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ON FAMILY RIGIDITY THEOREMS, I

KEFENG LIU and XIAONAN MA

0. Introduction. LetM,B be two compact smooth manifolds, and letπ :M → B

be a submersion with compact fiberX. Assume that a compact Lie groupG acts
fiberwise onM, that is, the action preserves each fiber ofπ . Let P be a family of
elliptic operators along the fiberX, commuting with the action ofG. Then the family
index ofP is

Ind(P )= KerP −CokerP ∈KG(B).(0.1)

Note that Ind(P ) is a virtualG-representation. Let chg(Ind(P )) with g ∈G be the
equivariant Chern character of Ind(P ) evaluated atg.

In this paper, we first prove a family fixed-point formula that expresses chg(Ind(P ))

in terms of the geometric data on the fixed pointsXg of the fiber ofπ . Then by ap-
plying this formula, we generalize the Witten rigidity theorems and several vanishing
theorems proved in [Liu3] for elliptic genera to the family case.

Let G = S1. A family elliptic operatorP is called rigid on the equivariant Chern
character level with respect to thisS1-action, if chg(Ind(P )) ∈H ∗(B) is independent
of g ∈ S1. When the baseB is a point, we recover the classical rigidity and vanishing
theorems. WhenB is a manifold, we get many nontrivial higher-order rigidity and
vanishing theorems by taking the coefficients of certain expansion of chg. For the
history of the Witten rigidity theorems, we refer the reader to [T], [BT], [K], [L2],
[H], [Liu1], and [Liu4]. The family vanishing theorems that generalize those vanishing
theorems in [Liu3], which in turn give us many higher-order vanishing theorems
in the family case. In a forthcoming paper, we extend our results to general loop
group representations and prove much more general family vanishing theorems that
generalize the results in [Liu3]. We believe there should be some applications of our
results to topology and geometry, which we hope to report on a later occasion.

This paper is organized as follows. In Section 1, we prove the equivariant family
index theorem. In Section 2, we prove the family rigidity theorem. In the last part
of Section 2, motivated by the family rigidity theorem, we state a conjecture. In
Section 3, we generalize the family rigidity theorem to the nonzero anomaly case. As
corollaries, we derive several vanishing theorems.
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1. Equivariant family index theorem. The purpose of this section is to prove
an equivariant family index theorem. As pointed out by Atiyah and Singer, we can
introduce equivariant families by proceeding as in [AS1] and [AS2]. Here we prove
it directly by using the local index theory as developed by Bismut.

This section is organized as follows: In Section 1.1, we state our main result,
Theorem 1.1. In Section 1.2, by using the local index theory, we prove Theorem 1.1.

1.1. The index bundle.Let M,B be two compact manifolds, letπ : M → B be
a fibration with compact fiberX, and assume that dimX = 2k. Let TX denote the
relative tangent bundle. LetW be a complex vector bundle onM and lethW be a
Hermitian metric onW .

Let hTX be a Riemannian metric onTX and let∇TX be the corresponding Levi-
Civita connection onTX along the fiberX. Then the Clifford bundleC(TX) is the
bundle of Clifford algebras overM whose fiber atx ∈ M is the Clifford algebra
C(TxX) of (T X,hTX).

We assume that the bundleTX is spin as a bundle onM. Let � = �+⊕�− be
the spinor bundle ofTX. We denote byc(·) the Clifford action ofC(TX) on�.

Let∇ be the connection on� induced by∇TX. Let∇W be a Hermitian connection
on (W,hW ) with curvatureRW . Let ∇�⊗W be the connection on�⊗W along the
fiberX:

∇�⊗W = ∇⊗1+1⊗∇W .(1.1)

Forb ∈ B, we denote byEb,E±,b the set of�∞-sections of�⊗W , �±⊗W over
the fiberXb. We regard theEb as the fiber of a smoothZ2-graded infinite-dimensional
vector bundle overB. Smooth sections ofE overB are identified to smooth sections
of �⊗W overM.

Let {ei} be an orthonormal basis of(T X,hTX); let {ei} be its dual basis.

Definition 1.1. Define the twisted Dirac operator to be

DX =
∑
i

c(ei)∇�⊗W
ei

.(1.2)

ThenDX is a family Dirac operator that acts fiberwise on the fibers ofπ . Forb ∈ B,
DX

b , denote the restriction ofDX to the fiberEb. DX interchangesE+ andE−. Let
DX± be the restrictions ofDX to E±. By Atiyah and Singer [AS2], the difference
bundle overB,

Ind
(
DX

)= KerDX+,b−KerDX−,b,(1.3)

is well defined in theK-groupK(B).
Now let G be a compact Lie group that acts fiberwise onM. We consider that

G acts as identity onB. Without loss of generality, we can assume thatG acts on
(T X,hTX) isometrically. We also assume that the action ofG lifts to � andW , and
that theG-action commutes with∇W .
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In this case, we know that Ind(DX) ∈ KG(B). Now we start to give a proof of a
local family fixed-point formula that extends [AS2, Proposition 2.2].

Proposition 1.1. There existVj ∈ Ĝwith j = 1, . . . , r, a finite number of sections
(sij+1, . . . , sij+1) with ij+1−ij = dimVj of�∞(B,E−) such that we can find a basis

{ej,l} of Vj , under which the mapD+,b : �∞(B,E+,b)⊕⊕r
j=1Vj → �∞(B,E−,b)

given by

D
X

+,b

(
s+"j,lλj,lej,l

)=DX+s+"j,lλj,lsij+l(1.4)

isG-equivariant and surjective. The vector spacesKerD
X

+,b form aG-vector bundle

KerD
X

+ on B, and the element[KerD
X

+]−⊕r
j=1Vj ∈ KG(B) depends only onDX

and not on the choice of{Vj } and the sections{si}.
Proof. Given b0 ∈ B, we can finda > 0 and a ballU(b0) ⊂ B aroundb0, such

that for anyb ∈ U(b0), a is not an eigenvalue ofDX,2
b .

LetE[0,a[
b = E

[0,a[
+b ⊕E

[0,a[
−b be the direct sum of the eigenspaces ofD

X,2
b associated

to the eigenvaluesλ ∈ [0,a[. By [BeGeV, Proposition 9.10],E[0,a[ forms a finite-
dimensional subbundleE[0,a[ ⊂ E overU(b0). Clearly,E[0,a[ is aG-vector bundle
onU(b0). By [S, Proposition 2.2], we have an isomorphism of vector bundles onB,

E[0,a[ = ⊕V∈Ĝ HomG

(
V,E[0,a[)⊗V,(1.5)

whereĜ denotes the space of all irreducible representations ofG. We can also find
ti,k ∈ �∞(U(b0),HomG(V,E

[0,a[
− )) such that forb ∈ U(b0), the elementsti,l form a

basis of HomG(V,E
[0,a[
− )b. Let{ei,l} be a basis ofVi . Then we can choose the sections

ti,kei,l ∈ �∞(B,E
[0,a[
− ) to be oursi . This proves the first part of the proposition locally.

The global version now follows easily by extending the above local sections of
�∞(U(b0),E−) together with a use of the partition of unity argument. This is essen-
tially the same as the proof of [AS2, Proposition 2.2].

By [S, Proposition 2.2], we have

Ind
(
DX

)=⊕V∈Ĝ HomG

(
V, Ind

(
DX

))⊗V(1.6)

and HomG(V, Ind(DX)) ∈K(B). We denote by(Ind(DX))G ∈K(B) theG-invariant
part of Ind(DX).

By composing the action ofG and the Chern character of HomG(V, Ind(DX)), we
get the equivariant Chern character chg(Ind(DX)) ∈H ∗(B).

Definition 1.2. We say that the operatorDX is rigid on the equivariant Chern
character level if chg(Ind(DX)) is constant ong ∈ G. More generally, we say that
DX is rigid on the equivariantK-Theory level if Ind(DX)= (Ind(DX))G.

In the rest of this paper, when we say thatDX is rigid, we always mean thatDX is
rigid on the equivariant Chern character level.
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Now let us calculate the equivariant Chern character chg(Ind(DX)) in terms of the
fixed-point data ofg.

Let T HM be aG-equivariant subbundle ofTM such that

TM = T HM⊕TX.(1.7)

Let PTX denote the projection fromTM to TX. If U ∈ T B, let UH denote the lift
of U in T HM, so thatπ∗UH = U .

Let hTB be a Riemannian metric onB, and assume thatW has the Riemannian
metric hTM = hTX ⊕ π∗hTB . Note that our final results are independent ofhTB .
Let ∇TM , ∇T B denote the corresponding Levi-Civita connections onM andB. Put
∇TX = PTX∇TM , which is a connection onTX. As shown in [B1, Theorem 1.9],
∇TX is independent of the choice ofhTB . Now the connection∇TX is well defined
on TX and onM. Let RTX be the corresponding curvature. We denote by∇ and
∇�⊗W the corresponding connections on� and�⊗W induced by∇TX and∇W .

Takeg ∈G and set

Mg = {x ∈M, gx = x}.(1.8)

Thenπ : Mg → B is a fibration with compact fiberXg. By [BeGeV, Proposition
6.14],TXg is naturally oriented inMg.

Let N denote the normal bundle ofMg; then N = TX/TXg. We denote the
differential of g by dg, which gives a bundle isometrydg : N → N . Sinceg lies
in a compact abelian Lie group, we know that there is an orthogonal decomposition
N = N(π)⊕⊕0<θ<πN(θ), wheredg|N(π) =− id, and for eachθ, 0 < θ < π , N(θ)

is a complex vector bundle on whichdg acts by multiplication byeiθ , and dimN(π)

is even. SoN(π) is also naturally oriented.
As the Levi-Civita connection∇TM preserves the decompositionTM = TMg

⊕0<θ≤π N(θ), the connection∇TX also preserves the decompositionTX = TXg

⊕0<θ≤π N(θ) on Mg. Let ∇TXg
, ∇N,∇N(θ) be the corresponding induced connec-

tions onTXg, N , N(θ), and letRTXg
, RN,RN(θ) be the corresponding curvatures.

Here we considerN(θ) as a real vector bundle. Then we have the decompositions:

RTX = RTXg ⊕RN, RN =⊕θR
N(θ).(1.9)

Definition 1.3. For 0< θ ≤ π , we write

chg

(
W,∇W

)= Tr

[
gexp

(−RW

2πi

)]
,

Â
(
TXg,∇TXg )= det1/2

(
(i/4π)RTXg

sinh
(
(i/4π)RTXg

)),

Âθ

(
N(θ),∇N(θ)

)= 1

i(1/2)dimN(θ)det1/2(1−gexp
(
(i/2π)RN(θ)

)) .
(1.10)
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Let chg(W), Â(T Xg), Âθ (N(θ)) denote the corresponding cohomology classes onMg.
If we denote by{xj ,−xj } (j = 1, . . . , l) the Chern roots ofN(θ), TXg such that

.xj define the orientation ofN(θ) andTXg, then

Â
(
TXg

)= .jxj/2

sinh(xj /2)
,

Âθ

(
N(θ)

)= 2−l.l
j=1

1

sinh1/2(xj + iθ)
=.l

j=1
e(1/2)(xj+iθ)

exj+iθ −1
.

(1.11)

We denote byπ∗ :H ∗(Mg)→H ∗(B) the intergration along the fiberXg.

Theorem 1.1. We have the following identity inH ∗(B):

chg

(
Ind

(
DX

))= π∗
{
.0<θ≤π Âθ

(
N(θ)

)
Â
(
TXg

)
chg(W)

}
.(1.12)

1.2. A heat kernel proof of Theorem 1.1.As Atiyah and Singer indicated in the end
of [AS2], we can proceed as in [AS1] and [AS2] to introduce an equivariant family,
and then to find a formula for the equivariant Chern character of the index bundle.
Here we use a different approach by combining the local relative index theory and
the equivariant technique to give a direct proof of the local version of Theorem 1.1.

We denote by0∇ = ∇TX ⊕π∗∇T B the connection onTM. Let S = ∇TM − 0∇.
By [B1, Theorem 1.9],〈S(·)·, ·〉hTM is a tensor independent ofhTB . ForU ∈ T HM,
we define a horizontal 1-formk onM by

k(U)=
∑
i

〈
S(U)ei,ei

〉
.(1.13)

Definition 1.4. Let ∇E denote the connection onE such that ifU ∈ T B ands is
a smooth section ofE overB, then

∇E
U s = ∇�⊗W

UH s.(1.14)

If U,V are smooth vector fields onB, we write

T
(
UH ,V H

)=−PTX
[
UH ,V H

]
,(1.15)

which is a tensor.
Let f1, . . . ,fm be a basis ofT B, and letf 1, . . . ,f m be the dual basis. Define

c(T )= 1

2
"α,βf

αf βc
(
T
(
f H
α ,f H

β

))
.(1.16)

Definition 1.5. For t > 0, let At be the Bismut superconnection constructed in
[B1, §3]:

At =
√

tDX+
(
∇E+ 1

2
k
)
− 1

4
√

t
c(T ).(1.17)
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It is clear thatAt is alsoG-invariant.
Let dvX denote the Riemannian volume element on the fiberX. Let 4 be the

scaling homomorphism from5(T ∗B) into itself:ω → (2πi)−(degω)/2ω.

Theorem 1.2. For any t > 0, the form4Trs[gexp(−A2
t )] is closed and its coho-

mology class is independent oft and representschg(Ind(DX)) in cohomology.

Proof. Just proceed as in [B1, §2(d)].

Theorem 1.3. We have the following identity:

(1.18) lim
t→0

4Trs
[
gexp

(−A2
t

)]
=
∫
Xg

Â
(
TXg,∇TXg )

.0<θ≤π Âθ

(
N(θ),∇N(θ)

)
chg

(
W,∇W

)
.

Proof. If A is a smooth section ofT ∗X⊗5(T ∗B)⊗End(�⊗W), we use the
notation

(∇�⊗W
ei

+A(ei)
)2 = 2k∑

i=1

(∇�⊗W
ei

+A(ei)
)2−∇�⊗W

"2k
i=1∇TX

ei
ei
−A

(
"2k

i=1∇TX
ei

ei
)
.

Let ∇′
t be the connection on5(T ∗B)⊗̂�⊗W on the fiberX as given by

∇′
t = ∇�⊗W + 1

2
√

t

〈
S(·)ej ,f H

α

〉
c(ej )f

α+ 1

4t

〈
S(·)f H

α ,f H
β

〉
f αf β.(1.19)

Let KX denote the scalar curvature of the fiber(X,hTX). By the Lichnerowicz for-
mula [B1, Theorem 3.5], we get

A2
t =−t

(∇′
t,ei

)2+ t

4
KX+ t

2
c(ei)c(ej )R

W(ei,ej )

+√
tc(ei)f

αRW
(
ei,f

H
α

)+ 1

2
f αf βRW

(
f H
α ,f H

β

)
.

(1.20)

LetPu(x,x
′,b)(b ∈ B,x,x′ ∈Xb) be the smooth kernel associated to exp(−A2

t ) with
respect todvX(x′). Then

4Trs
[
gexp

(−A2
t

)]= ∫
X

4Trs
[
gPt

(
g−1x,x,b

)]
dvX(x).(1.21)

By using standard estimates on the heat kernel, forb ∈ B, we can reduce the problem
of calculating the limit of (1.21) whent → 0 to an open neighbourhood�ε of X

g
b

in Xb. Using normal geodesic coordinates toX
g
b in Xb, we identify �ε to an ε-

neighbourhood ofXg in NXg/X. We know that, if(x,z) ∈ NXg/X with x ∈ Xg,
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then

g−1(x,z)= (
x,g−1z

)
.(1.22)

Let dvXg (x), dvNXg/X,x
with x ∈ Xg be the corresponding volume forms onTXg

andNXg/X induced byhTX. Let k(x,z)(x ∈Xg,z ∈NXg/X, |z|< ε) be defined by

dvX = k(x,z)dvXg (x)dvNXg/X
(z).(1.23)

Then it is clear that
k(x,0)= 1.

By the discussion following (1.21) and (1.23), we get

lim
t→0

4Trs
[
gexp

(−A2
t

)]
= lim

t→0

∫
�ε/8

4Trs
[
gPt

(
g−1x,x

)]
dvX(x)

= lim
t→0

∫
x∈Xg

∫
|Y |≤ε/8,Y∈NXg/X

4Trs
[
gPt

(
g−1(x,Y ),(x,Y )

)]
×k(x,Y )dvXg (x)dvNXg/X

(Y ).

(1.24)

By taking x0 ∈ X
g
b and using the finite propagation speed as in [B2, §11b], we

may assume that inXb we have the identification(T X)x0 � R2k with 0 ∈ R2k

representingx0, and that the extended fibration overR2k coincides with the given
fibration restricted toB(0,ε).

Take any vectorY ∈ R2k. We can trivialize5(T ∗B)⊗̂�⊗W by parallel transport
along the curveu→ uY with respect to∇′

t .
Let ρ(Y ) be a�∞-function overR2k, which is equal to 1 if|Y | ≤ ε/4, and equal

to 0 if |Y | ≥ ε/2. Let�TX be the ordinary Laplacian operator on(T X)x0. LetHx0 be
the vector space of smooth sections of the bundle(5(T ∗B)⊗̂�⊗W)x0 over(T X)x0.
For t > 0, letL1

t be the operator acting onHx0:

L1
t =

(
1−ρ2(Y )

)(− t�TX
)+ρ2(Y )A2

t .(1.25)

For t > 0, s ∈Hx0, we write

Fts(Y )= s

(
Y√
t

)
, L2

t = F−1
t L1

t Ft .(1.26)

Let {e1, . . . ,e2l′ } be an orthonormal basis of(T Xg)x0, and let{e2l′+1, . . . ,e2k} be an
orthonormal basis ofNXg/X,x0. LetL3

t be the operator obtained fromL2
t by replacing

the Clifford variablesc(ej ) with 1≤ j ≤ 2l′ by the operators(ej /
√

t)−√
t iej .
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Let P i
t (Y,Y ′) with Y,Y ′ ∈ (T X)x0 and|Y ′|< ε/4, i = 1,2,3 be the smooth kernel

associated to exp(−Li
t ) with respect to the volume elementdvTXx0

(Y ′). By using the
finite propagation speed method, there existc,C > 0, such that forY ∈ NXg/X,x0,
|Y | ≤ ε/8, andt ∈]0,1], we have∣∣Pt

(
g−1Y,Y

)
k(x0,Y )−P 1

t

(
g−1Y,Y

)∣∣≤ cexp

(
− C

t2

)
.(1.27)

Forα ∈ C(ej , iej )(1≤j≤2l′), let [α]max∈ C be the coefficient ofe1∧·· ·∧e2l′ in the
expansion ofα. Then, as in [B2, Proposition 11.12], ifY ∈NXg/X,

Trs
[
gP 1

t

(
g−1Y,Y

)]= (−2i)(1/2)dimXg

t(−1/2)dimNXg/X Trs

[
gP 3

t

(
g−1Y√

t
,

Y√
t

)]max

.

(1.28)

Let RTX|Mg,R
W
|Mg, . . . be the corresponding restrictions ofRTX,RW ,. . . to Mg. Let

∇ej be the ordinary differentiation operator on(T X)x0 in the directionej . By [ABoP,
Proposition 3.7] and (1.20), we have, ast → 0,

L3
t −→ L3

0 =−
2k∑

j=1

(
∇ej +

1

4

〈
RTX|MgY,ej

〉)2+RW
|Mg .(1.29)

By proceeding as in [B2, §11g–§11i], we obtain the following: there exist some
constantsγ > 0,c > 0,C > 0, r ∈ N such that fort ∈]0,1] andY,Y ′ ∈ (T X)x0,
we have ∣∣P 3

t

(
Y,Y ′)∣∣≤ c

(
1+|Y |+ ∣∣Y ′∣∣)r exp

(
−C

∣∣Y −Y ′∣∣2),
(1.30) ∣∣(P 3

t −P 3
0

)(
Y,Y ′)∣∣≤ ctγ

(
1+|Y |+ ∣∣Y ′∣∣)r exp

(
−C

∣∣Y −Y ′∣∣2).
From (1.28) and (1.30), we get

lim
t→0

∫
|Y |≤ε/8

Y∈NXg/X

4Trs
[
gP 1

t

(
g−1Y,Y

)]
dvNXg/X

(Y )

= lim
t→0

∫
|Y |≤ε/8

√
t

Y∈NXg/X

(−2i)(1/2)dimXg

4Trs
[
gP 3

t

(
g−1Y,Y

)]max
dvNXg/X

(Y )

=
∫
NXg/X

(−2i)(1/2)dimXg

4Trs
[
gP 3

0

(
g−1Y,Y

)]max
dvNXg/X

(Y ).

(1.31)

Now we define

A=−
2k∑

j=1

(
∇ej +

1

4

〈
RTX|MgY,ej

〉)2
.(1.32)
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By Mehler’s formula [G], the smooth kernelq(Y,Y ′) for Y,Y ′ ∈ TX associated to
exp(−A) is given by

q
(
Y,Y ′)= (4π)−kdet1/2

(
RTX/2

sinh
(
RTX/2

))exp

{
− 1

4

〈
RTX/2

tanh
(
RTX/2

) Y,Y

〉

− 1

4

〈
RTX/2

tanh
(
RTX/2

) Y ′,Y ′
〉
+ 1

2

〈
RTX/2

sinh
(
RTX/2

) eRTX/2Y,Y ′
〉}

.

(1.33)

From (1.9) and (1.33), we deduce forY ∈NXg/X,

q
(
g−1Y,Y

)= (4π)−kdet1/2
(

RTX/2

sinh
(
RTX/2

))

×exp

{
− 1

2

〈
RN/2

sinh
(
RN/2

)(cosh
(
RN/2

)−eR
N/2g−1

)
Y,Y

〉}
.

(1.34)

On the other hand, forY ∈N(θ), we have〈
RNeR

N/2

2sinh
(
RN/2

) g−1Y,Y

〉
=
〈

RN/2

sinh
(
RN/2

) 1

2

(
eR

N/2g−1+e−RN/2g
)
Y,Y

〉
.(1.35)

It is easy to see that

cosh

(
RN

2

)
− 1

2

(
eR

N/2g−1+e−RN/2g
)= 1

2

(
1−g−1)(eRN/2−e−RN/2g

)
.(1.36)

From (1.9), (1.34)–(1.36), we get

∫
NXg/X

q
(
g−1Y,Y

)
dvNXg/X

(Y )

=(4π)−(1/2)dimXg

det1/2

(
RTXg

/2

sinh
(
RTXg

/2
))[det1/2(1−g−1

|N
)
det1/2(1−ge−RN )]−1

.

(1.37)

We may and do assume that on the basis{em}2l′+1≤m≤2k, the matrix ofg has
diagonal blocks [

cos(θj ) −sin(θj )
sin(θj ) cos(θj )

]
, 0 < θj ≤ π.

Then one verifies easily that the action ofg on� is given by

g =.l′+1≤j≤k

(
cos

(
θj

2

)
+sin

(
θj

2

)
c(e2j−1)c(e2j )

)
.(1.38)
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By (1.29) and (1.38), we know that

Trs
[
gP 3

0

(
g−1Y,Y

)]
=.l′+1≤j≤k

(
−2i sin

(
θj

2

))
Tr
[
gexp

(−RW
|Mg

)]
q
(
g−1Y,Y

)
.

(1.39)

From (1.24), (1.27), (1.31), (1.37), and (1.39), we finally arrive at the wanted
formula (1.18).

By Theorems 1.2 and 1.3, we now have the complete proof of Theorem 1.1.

2. Family rigidity theorem. This section is organized as follows. In Section 2.1,
we state our main theorem of the paper: the family rigidity theorem. In Section 2.2,
we prove it by using the equivariant family index theorem and the modular invariance.
In Section 2.3, motivated by the family Witten rigidity theorem, we state a conjecture
about aK-theory level rigidity theorem for elliptic genera.

Throughout this section, we use the notation of Section 1 and takeG= S1.

2.1. Family rigidity theorem.Let π :M → B be a fibration of compact manifolds
with fiber X and dimX = 2k. We assume that theS1 acts fiberwise onM, andTX

has anS1-equivariant spin structure. As in [AH], by lifting to the double cover ofS1,
the second condition is always satisfied. LetV be a real vector bundle onM with
structure group Spin(2l). Similarly, we can assume thatV has anS1-equivariant spin
structure without loss of generality.

The purpose of this part is to prove the elliptic operators introduced by Witten [W]
are rigid in the family case, at least at the equivariant Chern character level. Let us
recall them more precisely.

For a vector bundleE onM, let

St (E)= 1+ tE+ t2S2E+·· · ,
5t (E)= 1+ tE+ t252E+·· ·

(2.1)

be the symmetric and exterior power operations inK(M)[[t]]. Let

@′
q(T X)=⊗∞

n=15qn(T X)⊗∞
m=1Sqm(T X),

@q(T X)=⊗∞
n=15−qn−1/2(T X)⊗∞

m=1Sqm(T X),

@−q(T X)=⊗∞
n=15qn−1/2(T X)⊗∞

m=1Sqm(T X).

(2.2)

We also define the following elements inK(M)[[q1/2]]:
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@′
q(T X | V )=⊗∞

n=15qn(V )⊗∞
m=1Sqm(T X),

@q(T X | V )=⊗∞
n=15−qn−1/2(V )⊗∞

m=1Sqm(T X),

@−q(T X | V )=⊗∞
n=15qn−1/2(V )⊗∞

m=1Sqm(T X),

@∗
q(T X | V )=⊗∞

n=15−qn(V )⊗∞
m=1Sqm(T X).

(2.3)

Letp1(·)S1 denote the firstS1-equivariant Pontrjagin class, and let�(V )=�+(V )⊕
�−(V ) be the spinor bundle ofV .

In the following sections, we denote byDX⊗W the Dirac operator on�⊗W as
defined in Section 1. We also writedX

s =DX⊗�(TX). The following theorem is the
family analogue of the Witten rigidity theorems as proved in [BT], [T], and [Liu4].

Theorem 2.1. (a)The family operatorsdX
s ⊗@′

q(T X),DX⊗@q(TX), andDX⊗
@−q(T X) are rigid.

(b) If p1(V )S1 = p1(T X)S1, thenDX ⊗�(V )⊗@′
q(T X | V ), DX ⊗ (�+(V )−

�−(V ))⊗@∗
q(T X | V ), DX⊗@q(TX | V ), andDX⊗@−q(T X | V ) are rigid.

2.2. Proof of the family rigidity theorem.For τ ∈ H = {τ ∈ C; Im τ > 0}, q =
e2πiτ , let

θ3(v,τ )= c(q).∞
n=1

(
1+qn−1/2e2πiv

)
.∞

n=1

(
1+qn−1/2e−2πiv

)
,

θ2(v,τ )= c(q).∞
n=1

(
1−qn−1/2e2πiv

)
.∞

n=1

(
1−qn−1/2e−2πiv

)
,

θ1(v,τ )= c(q)q1/82cos(πv).∞
n=1

(
1+qne2πiv

)
.∞

n=1

(
1+qne−2πiv

)
,

θ(v,τ )= c(q)q1/82sin(πv).∞
n=1

(
1−qne2πiv

)
.∞

n=1

(
1−qne−2πiv

)
(2.4)

be the classical Jacobi theta functions (see [Ch]), wherec(q)=.∞
n=1(1−qn).

Let g = e2πit ∈ S1 be a generator of the action group. Let{Mα} be the fixed
submanifolds of the circle action. Letπ : Mα → B be a submersion with fiberXα.
We have the following equivariant decomposition ofTX:

TX|Mα =N1⊕·· ·⊕Nh⊕TXα.(2.5)

HereNγ is a complex vector bundle such thatg acts on it bye2πimγ t . We denote the

Chern roots ofNγ by {2πix
j
γ }, and the Chern roots ofTXα⊗RC by {±2πiyj }. We

write dimCNγ = d(mγ ) and dimXα = 2kα.
Similarly, let

V|Mα = V1⊕·· ·⊕Vl0(2.6)

be the equivariant decomposition ofV restricted toMα. Assume thatg acts onVv by
e2πinvt , where somenv may be zero. We denote the Chern roots ofVv by 2πiu

j
v . Let

us write dimRVv = 2d(nv).
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For f (x) a holomorphic function, we denote byf (y)(T Xg) = .jf (yj ) the
symmetric polynomial that gives characteristic class ofTXg, and we use the same
notation forNγ . Now we define some functions onC×H with values inH ∗(B):

Fds (t,τ )="απ∗
[(

2πy
θ1(y,τ )

θ(y,τ )

)(
TXg

)
.γ

(
i−1θ1(xγ +mγ t,τ )

θ(xγ +mγ t,τ )

)
(Nγ )

]
,

FD(t,τ )="απ∗
[(

2πy
θ2(y,τ )

θ(y,τ )

)(
TXg

)
.γ

(
i−1θ2(xγ +mγ t,τ )

θ(xγ +mγ t,τ )

)
(Nγ )

]
,

F−D(t,τ )="απ∗
[(

2πy
θ3(y,τ )

θ(y,τ )

)(
TXg

)
.γ

(
i−1θ3(xγ +mγ t,τ )

θ(xγ +mγ t,τ )

)
(Nγ )

]
,

FV
ds

(t,τ )= i−k"απ∗
[(

2πiy

θ(y,τ )

)(
TXg

) .vθ1(uv+nvt,τ )(Vv)

.γ θ(xγ +mγ t,τ )(Nγ )

]
,

FV
D (t,τ )= i−k"απ∗

[(
2πiy

θ(y,τ )

)(
TXg

) .vθ2(uv+nvt,τ )(Vv)

.γ θ(xγ +mγ t,τ )(Nγ )

]
,

FV
−D(t,τ )= i−k"απ∗

[(
2πiy

θ(y,τ )

)(
TXg

) .vθ3(uv+nvt,τ )(Vv)

.γ θ(xγ +mγ t,τ )(Nγ )

]
,

FV
D∗(t,τ )= i−k+l"απ∗

[(
2πiy

θ(y,τ )

)(
TXg

) .vθ(uv+nvt,τ )(Vv)

.γ θ(xγ +mγ t,τ )(Nγ )

]
.

(2.7)

By Theorem 1.1 and [LaM, page 238], we get, fort ∈ [0,1]\Q andg = e2πit ,

Fds (t,τ )= chg

(
Ind

(
dX
s ⊗@′

q(T X)
))

,

FD(t,τ )= q−k/8chg

(
Ind

(
DX⊗@q(TX)

))
,

F−D(t,τ )= q−k/8chg

(
Ind

(
DX⊗@−q(T X)

))
,

FV
ds

(t,τ )= c(q)l−kq(l−k)/8chg

(
Ind

(
DX⊗�(V )⊗@′

q(T X | V )
))

,

FV
D (t,τ )= c(q)l−kq−k/8chg

(
Ind

(
DX⊗@q(TX | V )

))
FV
−D(t,τ )= c(q)l−kq−k/8chg

(
Ind

(
DX⊗@−q(T X | V )

))
,

FV
D∗(t,τ )=(−1)lc(q)l−kq(l−k)/8chg

(
Ind
(
DX⊗(�+(V )−�−(V )

)⊗@∗
q(T X |V )

))
.

(2.8)

Considered as functions of(t,τ ), we can obviously extend theseF andFV to
meromorphic functions onC×H. Note that these functions are holomorphic inτ . The
rigidity theorems are equivalent to the statement that theseF andFV are independent
of t . As explained in [Liu4], we prove it in two steps: (i) we show that theseF, FV
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are doubly periodic int ; (ii) we prove they are holomorphic int . Then it is trivial to
see that they are constant int .

Lemma 2.1. (a) For a,b ∈ 2Z, Fds (t,τ ),FD(t,τ ), and F−D(t,τ ) are invariant
under the action

U : t −→ t+aτ +b.(2.9)

(b) If p1(V )S1 = p1(T X)S1, thenFV
ds

(t,τ ),FV
D (t,τ ), FV

−D(t,τ ), andFV
D∗(t,τ ) are

invariant underU .

Proof. Recall that we have the following transformation formulas of theta- func-
tions (see [Ch]):

θ(t+1,τ )=−θ(t,τ ), θ(t+τ,τ )=−q−1/2e−2πit θ(t,τ ),

θ1(t+1,τ )=−θ1(t,τ ), θ1(t+τ,τ )= q−1/2e−2πit θ1(t,τ ),

θ2(t+1,τ )= θ2(t,τ ), θ2(t+τ,τ )=−q−1/2e−2πit θ2(t,τ ),

θ3(t+1,τ )= θ3(t,τ ), θ3(t+τ,τ )= q−1/2e−2πit θ3(t,τ ).

(2.10)

From these, forθv = θ,θ1,θ2,θ3 and(a,b) ∈ (2Z)2, l ∈ Z, we get

θv
(
x+ l(t+aτ +b),τ

)= e−πi(2lax+2l2at+l2a2τ)θv(x+ lt, τ ),(2.11)

which proves (a).
To prove (b), note that sincep1(V )S1 = p1(T X)S1, we have

"v,j

(
uj
v +nvt

)2 ="j(yj )
2+"γ,j

(
xj
γ +mγ t

)2
.(2.12)

This implies the equalities

"v,jnvu
j
v ="γ,jmγ x

j
γ ,

(2.13)
"γm

2
γ d(mγ )="vn

2
vd(nv),

which, together with (2.11), prove (b).

For g = (
a b
c d

) ∈ SL2(Z), we define its modular transformation onC×H by

g(t,τ )=
(

t

cτ +d
,
aτ +b

cτ +d

)
.(2.14)

The two generators of SL2(Z) are

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
,(2.15)



464 LIU AND MA

which act onC×H in the following way:

S(t,τ ) =
(

t

τ
,−1

τ

)
, T (t,τ ) = (t,τ +1).(2.16)

Let Eτ be the scaling homomorphism from5(T ∗B) into itself:β → τ (1/2)degββ.

Lemma 2.2. (a)We have the following identities:

Fds

(
t

τ
,−1

τ

)
= ikEτFD(t,τ ), Fds (t,τ +1)= Fds (t,τ ),

F−D

(
t

τ
,−1

τ

)
= ikEτF−D(t,τ ), FD(t,τ +1)= F−D(t,τ )e−(πi/4)k.

(2.17)

(b) If p1(V )S1 = p1(T X)S1, then we have

FV
ds

(
t

τ
,−1

τ

)
=
(τ

i

)(l−k)/2
ikEτF

V
D (t,τ ), FV

ds
(t,τ +1)= e−(πi/4)(k−l)F V

ds
(t,τ ),

FV
−D

(
t

τ
,−1

τ

)
=
(τ

i

)(l−k)/2
ikEτF

V
−D(t,τ ), FV

D (t,τ +1)= e−(πi/4)kFV
−D(t,τ ),

FV
D∗

(
t

τ
,−1

τ

)
=
(τ
i

)(l−k)/2
ik−lEτF

V
D∗(t,τ), FV

D∗(t,τ+1)=e−(πi/4)(k−l)F V
D∗(t,τ).

(2.18)

Proof. By [Ch], we have the following transformation formulas for the Jacobi
theta-functions:

θ

(
t

τ
,−1

τ

)
= 1

i

√
τ

i
eπit2/τ θ(t,τ ), θ(t,τ +1)= eπi/4θ(t,τ ),

θ1

(
t

τ
,−1

τ

)
=
√

τ

i
eπit2/τ θ2(t,τ ), θ1(t,τ +1)= eπi/4θ1(t,τ ),

θ2

(
t

τ
,−1

τ

)
=
√

τ

i
eπit2/τ θ1(t,τ ), θ2(t,τ +1)= θ3(t,τ ),

θ3

(
t

τ
,−1

τ

)
=
√

τ

i
eπit2/τ θ3(t,τ ), θ3(t,τ +1)= θ2(t,τ ).

(2.19)

The action ofT on the functionsF andFV are quite simple, and we leave the
proof to the reader. Here we only check the action ofS. By (2.19), we get
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Fds

(
t

τ
,−1

τ

)
="απ∗

[(
2πy

θ1(y,−1/τ)

θ(y,−1/τ)

)(
TXg

)
.γ

(
i−1θ1

(
xγ +mγ (t/τ ,−1/τ)

)
θ
(
xγ +mγ (t/τ ,−1/τ)

) )(Nγ )

]

="αi
kτ−kαπ∗

[(
2πτy

θ1(τy,τ )

θ(τy,τ )

)(
TXg

)
.γ

(
i−1θ1

(
τxγ +mγ t,τ

)
θ
(
τxγ +mγ t,τ

) )(Nγ )

]
.

(2.20)

If α is a differential form onB, we denote by{α}(p) the component of degreep of
α. It is easy to see that (2.17) forFds follows from the following identity:

τ−kα

{
π∗
[(

τy
θ1(τy,τ )

θ(τy,τ )

)(
TXg

)
.γ

(
i−1θ1

(
τxγ +mγ t,τ

)
θ
(
τxγ +mγ t,τ

) )(Nγ )

]}(2p)

= τp

{
π∗
[(

y
θ1(y,τ )

θ(y,τ )

)(
TXg

)
.γ

(
i−1θ1

(
xγ +mγ t,τ

)
θ
(
xγ +mγ t,τ

) )(Nγ )

]}(2p)

.

(2.21)

By looking at the degree-2(p+kα) part, that is, the(p+kα)th homogeneous terms
of the polynomials inx andy, on both sides, we immediately get (2.21).

From (2.7), (2.20), and (2.21), we obtain{
Fds

(
t

τ
,−1

τ

)}(2p)

= ikτp
{
FD(t,τ )

}(2p)
,(2.22)

which completes the proof of (2.17) forFds . The other identities in (2.17) can be
verified in the same way.

By using (2.12), (2.19), and the same trick as in the proof of (2.17), we can obtain
the identities in (2.18). This completes the proof of Lemma 2.2.

The following lemma implies that the index theory comes in to cancel part of the
poles of the functionsF andFV .

Lemma 2.3. If TX andV are spin, then all of theF andFV above are holomor-
phic in (t,τ ) for (t,τ ) ∈ R×H.
Proof. Let z = e2πit andl′ = dimM. We consider theseF andFV as meromor-

phic functions of two complex variables(z,q) with values inH ∗(B).
(i) Let N = maxα,γ |mγ |. Denote byDN ⊂ C2 the domain

|q|1/N < |z|< |q|−1/N , 0 < |q|< 1.(2.23)

Letfα be the contribution of the componentMα in the functionsF ’s andc(q)k−lF V ’s.
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Then inDN , by (2.4) and (2.7), it is easy to see thatfα has expansions of the form

q−a/8.γ

(
zmγ −1

)−l′d(mγ )
"∞

n=0bα,n(z)q
n,(2.24)

wherea is an integer,hα(z,q) ="∞
n=1bα,n(z)q

n is a holomorphic function of(z,q) ∈
DN , andbα,n(z) are polynomial functions ofz. So as meromorphic functions, these
F andc(q)k−lF V have expansions of the form

q−a/8"∞
n=0bn(z)q

n(2.25)

with bn(z) rational function ofz, which can only have poles on the unit circle|z| =
1⊂DN .

Now if we multiply theseF andc(q)k−lF V by

f (z)=.α.γ

(
1−zmγ

)l′d(mγ )
,(2.26)

we get holomorphic functions that have convergent power series expansions of the
form

q−a/8"∞
n=0cn(z)q

n(2.27)

with {cn(z)} polynomial functions ofz in DN .
By comparing the above two expansions, we get forn ∈ N,

cn(z)= f (z)bn(z).(2.28)

(ii) On the other hand, we can expand the Witten element@ into formal power
series of the form"∞

n=0Rnq
n with Rn ∈ K(M). So for t ∈ [0,1] \Q,z = e2πit , we

get a formal power series ofq for theseF andc(q)k−lF V :

q−a/8"∞
n=0chz

(
Ind

(
DX⊗Rn

))
qn(2.29)

with a ∈ Z.
By (1.6), we know that

chz

(
Ind

(
DX⊗Rn

))="
N(n)
m=−N(n)am,nz

m,(2.30)

with am,n ∈H ∗(B), andN(n) being some positive integer depending onn.
By comparing (2.7), (2.25), and (2.30), we get fort ∈ [0,1]\Q,z = e2πit ,

bn(z)="
N(n)
m=−N(n)am,nz

m.(2.31)

Since both sides are analytic functions ofz, this equality holds for anyz ∈ C.
By (2.28), (2.31), and the Weierstrass preparation theorem, we deduce that

q−a/8"∞
n=0bn(z)q

n = 1

f (z)
q−a/8"∞

n=1cn(z)q
n(2.32)

is holomorphic inDN . Obviously,R × H lies inside this domain. The proof of
Lemma 2.3 is complete.
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Proof of the family rigidity theorem for spin manifolds.We prove that theseF
andFV are holomorphics onC×H, which implies the rigidity theorem we want
to prove.

We denote byF one of the functions:F , FV , EτF , and EτF
V . From their

expressions, we know the possible polar divisors ofF in C×H are of the form
t = (n/l)(cτ +d) with n,c,d, l intergers and(c,d)= 1 or c = 1 andd = 0.

We can always find intergersa,b such thatad − bc = 1. Then the matrixg =(
d −b−c a

) ∈ SL2(Z) induces an action

F
(
g(t,τ )

)= F

(
t

−cτ +a
,

dτ −b

−cτ +a

)
.(2.33)

Now, if t = (n/l)(cτ + d) is a polar divisor ofF(t,τ ), then one polar divisor of
F(g(t,τ )) is given by

t

−cτ +a
= n

l

(
c

dτ −b

−cτ +a
+d

)
,(2.34)

which gives exactlyt = n/l.
But by Lemma 2.2, we know that up to some constant,F(g(t,τ )) is still one of

theseF , FV , EτF , andEτF
V . This contradicts Lemma 2.3; therefore, this completes

the proof of Theorem 2.1.

2.3. A conjecture.Motivated by the family rigidity theorem, Theorem 2.1, we and
Zhang would like to make the following conjecture.

Conjecture 2.1. The operators considered in Theorem 2.1 are rigid on the equi-
variantK-theory level.

This means that as elements inKG(B), the equivariant index bundles of those
elliptic operators actually lie inK(B). Note that this conjecture is more refined than
Theorem 2.1, since the equivariant Chern character map is not an isomorphism. In
[Z], Zhang proved this for the canonical Spinc-Dirac operator on almost complex
manifolds.

3. Jacobi forms and vanishing theorems. In this section, we generalize the rigid-
ity theorems in the previous section to the nonzero anomaly case, from which we
derive a family of holomorphic Jacobi forms. As corollaries, we get many family
vanishing theorems, especially a familŷU-vanishing theorem for loop space. This
section generalizes some results of [Liu3, §3] to the family case.

This section is organized as follows: In Section 3.1, we state the generalization
of the rigidity theorems to the nonzero anomaly case. In Section 3.2, we prove this
result. In Section 3.3, as corollaries, we derive several family vanishing theorems.

We keep the notation of Section 2.
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3.1. Nonzero anomaly.Recall that the equivariant cohomology groupH ∗
S1(M,Z)

of M is defined by

H ∗
S1(M,Z)=H ∗(M×S1 ES1,Z

)
,(3.1)

whereES1 is the usual universalS1-principal bundle over the classifying space of
S1. SoH ∗

S1(M,Z) is a module overH ∗(BS1,Z) induced by the projectionπ :M×S1

ES1 → BS1. Letp1(V )S1,p1(T X)S1 ∈H ∗
S1(M,Z) be the equivariant first Pontrjagin

classes ofV andTX, respectively. Also recall that

H ∗(BS1,Z
)= Z[[u]](3.2)

with u being a generator of degree 2.
In this section, we suppose that there exists some integern ∈ Z such that

p1(V )S1 −p1(T X)S1 = n ·π∗u2.(3.3)

As in [Liu3], we calln the anomaly to rigidity.
Following [Liu4], we introduce the following elements inK(M)[[q1/2]]:

@′
q(T X | V )v =⊗∞

n=15qn(V −dimV )⊗∞
m=1Sqm(T X−dimX),

@q(T X | V )v =⊗∞
n=15−qn−1/2(V −dimV )⊗∞

m=1Sqm(T X−dimX),

@−q(T X | V )v =⊗∞
n=15qn−1/2(V −dimV )⊗∞

m=1Sqm(T X−dimX),

@∗
q(T X | V )v =⊗∞

n=15−qn(V −dimV )⊗∞
m=1Sqm(T X−dimX).

(3.4)

For g = e2πit , q = e2πiτ , with (t,τ ) ∈ R×H, we denote the equivariant Chern
character of the index bundle ofDX ⊗�(V )⊗@′

q(T X | V )v, DX ⊗@q(TX | V )v,

DX⊗@−q(T X | V )v, andDX⊗(�+(V )−�−(V ))⊗@∗
q(T X | V )v by 2lF V

ds,v
(t,τ ),

FV
D,v(t,τ ), FV

−D,v(t,τ ), and(−1)lF V
D∗,v(t,τ ), respectively. Similarly, we denote by

H(t,τ ) the equivariant Chern character of the index bundle of

DX⊗⊗∞
m=1Sqm(T X−dimX).

Later we consider these functions as the extensions of these functions from the unit
circle with variablee2πit to the complex plane with values inH ∗(B). Forα a differ-
ential form onB, we denote by{α}(p) the degree-p component ofα.

The purpose of this section is to prove the following theorem, which generalizes
the family rigidity theorems to the nonzero anomaly case.

Theorem 3.1. Assumep1(V )S1 − p1(T X)S1 = n · π∗u2 with n ∈ Z. Then for
p ∈ N, {FV

ds,v
(t,τ )}(2p), {FV

D,v(t,τ )}(2p), {FV
−D,v(t,τ )}(2p) are holomorpic Jacobi

forms of indexn/2 and weightk+p over(2Z)2
�F withF equal toF0(2),F0(2),Fθ ,

respectively, and{FV
D∗,v(t,τ )}(2p) is a holomorphic Jacobi form of indexn/2 and

weightk− l+p over(2Z)2
�SL2(Z).
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See Section 3.2 for the definitions of these modular subgroups,F0(2),F0(2),
andFθ .

3.2. Proof of Theorem 3.1.Recall that a (meromorphic) Jacobi form of index
m and weightl over L�F, whereL is an integral lattice in the complex planeC
preserved by the modular subgroupF ⊂ SL2(Z), is a (meromorphic) functionF(t,τ )

onC×H such that

F

(
t

cτ +d
,
aτ +b

cτ +d

)
= (cτ +d)le2πim(ct2/(cτ+d))F (t,τ ),

F (t+λτ +µ,τ)= e−2πim(λ2τ+2λt)F (t,τ ),

(3.5)

where(λ,µ) ∈ L andg = (
a b
c d

) ∈ F. If F is holomorphic onC×H, we say thatF
is a holomorphic Jacobi form.

Now, we start to prove Theorem 3.1. Letg = e2πit ∈ S1 be a generator of the action
group. Forα = 1,2,3, let

θ ′(0,τ )= ∂

∂t
θ(t,τ )|t=0, θα(0,τ )= θα(t,τ )|t=0.(3.6)

By applying Theorem 1.1, we get

FV
ds,v

(t,τ )= (2π)−k θ
′(0,τ )k

θ1(0,τ )l
F V

ds
(t,τ ),

FV
D,v(t,τ )= (2π)−k θ

′(0,τ )k

θ2(0,τ )l
F V

D (t,τ ),

FV
−D,v(t,τ )= (2π)−k θ

′(0,τ )k

θ3(0,τ )l
F V
−D(t,τ ),

FV
D∗,v(t,τ )= (2π)l−kθ ′(0,τ )k−lF V

D∗(t,τ ),

H(t,τ )= (2πi)−k"απ∗
[(

2πiy

θ(y,τ )

)(
TXg

) θ ′(0,τ )k

.γ θ(xγ +mγ t,τ )(Nγ )

]
.

(3.7)

Lemma 3.1. If p1(V )S1 −p1(T X)S1 = n ·π∗u2, we have

FV
ds,v

(
t

τ
,−1

τ

)
= τ keπint2/τEτF

V
D,v(t,τ ), FV

ds,v
(t,τ +1)= FV

ds,v
(t,τ ),

FV
−D,v

(
t

τ
,−1

τ

)
= τ keπint2/τEτF

V
−D,v(t,τ ), FV

D,v(t,τ +1)= FV
−D,v(t,τ ),

FV
D∗,v

(
t

τ
,−1

τ

)
= τ k−leπint2/τEτF

V
D∗,v(t,τ ), FV

D∗,v(t,τ +1)= FV
D∗,v(t,τ ).

(3.8)
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If p1(T X)S1 =−n ·π∗u2, then

H

(
t

τ
,−1

τ

)
= τ keπint2/τEτH(t,τ ), H(t,τ +1)=H(t,τ ).(3.9)

Proof. First recall that the condition on the first equivariant Pontrjagin classes
implies the equality

"v,j

(
uj
v +nvt

)2−("j(yj )
2+"γ,j

(
xj
γ +mγ t

)2)= n · t2,(3.10)

which gives the equalities

"vn
2
vd(nv)−"γm

2
γ d(mγ )= n,

"v,jnvu
j
v ="γ,jmγ x

j
γ ,(3.11)

"v,j

(
uj
v

)2 ="j(yj )
2+"γ,j

(
xj
γ

)2
.

The action ofT on the functionsF andFV is quite easy to check, and we leave this
detail to the reader. We only check the action ofS. By (2.7), (2.19), (3.7), and (3.11),
we have

FV
ds,v

(
t

τ
,−1

τ

)
= (2πi)−k"απ∗

×
[
θ ′
(
0,−1/τ

)k
θ1
(
0,−1/τ

)l ( 2πiy

θ
(
y,−1/τ

))(TXg
) .vθ1

(
uv+nv(t/τ ),−1/τ

)
(Vv)

.γ θ
(
xγ +mγ (t/τ),−1/τ)(Nγ

)]

= (2πi)−kτ keπi(nt2/τ)"απ∗

×
[
θ ′(0,τ )k

θ1(0,τ )l

(
2πiy

θ(τy,τ )

)(
TXg

) .vθ1(τuv+nvt,τ )(Vv)

.γ θ(τxγ +mγ t,τ )(Nγ )

]
.

(3.12)

As in (2.21), by comparing the(p+kα)th homogeneous terms of the polynomials in
x, y, andu on both sides, we find the following equation

(3.13)

{
π∗
[(

2πiy

θ(τy,τ )

)(
TXg

) .vθ1(τuv+nvt,τ )(Vv)

.γ θ(τxγ +mγ t,τ )(Nγ )

]}(2p)

=
{
τpπ∗

[(
2πiy

θ(y,τ )

)(
TXg

) .vθ1(uv+nvt,τ )(Vv)

.γ θ(xγ +mγ t,τ )(Nγ )

]}(2p)

.

By (3.12) and (3.13), we get the equation (3.8) forFV
ds,v

. We leave the other cases to
the reader.
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Recall the three modular subgroups

F0(2)=
{(

a b

c d

)
∈ SL2(Z) | c ≡ 0 (mod2)

}
,

F0(2)=
{(

a b

c d

)
∈ SL2(Z) | b ≡ 0 (mod2)

}
,(3.14)

Fθ =
{(

a b

c d

)
∈ SL2(Z) |

(
a b

c d

)
≡
(

1 0
0 1

)
or

(
0 1
1 0

)
(mod2)

}
.

Lemma 3.2. If p1(V )S1 −p1(T X)S1 = n ·π∗u2, then forp ∈ N, {FV
ds,v

(t,τ )}(2p)

is a Jacobi form over(2Z)2
�F0(2); {FV

D,v(t,τ )}(2p) is a Jacobi form over(2Z)2
�

F0(2); {FV
−D,v(t,τ )}(2p) is a Jacobi form over(2Z)2

�Fθ . If p1(T X)S1 =−nπ∗u2,

then{H(t,τ )}(2p) is a Jacobi form over(2Z)2
�SL2(Z). All of them are of indexn/2

and weightk+p.
The function{FV

D∗,v(t,τ )}(2p) is a Jacobi form of indexn/2 and weightk− l+p

over(2Z)2
�SL2(Z).

Proof. By (2.19) and (3.7), we know that theseFV and H satisfy the second
equation of the definition of Jacobi forms (3.5).

Recall thatT andST 2ST generateF0(2), and alsoF0(2) andFθ are conjugate to
F0(2) by S andT S, respectively. By Lemma 3.1 and the above discussion, forFV

andH , we easily get the first equation of (3.5).

For g = (
a b
c d

) ∈ SL2(Z), let us use the notation

F(g(t,τ ))|m,l = (cτ +d)−le−2πimct2/(cτ+d)F

(
t

cτ +d
,
aτ +b

cτ +d

)
(3.15)

to denote the action ofg on a Jacobi formF of indexm and weightl.
By Lemma 3.1, for any function inF ∈ {{FV }(2p),H (2p)}, its modular trans-

formation {F }(2p)(g(t,τ ))|n/2,k+p (or {F }(2p)(g(t,τ ))|n/2,k−l+p) is still one of the
{{FV }(2p)} andH(2p). Similar to Lemma 2.3, we have the following lemma.

Lemma 3.3. For any g ∈ SL2(Z), let F(t,τ ) be one of the{FV }(2p) or H(2p).
ThenF(g(t,τ ))|n/2,k+p is holomorphic in(t,τ ) for t ∈ R andτ ∈ H.

As in Lemma 2.3, this is the place where the index theory comes in to cancel part
of the poles of these functions. Of course, to use the index theory, we must use the
spin conditions onTX andV .

Now we recall the following result [Liu3, Lemma 3.4].

Lemma 3.4. For a (meromorphic) Jacobi formF(t,τ ) of indexm and weightk
overL�F, assume thatF may only have polar divisors of the formt = (cτ +d)/ l

in C×H for some integersc,d andl  = 0. If F(g(t,τ ))|m,k is holomorphic fort ∈ R,
τ ∈ H for everyg ∈ SL2(Z), thenF(t,τ ) is holomorphic for anyt ∈ C andτ ∈ H.
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Proof of Theorem 3.1.By Lemmas 3.1, 3.2, and 3.3, we know that the{FV }(2p)

andH(2p) satisfy the assumptions of Lemma 3.4. In fact, all of their possible polar
divisors are of the forml = (cτ +d)/m wherec,d are integers andm is one of the
exponents{mj }. The proof of Theorem 3.1 is complete.

3.3. Family vanishing theorems for loop space.The following lemma is estab-
lished in [EZ, Theorem 1.2].

Lemma 3.5. LetF be a holomorphic Jacobi form of indexm and weightk. Then
for fixedτ , F(t,τ ), if not identically zero, has exactly2m zeros in any fundamental
domain for the action of the lattice onC.

This tells us that there are no holomorphic Jacobi forms of negative index. There-
fore, if m < 0, F must be identically zero. Ifm = 0, it is easy to see thatF must be
independent oft .

Combining Lemma 3.5 with Theorem 3.1, we have the following result.

Corollary 3.1. Let M,B,V , and n be as in Theorem 3.1. Ifn = 0, the equi-
variant Chern characters of the index bundle of the elliptic operators in Theorem
3.1 are independent ofg ∈ S1. If n < 0, then these equivariant Chern characters
are identically zero; in particular, the Chern character of the index bundle of these
elliptic operators is zero.

Another quite interesting consequence of the above discussions is the following
family Û-vanishing theorem for loop space.

Theorem 3.2. Assume thatM is connected and theS1-action is nontrivial. If
p1(T X)S1 = n ·π∗u2 for some integern, then the equivariant Chern character of
the index bundle, especially the Chern character of the index bundle, of the elliptic
operatorDX⊗⊗∞

m=1Sqm(T X−dimX) is identically zero.

Proof. In fact, by (3.11), we know that

"jm
2
j d(mj )= n.(3.16)

So the casen < 0 can never happen. Ifn = 0, then all the exponents{mj } are zero,
so theS1-action cannot have a fixed point. By (2.7) and (3.7), we know thatH(t,τ )

is zero. Forn > 0, we can apply Lemmas 3.1, 3.4, and 3.5 to get the result.

As remarked in [Liu3], the fact that the index ofDX⊗⊗∞
m=1Sqm(T X−dimX) is

zero may be viewed as a loop space analogue of the famousÛ-vanishing theorem of
Atiyah and Hirzebruch [AH] for compact connected spin manifolds with nontrivial
S1-action. The reason is that this operator corresponds to the Dirac operator on loop
spaceLX, while the condition onp1(T X)S1 is a condition for the existence of an
equivariant spin structure onLX. This property is one of the most interesting and
surprising properties of loop space. Now, under the condition of Theorem 3.2, a very
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interesting question is to know when the index bundle of this elliptic operator is zero
in K(B).
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