xp. Using normal geodesic coordinatesX(§ in Xp, we identify U, to an e-
neighbourhood ofXé in Nx:,x. We know that, if(x,z) € Nxs;x with x € X8,
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then
(1.22) g_l(x,z) = (x,g_lz).

Let dvxs (x), duny,,,, With x € X¢ be the corresponding volume forms &k ¢
and Nz, x induced byh”X. Letk(x,z)(x € X8,z € Nxz/x, |z| < &) be defined by

(1.23) dvy =k(x,z)dvxg(x)dv;vxg/x(z).

Then it is clear that
k(x,0)=1.

By the discussion following (1.21) and (1.23), we get
lim & r, [gexp(—A?)]
—

= lim / O Try [gPt (g_lx,x)]dvx(x)
WUe /8

t—0

— lim / / oTr, [gPi (g2, 1), (1. 1))]
t—0 xeX& ‘Y\SE/S,YEN)(;,'/X

X k(x, Y)dUXg(x)dUng/x ¥).

(1.24)

By taking xo € X§ and using the finite propagation speed as in [B2, §11b], we
may assume that iX, we have the identificatiod7 X),, ~ R%* with 0 € R%*
representingro, and that the extended fibration ov@# coincides with the given
fibration restricted taB (0, ¢).

Take any vectol’ € R%. We can trivializeA (T* B)® AQW by parallel transport
along the curver — uY with respect tov;.

Let p(Y) be a%¢>-function overR%, which is equal to 1 ifY| < ¢/4, and equal
to 0if |Y| > &/2. Let ATX be the ordinary Laplacian operator ¢hX),,. Let H,, be
the vector space of smooth sections of the buﬂdlél"*B)@A@W)xo over(T X)y,.
Fort > 0, IetL,l be the operator acting of,,:

(1.25) Lt = (1—p2(1)) (=t ATX) + p?(1) A2,

Fort > 0,s € Hy,, we write

Y _
(1.26) Fis(Y) = s<$>, L?=F1LF,.
Let {e1, ..., ey} be an orthonormal basis ¢f X¢),,, and let{ey 11, ..., ex} be an
orthonormal basis aWx:/ x_,- Let L3 be the operator obtained frofif by replacing
the Clifford variables:(e;) with 1 < j < 2/’ by the operatorse’ //1) — /T ;.
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Let P/ (Y,Y") with Y, Y € (T X),, and|Y’| < ¢/4,i = 1,2, 3 be the smooth kernel
associated to exp-L!) with respect to the volume elemeftry, (Y’"). By using the
finite propagation speed method, there exist > 0, such that forY’ € Nxs/x x,
|Y| <¢/8, andr €]0, 1], we have

(1.27) |Pi(g7Y, Y)k(xo, V) — P71y, Y)| < cexp<— %)

Fora € C(e/, i.;) a<j<ar), let[a]™® e C be the coefficient 0é* A - -- re?’in the
expansion otr. Then, as in [B2, Proposition 11.12],¥f € Nx¢,x,

(1.28)
1ot 1/2dimx¢ (-1/2)dimN o g7ty ¥\
Trg|lgP (g Y, Y)| = (-2 = X8/X Tr P = .
e e [ (7 7))
Let R/\%. Rjjye. - be the corresponding restrictions Bf *, RY, ... to M¢. Let

V.; be the ordinary differentiation operator 6fX),, in the directiore;. By [ABOP,
Proposition 3.7] and (1.20), we have,ras> 0,

2k
1 2
(1.29) 32— 13= —Z(ve_i + (RO, ej>) + R,
j=1

By proceeding as in [B2, 811g—811i], we obtain the following: there exist some
constantsy > 0,c¢ > 0,C > O,r € N such that forr €]0,1] andY,Y’ € (T X),,
we have

PR Y)| =@+ 1Y+ ]y'|) exp( —Cly —¥'[?),
(1.30)
(P2 PS) (V. Y)| < et (1+1Y 1+ ]Y'|) exp( —C|y —¥'?).

From (1.28) and (1.30), we get
(1.31)

i 1/,-1
,Iino/\Ylse/B OTrs [gP; (g7, Y) ] duwyg,, (V)
YeNxg,x

. . i 8 — max
- tlinoﬁ)'lq/&ﬂ(_z”(l/adlmX oI [gPtS(g 1Y, Y)] dUNXK/X(Y)
YG_IVXg/X

. i 8 — max
=/N g (—2i) M2 @ Tr (e P (717, V)™ duwye (V).
X8/X

Now we define
2%k

(1.32) A= —Z(Ve,j+%(R\Tn}5:Y, ej)>2-
j=1
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By Mehler’'s formula [G], the smooth kerngl(Y, Y’) for Y, Y’ € T X associated to
exp(—A) is given by

TX TX
q(v.Y') = (4n)_kdet1/2(L2)> exp{ 1<#2) Y, Y>

sinh(RTX/2 4 tanh(R7%/2
(1.33) rx rx
_ 1‘<R—/2 Y/, y/>_|_ 1‘<'R—/26RTX/ZY’ y/>}_
4\tanh(RTX/2) 2\sinh(RTX/2)

From (1.9) and (1.33), we deduce fBre Nz x,

TX
q(g_lY, Y) = (471)_kde11/2(R—/2>

sinh(R7%/2)
1.34
o xexp{ —}<£(cosh(RN/2)—eRN/2g_l)Y Y>}
2\sinh(RN/2) )

On the other hand, for € N(0), we have

RN RY/2 RN/2 1, v N
1.35 — ¢ lyy)=(—— = RE/2g=14 = RY/2 Y, Y ).
(1.35) <Zsinh(RN/2) g > <sinh(RN/2) gl T e )

It is easy to see that

RN 1, N N 1 N N
(1.36) COSh<7> — E(ER 12g714 ¢ R /Zg) = E(l—g_l)(eR 12_ R /Zg).
From (1.9), (1.34)—(1.36), we get

(1.37)
f q(87MY. Y) duyyg (V)
Nys/x
TXS8
o A—2dimxs g a2 RTT/2 1201 oW\ qal/2(1_ o —RV\] L
— (4m) det (—Sinh(RTXg/2)>[det1 (1- g det/2(1- ge )] .

We may and do assume that on the bdsjs}z+1<m<2, the matrix ofg has
diagonal blocks

[cos(ej) —sin®;)

sin(;) cos(@,-)]’ 0<fj=m.

Then one verifies easily that the actiongobn A is given by

0; . (0
(1.38) g=TIlyi<j<k (COS(E) +sin <?>C(€2j—l)c(62j)> .
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By (1.29) and (1.38), we know that

Tr, [gPS(s71Y. Y)]

(1.39) ,
=Tyj1<j<k <— 2i sin (%’)) Tr [g exp(— ng)]q(g—ly, Y).

From (1.24), (1.27), (1.31), (1.37), and (1.39), we finally arrive at the wanted
formula (1.18). O

By Theorems 1.2 and 1.3, we now have the complete proof of Theorem 11.

2. Family rigidity theorem. This section is organized as follows. In Section 2.1,
we state our main theorem of the paper: the family rigidity theorem. In Section 2.2,
we prove it by using the equivariant family index theorem and the modular invariance.
In Section 2.3, motivated by the family Witten rigidity theorem, we state a conjecture
about aK -theory level rigidity theorem for elliptic genera.

Throughout this section, we use the notation of Section 1 andGakes?.

2.1. Family rigidity theorem.Let 7 : M — B be a fibration of compact manifolds
with fiber X and dimX = 2k. We assume that thg! acts fiberwise oM, andT X
has ans1-equivariant spin structure. As in [AH], by lifting to the double coversdf
the second condition is always satisfied. lletbe a real vector bundle oM with
structure group Spit2/). Similarly, we can assume thithas ans!-equivariant spin
structure without loss of generality.

The purpose of this part is to prove the elliptic operators introduced by Witten [W]
are rigid in the family case, at least at the equivariant Chern character level. Let us
recall them more precisely.

For a vector bundlé& on M, let

S(E)=1+tE+1t°S°E+---,
(2.1)
A (E)=14tE+1?A%E+---

be the symmetric and exterior power operation&ifM)[[¢]]. Let

®;(TX) = ®ZO:1Aq" (TX) ®,31021 Sqm (TX)a

(2.2) Oy (TX) =% 1A _u-12(TX) Q1 Sm (T X),

q
O_q(TX) = @21 A yn-12(TX) Ry Sgn (T X).

We also define the following elements ki M)[[¢Y/?]]:
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OL(TX | V) = &4 Agn (V) 2y Syn (TX),

Oy(TX | V) =@y 1A_yn-12(V) ®or_q Sqn (T X),

(2.3) !

O_g(TX | V) =821 A n-12(V) @ g Sgm (T X),
O (TX | V)=®2 1A gn(V)®5_q Sgn (T X).

Let p1(-) 51 denote the firsf1-equivariant Pontrjagin class, and IetV) = AT (V) ®
A~ (V) be the spinor bundle of .

In the following sections, we denote ByX ® W the Dirac operator ol ® W as
defined in Section 1. We also Wri&é‘ = DX ® A(T X). The following theorem is the
family analogue of the Witten rigidity theorems as proved in [BT], [T], and [Liu4].

TueoREM 2.1 (@) The family operatorg X ® ©, (T X), DX ® ©,(T X), andD* @
©_,(T X) are rigid.

(b) If p1(V)s1 = pa(TX)g1, then DX @ A(V)® O (TX | V), DX @ (AT(V) -
AT(V)®OHTX | V), DX®6O,(TX | V), andDX¥ @ ©_,(TX | V) are rigid.

2.2. Proof of the family rigidity theoremForz e H = {r e C;Imt > 0}, ¢ =
2rit
e , let

O3(v,7) = c(q)l—[;olo:l(l_i_qnfl/2€27'riv)1—1;01021(1_’_qnfl/26727'tiv)7

92(1)’ T) — C(q)ngozl(l_qn—1/26271iv)nzo:l(l_qn—l/Ze—Zm'v)’
(2.4) ) _
01(v,7) = c(q)q1/82 COS(T(v)H;’lil(l—l—q"ezmv)H;’lozl(l—{—q"e_zmv),

(v, 7) = c(q)gY/B2siN(T V)13 (1—¢"e® V)12 4 (1— g" e~ 7)

be the classical Jacobi theta functions (see [Ch]), where= 172 ;(1—¢").

Let g = ¢Z"" ¢ ST be a generator of the action group. Lgt,} be the fixed
submanifolds of the circle action. Lat: M, — B be a submersion with fibex,,.
We have the following equivariant decomposition7oX :

(2.5) TX\m,=N1®--- N, ®TX,.

HereN, is a complex vector bundle such thgacts on it bye27i"y! \We denote the
Chern roots ofv,, by {Znix{,}, and the Chern roots df X, ®r C by {£27iy;}. We
write dimg N, = d(m,,) and dimXy, = 2k,.

Similarly, let

(26) VIMa:Vl@...@‘/lo

be the equivariant decomposition Bfrestricted taM, . Assume thag acts onV, by
e?mimt \where some, may be zero. We denote the Chern root§/pby 2rius. Let
us write dink V, = 2d (n,).
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For f(x) a holomorphic function, we denote by(y)(T X&) = I1; f(y;) the
symmetric polynomial that gives characteristic clasg'afé, and we use the same
notation forN, . Now we define some functions @x H with values inH*(B):

_101(xy +m,t, T)
g 1 )4 )4
(Tx¢)m, (’ 0(xy +myt.7) )(Ny)},

FD(I, T) = LTy |:(27Ty92(y’ f)) (TXg)Hy (i_l—GZ(xy +m)/tv T)> (Ny)] s

2.7)

Fy (t,t) = Ean*l:(Zny

0(xy +myt,7)

(rxn, (i E D Yoy |

0
F_D(l,f)Zza”*[(zny 0(xy +myt, T)
v ve

() 1,01 (uy + 191, T)(Vy) ]
I1,0(xy +myt, T)(Ny) |

)
Fl‘)/(t,l') =i "2, ( 2riy )(Txg) 1,02y +-not, 1) (Vo)

FJ(t, 1) =i""Sgm,

IT,0(xy, +myt,T)(N,y) |

1,0 £, 7)(Vy)
FYo . 1) =i Sy, (rxe) Dottt (W)
IT1,0(x), +myt, T)(N,) |

2mi 1,6 t,7)(V,
Fl.t.v) =i "5,m, [( iy )(TXg Uy +nyt, T)(Vy) }
HVQ(XV_'—th’T)(Ny)

By Theorem 1.1 and [LaM, page 238], we get, far [0, 1]\ Q andg = %™/,

(2.8)
Fq,(t,7) = chg (Ind (d¥ ® © (T X))).

Fp(t,7) = ¢ *8ch, (Ind(DX ® ©,(T X))),

F_p(t,7) =q *8ch, (Ind(D¥ ® ©_,(T X)),

FJ(t.1)=c(q) " q"™"8ch, (Ind(D¥ @ A(V) @O (TX | V))),
FY(t,t)=c(q)*q7*Bch, (Ind(D¥ ®©,(TX | V)))

FYp(t,7) = c(@)! ™ g*/8ch, (Ind (DX @ ©_y(TX | V))),

Fpo(t,0) =D e(q) *q"=08ch, (Ind(D¥@ (AT (V) AT (V)®@O;(TX|V))).

Considered as functions @f, r), we can obviously extend thege and FV to
meromorphic functions o€ x H. Note that these functions are holomorphie ifThe
rigidity theorems are equivalent to the statement that titesed ¥ are independent
of t. As explained in [Liu4], we prove it in two steps: (i) we show that th&ser"
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are doubly periodic in; (ii) we prove they are holomorphic in Then it is trivial to
see that they are constanttin

LemmaA 2.1 (a) For a,b € 2Z, F4 (t,7), Fp(t,7), and F_p(z, ) are invariant
under the action
(2.9) U:t—t+at+b.

(b) If p1(V) 51 = pa(T X) g1, thenF, (¢, 1), Fj (1,7), FY),(1,7), and F .. (¢, 7) are
invariant underU.

Proof. Recall that we have the following transformation formulas of theta- func-
tions (see [Ch]):
(t+1,1)=—-0(t,1), O(t+7,7) = —q Y2201, 1),
Ort+1,1)=—601(t, 1),  Ou(t+1,7) =g Y201, 1),
Ot +1,7) =02(t,7),  Oo(t+T1,7) =—q Y2 2051, 1),
03(t+1,7) =63t 1), Oa(t+T1.7)=q Y2051, 7).

(2.10)

From these, foB, = 6,61, 6>, 63 and(a, b) € (22)2,1 € Z, we get
(211) Qv(x—{—l(t—i—ar—}—b),r) — e_”i(ZZax+212”’+12”2r)9v(x+lt,'L'),

which proves (a).
To prove (b), note that since1 (V) g1 = p1(T X) g1, we have

(2.12) S0 (1) +nut)’ = ;02 + 5y () +my 1)

This implies the equalities

Ev,jnvu{; =Xy, jmyx;,
(2.13)
B,mid(my,) = Zynid(ny).
which, together with (2.11), prove (b). O

Forg = (4%) € SL2(Z), we define its modular transformation @ H by

t at+b
2.14 L) =\—— ——).
( ) 8. 7) (cr-i—d cr+a’>

The two generators of SIZ) are

(2.15) S=<2 _01), T=<é i)
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which act onC x H in the following way:
t 1

(2.16) S, 1) = (—, ——), T, 7t)=(,7t+1).
T T

Let &, be the scaling homomorphism from(7* B) into itself: § — ¢(1/2dedb g,
Lemma 2.2 (a) We have the following identities:
r 1 &
Fy\ = —= ) =i"V:Fp(t, 1), Fy (1, 7+1) = Fg, (1, 7),

T
(2.17)

t 1 '
F_D<—, ——) = ik\IJ,F_D(t, 7), Fp@t,t4+1) = F_p(t, .L.)e—(m/4)k.
T T

(b) If p1(V) g1 = p1(T X) 51, then we have

(2.18)
t 1 (I-k)/2 .

FdV(—, ——) =(3.) " FR (T, FlGt+ D =e TR @D,

s -E -C l S s
t 1 T\ (U—k)/2 .

F_VD(;, —;) =(3) ity FRGr+D = T ),
t 1 (I-k)/2 .

Fpe (" —‘>: (3) R, Rt D= T EY o).
T T l

Proof. By [Ch], we have the following transformation formulas for the Jacobi
theta-functions:

t 1 1 . ,

9(—’ —‘) = q/ie"”z/fe(t,n, 0(t, t+1) =e"/*0(1, 1),
T T 1 l
r 1 T rir?)t i 4

91 R = 4 92(t7t)7 el(tar-"_l):e 91(1‘,‘[),
T T l

(2.19)

t 1 .

02(_’ —‘) - \/E T T), Ot T+1) = 0a(t. 7).
T T l
t 1 T nitz/r

93 Ty T T = - € 93(t9t)7 93(t,f+1):92(t,f)
T T l

The action ofT" on the functionsF and F" are quite simple, and we leave the
proof to the reader. Here we only check the actiors 0By (2.19), we get
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0(y,—1/7) 0(x, +my(t/T,—1/7))

6 , O1(tx, +m,t, T
=%, ikt e, <2ntyM>(TXg)HV i—lw (N,) |.
0(ty, 1) 0 (txy +myt,7)

s, {(Znyel(y, _1/T))(Txg)ny (i_lel(xy +my, (1), —1/1'))) (Ny)}

If « is a differential form onB, we denote by{«}(”) the component of degree of
a. Itis easy to see that (2.17) fé;, follows from the following identity:

2p)
—k {n* |: <ry O1(ty, ‘L’)) (Tx4)m, (i_lel(txy +myt, r))(NV):”

O(ty, 1) 0(tx, +myt, 1)
2.21)

01(y, 0 1, @
= rp{n*[(y—l(y T)> (Tx#)m, (i_l—l(xy Ty t)>(Ny):|} .
0(y.7) 6(xy +myt,7)
By looking at the degree¢2 +k,) part, that is, the p + k,)th homogeneous terms

of the polynomials inc andy, on both sides, we immediately get (2.21).
From (2.7), (2.20), and (2.21), we obtain

2p)
(2.22) {de(f’_}ﬂ — ik (P 1)),

T T

which completes the proof of (2.17) fdf,,. The other identities in (2.17) can be
verified in the same way.

By using (2.12), (2.19), and the same trick as in the proof of (2.17), we can obtain
the identities in (2.18). This completes the proof of Lemma 2.2. O

The following lemma implies that the index theory comes in to cancel part of the
poles of the functiong andF" .

Lemma 2.3 If TX andV are spin, then all of the" and FV above are holomor-
phic in (¢, 7) for (r,7) e R x H.

Proof. Letz = ¢?"i’ andl’ = dim M. We consider thes& and FV as meromor-
phic functions of two complex variables, ¢) with values inH*(B).

(i) Let N = max,,, |m,, |. Denote byDy c C? the domain
(2.23) g7V <zl <lgI™YN,  0<|ql <1

Let f, be the contribution of the componem® in the functionsF’s andc(q)* ' F"’s.
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Then inDy, by (2.4) and (2.7), it is easy to see thiathas expansions of the form
(224) qfa/SHy(Zmy _1)*1 d(my)zr?ioba’n(z)qn’

whereq is an integerh, (z,q) = X°2 1b4,n(2)q" is @ holomorphic function ofz, ¢) €
Dy, andb, ,(z) are polynomial functions of. So as meromorphic functions, these
F andc(¢)*'F" have expansions of the form

(2.25) q 8T 0 b (2)q"

with b,,(z) rational function ofz, which can only have poles on the unit cir¢l¢ =
1C Dy.
Now if we multiply theseF andc(g)*~'FV by

(2.26) f(2) = Hany(l_zmy)l’d(my)’

we get holomorphic functions that have convergent power series expansions of the
form

(2.27) g BB pen ()"

with {c, (z)} polynomial functions of in Dy.
By comparing the above two expansions, we getifarN,

(2.28) cn(2) = f(2)bn(2).

(ii) On the other hand, we can expand the Witten elentgrninto formal power
series of the formx°° JR,q" with R, € K(M). So fort € [0,1]\Q,z = it e
get a formal power series gffor theseF andc(q)~'FV:

(2.29) g /®52 ych, (Ind(D* @ R,))q"
witha € Z.

By (1.6), we know that
(2.30) ch, (Ind (DX ® Ry)) = )" oy mn 2"

with a,, , € H*(B), andN (rn) being some positive integer dependingron
By comparing (2.7), (2.25), and (2.30), we get faz [0, 1]\ Q, z = €27,

(2.31) by (z) = Enl\jinl/v(n)am,nzm'

Since both sides are analytic functionszpthis equality holds for any € C.
By (2.28), (2.31), and the Weierstrass preparation theorem, we deduce that

(2.32) g BER oby(2)g" = —A8R e (2)q"

7@’

is holomorphic inDy. Obviously,R x H lies inside this domain. The proof of
Lemma 2.3 is complete. O



ON FAMILY RIGIDITY THEOREMS, | 467

Proof of the family rigidity theorem for spin manifoldsNVe prove that these”
and FV are holomorphics o€ x H, which implies the rigidity theorem we want
to prove.

We denote byF one of the functions, FV, W, F, and W, F". From their
expressions, we know the possible polar divisorsFoin C x H are of the form
t = (n/l)(ct+d) with n,c,d, intergers andc,d) =1 orc =1 andd = 0.

We can always find intergers, b such thatad — bc = 1. Then the matrixg =
(4. 7P) € SL»(2) induces an action

—C da

(2.33) F(g(t. 1) = F( r o drh )

—ct4+a —ct+a

Now, if t = (n/l)(ct +d) is a polar divisor ofF (¢, ), then one polar divisor of
F(g(t, 7)) is given by

dt—b
(2.34) ! =;<c ‘ +d>,

—cT+a —cT+a

which gives exactly =n/1.

But by Lemma 2.2, we know that up to some constdt(g(z, 7)) is still one of
theseF, FV, W, F,andW¥, F" . This contradicts Lemma 2.3; therefore, this completes
the proof of Theorem 2.1. O

2.3. A conjecture. Motivated by the family rigidity theorem, Theorem 2.1, we and
Zhang would like to make the following conjecture.

ConNJECTURE 2.1 The operators considered in Theorem 2.1 are rigid on the equi-
variant K -theory level.

This means that as elements Ky, (B), the equivariant index bundles of those
elliptic operators actually lie itk (B). Note that this conjecture is more refined than
Theorem 2.1, since the equivariant Chern character map is not an isomorphism. In
[Z], Zhang proved this for the canonical SpiDirac operator on almost complex
manifolds.

3. Jacobi forms and vanishing theorems. In this section, we generalize the rigid-
ity theorems in the previous section to the nonzero anomaly case, from which we
derive a family of holomorphic Jacobi forms. As corollaries, we get many family
vanishing theorems, especially a familiyvanishing theorem for loop space. This
section generalizes some results of [Liu3, §3] to the family case.

This section is organized as follows: In Section 3.1, we state the generalization
of the rigidity theorems to the nonzero anomaly case. In Section 3.2, we prove this
result. In Section 3.3, as corollaries, we derive several family vanishing theorems.

We keep the notation of Section 2.
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3.1. Nonzero anomaly Recall that the equivariant cohomology grod, (M, Z)
of M is defined by

3.1) 3(M,Z) = H*(M x1 ES*, Z),

where E St is the usual universa$-principal bundle over the classifying space of
st SoH;l(M, Z) is a module oveH*(B S, Z) induced by the projectiofr : M X g1
ES* — BSY Letpi(V)g, p1(TX)g1 € H}1(M, Z) be the equivariant first Pontrjagin
classes oV andT X, respectively. Also recall that

(3.2) H*(BS*,Z) = Z[[u]]

with u being a generator of degree 2.
In this section, we suppose that there exists some integef such that

(3.3) p1(V)g—p1(TX)q1 =n-7Tu?.

As in [Liu3], we calln the anomaly to rigidity.
Following [Liu4], we introduce the following elements K(M)[[¢/?]]:

O (TX | V)y =@, Agn(V —dimV) @7 Sy (T X —dimX),

Oy (TX | V)y =@ A_u12(V —dimV) @4 Syn (T X —dim X),

q

(3.4) . _
O y(TX | V)y =821 A n-12(V—dimV) @7 1 Sym (T X —dimX),

O (TX | V)y =821 A—gn(V —dimV) @y Sym (T X —dimX).

For g = ¢Z"!, g = ¢2"'7, with (¢,7) € R x H, we denote the equivariant Chern
character of the index bundle &* ® A(V)® O, (TX | V),, DX @O, (TX | V).,
DX®O_4(TX | V),,andD* @ (AT(V)— A~ (V) @O (TX | V), by ZIFCX’U(t, 1),

Fp @, 1), FYy (t,7), and(=1) F}.  (t,7), respectively. Similarly, we denote by
H (t, t) the equivariant Chern character of the index bundle of

DX @ Q%S (TX —dimX).

Later we consider these functions as the extensions of these functions from the unit
circle with variablee?*i* to the complex plane with values ifi*(B). Fora a differ-
ential form onB, we denote byja}?) the degreep component ofx.

The purpose of this section is to prove the following theorem, which generalizes
the family rigidity theorems to the nonzero anomaly case.

THEOREM 3.1 Assumepi(V)g — p1(TX)g1 = n -7*u? with n € Z. Then for
p eN, (F) (6.0} (F} (,0)})%), {FY, (1,7)}?" are holomorpic Jacobi
forms of index /2 and weightc + p over(2Z)2x " with T equal tol'o(2), I'°(2), [y,
respectively, and F 5.  (z,7)}?”) is a holomorphic Jacobi form of index/2 and
weightk — [+ p over (2Z)? x SLy(Z).
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See Section 3.2 for the definitions of these modular subgrong®), I'°(2),
andrly.

3.2. Proof of Theorem 3.1Recall that a (meromorphic) Jacobi form of index
m and weight/ over L x ", whereL is an integral lattice in the complex pla@
preserved by the modular subgrobpc SLz(Z), is a (meromorphic) functio# (¢, t)
on C x H such that

F( t at+b

7 _ ) 2mm(cz2/(cr+d))F 1.7),
ct+d cr—l—d) (cr+d)e A2

(3.5)
Flt+ AT+, 7) = e 2TmOPT+20 p(; o)

where(r, ) € L andg = (¢5) e I'. If F is holomorphic ornC x H, we say that”

is a holomorphic Jacobi form.

Now, we start to prove Theorem 3.1. Let= 27 ¢ ST be a generator of the action
group. Fore =1, 2, 3, let

0
(3.6) 0'(0,7) = 59(1, 7)li=o0, 6a (0, 7) = 0u (2, T)|1=0.

By applying Theorem 1.1, we get

6'(0, 7)
F (1) = (h)‘kﬁ@f(z, 7).,
6'(0, 7)
Fp,(t,0)=@m)~* 92((0 ?), Fp(,0),
6'(0, 7)
(37) FYD,U(I’ 7) = (27'[)—k 03((0 7;))1 FYD(I, 7),

FY. ,(t.1)=@2m) /0, 0 Fl.(t.v),

. / )
H(t,7) = (Zni)kzan*[< 27iy >(TXg) 6'(0,7) ]
0(y, 1) Hye(xy+myt’t)(Ny)

Lemma 3.1 If p1(V)g1 — p1(T X) g1 = n-7*u?, we have

(3.8)

t 1 .
ng’,}(_, —-> = kg FY (o), F) (D) =FY (1),

t 1 .
F_VDJ,(—, ——) — kg B ), FY L+ D) = FYp (D),

t 7 ring2
FI‘)/*’U<;, —;> =" ML FYL (1, T),  FRe (6, T+1) = FY. (¢, 7).
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If p1(T X)g1 = —n-7*u?, then

t 1 :
(3.9) H(—,——)=rke”””2/T\IfTH(t,r), H(,t+1)=H@,1).
T T

Proof. First recall that the condition on the first equivariant Pontrjagin classes
implies the equality

(3.10) Ev,j(u{; —i—nvt)z— (Ej(yj)2+ Zy,j(x{,' +myt)2> =n-12,
which gives the equalities

Bynid(ny) — Tym5d(my,) =n,
(3.112) Zvyjnvu{; = Zy,jmyxj

Yy

S0 () = 55002+ 2,5 (x))%.

The action off" on the functionsF andFV is quite easy to check, and we leave this
detail to the reader. We only check the actior§oBy (2.7), (2.19), (3.7), and (3.11),
we have

(3.12)

Fd‘;,v(g’ _%> = (ZNi)_kEotT[*
6'(0,—1/7) [ 2miy I, 61 (1t + 14 (1/7), —1/7) (V)
X ; ( )(Txg
61(0.—1/7) \6(y. ~1/7) 1,6 (xy +my (6/7). ~1/)(Ny)

— (an-)—ktkeni(mz/r)zan*
5 00,0k ( 2miy (7x9) Mu01(vuy +nut, V) |
61(0,7)! \ 8(zy, 1) I1,0(tx, +myt,7)(Ny)

As in (2.21), by comparing thép + k,)th homogeneous terms of the polynomials in
x, y, andu on both sides, we find the following equation

(3.13) {ﬂ [( 21iy )(TXg) ,01(tuy, +nyt, 7)(Vy) “(ZP)
' “L\b(ry, 1) I, 0(tx, +my,t,7)(Ny)

- {Tpn* [( 2ty >(Txg) L0attty ot D)) ]}(zp).
0(y, 1) M, 6 (x, +myt,7)(Ny)

By (3.12) and (3.13), we get the equation (3.8) ijv We leave the other cases to
the reader. O
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Recall the three modular subgroups

To(2) = {(j Z) €SLy(Z) |c=0 (moda} ,

(3.14) roQ) = {(i Z) eSLy(2)|b=0 (modZ)} ,

a b a b 1 0 0 1
F9={<C d)eSLz(Z)|<C d>5<0 l) or(l 0) (moda}.

LemMA 3.2 If p1(V) g1 — p1(T X) g1 = n-7*u?, then forp € N, {F) (t, 7))@
is a Jacobi form ovet2z)? x T'o(2); {F}y ,(t,7)}?") is a Jacobi form over2z)? x
ro2); (FY), ,(1,7)}?" is a Jacobi form ovet2z)? x Ty. If p1(T X)g1 = —nT*u?,
then{H (¢, 7)}?P) is a Jacobi form ove(2Z)? x SLo(Z). All of them are of index /2

and weightk + p.
The function{F . (., 7)}?P is a Jacobi form of index /2 and weightk — I + p

over (22)2 x SLy(2).

Proof. By (2.19) and (3.7), we know that thege¥ and H satisfy the second
equation of the definition of Jacobi forms (3.5).

Recall thatl' andST2ST generatd'o(2), and alsd™°(2) andI'y are conjugate to
I'o(2) by S and TS, respectively. By Lemma 3.1 and the above discussionffor

and H, we easily get the first equation of (3.5). O
Forg = (4%) € SLo(Z), let us use the notation
; t at+b
3.15 F t, — d -1 —2711mct2/(ct+d)F -
(3.15) @&, ) ms = (ct+d) e ct1d ci1d

to denote the action gf on a Jacobi fornF of indexm and weight.

By Lemma 3.1, for any function irf € {{FY}@?) H@P)} its modular trans-
formation { F}P) (g(t, 7)) ln/2.4+p (OF {F}2P) (g(t,T))|n/2.4-1+p) is still one of the
{{FV}@P} and H@P), Similar to Lemma 2.3, we have the following lemma.

LEmMA 3.3 For any g € SL(Z), let F(z,7) be one of thd FV}@») or H?P),
ThenF (g(t,7))ln/2,k+p is holomorphic in(z, 7) forr e R andr € H.

As in Lemma 2.3, this is the place where the index theory comes in to cancel part
of the poles of these functions. Of course, to use the index theory, we must use the
spin conditions oif X andV.

Now we recall the following result [Liu3, Lemma 3.4].

LemMma 3.4 For a (meromorphic) Jacobi forn# (z, t) of indexm and weightk
over L x T, assume thafF" may only have polar divisors of the form= (ct +d)/1
in C x H for some integers, d and! # 0. If F(g(t, t))|m.x IS holomorphic for € R,
7 € H for everyg € SLy(2), thenF (¢, t) is holomorphic for any € C andt € H.
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Proof of Theorem 3.1.By Lemmas 3.1, 3.2, and 3.3, we know that {if&" }2»)
and H @) satisfy the assumptions of Lemma 3.4. In fact, all of their possible polar
divisors are of the forni = (ct +d)/m wherec, d are integers andk is one of the
exponentgm ;}. The proof of Theorem 3.1 is complete. O

3.3. Family vanishing theorems for loop spac&he following lemma is estab-
lished in [EZ, Theorem 1.2].

LemmMA 3.5 Let F be a holomorphic Jacobi form of index and weightk. Then
for fixedt, F(z, t), if not identically zero, has exactBm zeros in any fundamental
domain for the action of the lattice dD.

This tells us that there are no holomorphic Jacobi forms of negative index. There-
fore, if m < 0, F must be identically zero. liz = 0, it is easy to see that must be
independent of.

Combining Lemma 3.5 with Theorem 3.1, we have the following result.

CoroLLARY 3.1 Let M, B,V, andn be as in Theorem 3.1. i = O, the equi-
variant Chern characters of the index bundle of the elliptic operators in Theorem
3.1 are independent of € SL. If n < 0, then these equivariant Chern characters
are identically zero; in particular, the Chern character of the index bundle of these
elliptic operators is zero.

Another quite interesting consequence of the above discussions is the following
family 4-vanishing theorem for loop space.

THEOREM 3.2 Assume thatV is connected and th&'-action is nontrivial. If
p1(TX)q1 = n-7*u? for some integern, then the equivariant Chern character of
the index bundle, especially the Chern character of the index bundle, of the elliptic
operator DX R®; 1Sy (T X —dimX) is identically zero.

Proof. In fact, by (3.11), we know that
(3.16) Sjmid(m;) =n.

So the case < 0 can never happen. #f = 0, then all the exponenis:;} are zero,
so theSt-action cannot have a fixed point. By (2.7) and (3.7), we know #hat 7)
is zero. Fom > 0, we can apply Lemmas 3.1, 3.4, and 3.5 to get the result. [

As remarked in [Liu3], the fact that the index B ® ®°°_; Syn (T X —dimX) is
zero may be viewed as a loop space analogue of the fagivasishing theorem of
Atiyah and Hirzebruch [AH] for compact connected spin manifolds with nontrivial
Sl-action. The reason is that this operator corresponds to the Dirac operator on loop
spaceL X, while the condition orp1(T X)¢: is a condition for the existence of an
equivariant spin structure ohX. This property is one of the most interesting and
surprising properties of loop space. Now, under the condition of Theorem 3.2, a very
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interesting question is to know when the index bundle of this elliptic operator is zero
in K(B).
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