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On orbifold elliptic genus 

Chongying Dong, Kefeng Liu, and Xiaonan Ma 

ABSTRACT. An elliptic genus is defined and studied for a general orbifold. The 
main result is the rigidity property of the genus. 

1. Introduction 

The elliptic genus was derived as a partition function in quantum field theory 
[27]. Mathematically it is a beautiful combination of topology of manifolds, index 
theory and modular forms (cf. [15], [10]). The elliptic genus for smooth manifolds 
has been well-studied. Recently, Borisov and Libgober ([3], [4]) proposed some def-
initions of elliptic genus for certain singular spaces, especially for a complex orbifold 
which is a global quotient MjG, where the finite group G acts holomorphically on 
complex variety M. Similar definitions were introduced by string theorists in the 
80s, in the study of orbifold string theory. One of their guiding principles is mod-
ular invariance. More recently orbifold string theory has attracted the attention of 
geometers and topologists. For example Chen and Ruan ( cf. [7], [23]) have defined 
orbifold cohomology and orbifold quantum cohomology groups. 

One of most important properties of the elliptic genus is its rigidity property 
under compact connected Lie group actions. For smooth manifolds, the rigidity and 
its generalizations have been well studied. Since the orbifold elliptic genus is the 
partition function of an orbifold string theory, it is natural to expect the rigidity 
property for the orbifold elliptic genus. Although the global quotients form a very 
important class of orbifolds, many interesting orbifolds are not global quotients. 
For example, most of the Calabi-Yau hypersurfaces of weighted projective spaces 
are not global quotients. In this paper we define an elliptic genus for a general 
orbifold which generalizes the definition of Borisov and Libgober, and prove their 
rigidity property. We actually introduce a more general elliptic genus involving 
twisted bundles and proved its rigidity. The idea of considering the weights in the 
definition of orbifold elliptic genus comes from [3] and our proof of the K-theory 
version of Witten's rigidity theorems [21, §4], [22, §4]. The proof of rigidity is again 
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a combination of modular invariance and index theory, but now more complicated 
combinatorics are involved in the definition and proof. 

This paper is organized as follows: ·In Sections 1 and 2 we review the equivariant 
index theorem on orbifolds. We define an otbifold elliptic genus and prove its 
rigidity for almost complex orbifolds in Section 3. Finally in Section 4 we introduce 
an orbifold elliptic genus for spin orbifolds; we will study its rigidity property on a 
later occasion. 

The authors would like to than Jian Zhou for many interesting discussions 
regarding orbifold elliptic genus. 

2. Equivariant index theorem for spin orbifolds 

In this section and the next we recall notations for orbifolds, and explain the 
equivariant index theorem for orbifolds (cf. (8, Chap. 14), [26)). 

We first recall the definition of orbifolds I, which are called V-manifolds in (11), 
[24). 

We consider the pair (G, V), where V is a connected smooth manifold, G is 
a finite group acting smoothly and effectively on V. A morphism <I> : (G, V) ~ 
( G', V') is a family of open embeddings r.p : V ~ V' satisfying: 

i) For each r.p E <I>, there is an injective group homomorphism >..cp : G ~ G' 
such that r.p is >..cp-equivariant. 

ii) ForgE G', r.p E <I>, we define gr.p: V ~ V' by (gr.p)(x) = gr.p(x) for x E V. If 
(gr.p) (V) n r.p(V) # ¢, then g E >..cp (G). 

iii) For r.p E <I>, we have <I>= {gr.p, g E G'}. This means G' acts transitively on <I>. 

The morphism <I> induces a unique open embedding i.p : VI G ~ V' I G' of orbit 
spaces. 

DEFINITION 2.1. An orbifold (X,U) is a paracompact Hausdorff space X to-
gether with a covering U of X consisting of connected open subsets such that 

i) For U E U, V(U) = ( ( Gu ,U) ~ U) is a ramified covering ff ~ U giving an 
identification U ~ ff IGu. 

ii) For U, V E U, U C V, there is a morphism r.pvu : (Gu, U) ~ (Gv, V) that 
covers the inclusion U C V. 

iii) For U, V, WE U, U C V C W, we have r.pwu = r.pwv o 'PVU· 

In the above definition, we can replace (G, V) by a category of manifolds with 
an additional structure such as orientation, Riemannian metric or complex struc-
ture. We understand that the morphisms (and the groups) preserve the specified 
structure. So we can define oriented, Riemannian or complex orbifolds. 

REMARK 2.2. ([13, p143-144)) Let G be a compact Lie group (need not be 
connected) and M a smooth manifold with a smooth G-action. We assume that 
the action of G is effective and infinitesimally free. Then the quotient space MIG is 
an orbifold. Reciprocally, any orbifold X can be presented this way. For example, 

1The definition of orbifold in this paper is the reduced orbifold in the sense of Chen-Ruan 
[7]. Let X be an orbifold in the sense of Chen-Ruan [7], let Xred be the corrresponding reduced 
orbifold. Then the elliptic operators and the charateristic classes on X will be reduced to the 
corresponding ones on Xred (cf. Definition 2.7). This means to work on index theory, we only 
need work on Xred· 
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ON ORBIFOLD ELLIPTIC GENUS 89 

let O(X) be the total space of the associated tangential orthonormal frame bundle. 
We know that O(X) is a smooth manifold and the action of the orthogonal group 
O(n) (n =dim X) is infinitesimally free on O(X). The X is identified canonically 
with the orbifold O(X)/O(n). 

Let X be an oriented orbifold, with singular set :EX. For x E X, there exists 
a small neighbourhood (Gx, Ux) ~ Ux such that x = r; 1(x) E Ux is a fixed point 
of Gx. Such Gx is unique up to isomorphisms for each x EX [24, p468]. Let (1), 
(h~;), · · · , (h~"') be all the conjugacy classes in Gx. Let Za"' (h~) be the centralizer 

. -0 . -
of h~ in G x. One also denotes by U x"' the fixed points of h~ in U x. There is a 
natural bijection 

(2.1) 

'"'"' IIPx U- h~ /Z (hj ) - j=l X Gx X • 

So we can define globally [11, p77], 

(2.2) :EX= {(x, (h~))lx EX, Gx =/:- 1,j = 1, · · · , Px}· 

Then :EX has a natural orbifold structure defined by 

(2.3) 

. . -0 
Here K~ is the kernel of the representation Za,(h~)-+ Diffeo (Ux"'). The number 
m = IK~I is called the ~ltiplicity of :EX in X at (x, h1). Since the multiplicity 
is locally constant on :EX, we may assign the multiplicity mi to each connected 
component Xi of :EX. In a sense :EX is a resolution of singularities of X.2 

DEFINITION 2.3. A mapping 1r from an orbifold X to an orbifold X' is called 
smooth iffor x E X,y = n(x), there exist orbifold charts (Gx,Ux),(G~,U'y) to-
gether with a smooth mapping ¢ : Ux -+ U' y and a homomorphism p : Gx -+ G~ 
such that ¢ is p-equivariant and T~ o ¢ = 1r o Tx· Thus we have the following 
commutative diagram : 

U' y 
.,.' l 
U' y 

DEFINITION 2.4. An orbifold vector bundle~ over an orbifold (X, U) is defined 
as follows: ~is an orbifold and for u E u, (Gb,Pu: fu-+ U) is a ct-equivariant 
vector bundle and (Gb.fu) (resp. (Gb/ Ku, U), Ku = Ker(Gb -+ Diffeo(U))) is 
the orbifold structure of~ (resp. X). In general, Gb does not act effectively on U, 
i.e. K u =1- { 1}. If Gb acts effectively on fJ for U E U, we say ~ is a proper orbifold 
vector bundle. 

REMARK 2.5. ([13, p144] Let G be a compact Lie group acting effectively and 
infinitesimally freely on M. Then each G-equivariant bundle E -+ M defines a 
proper orbifold vector bundle E/G-+ MjG, and vice versa. 

2It has nothing to do with of singularities by birational morphisms studied in algebraic 
geometry. 
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In the following, we will always denote by (Gx, Ux) (x EX) the orbifold ~hart as 
above. For hE Gx, we have the following h-equivariant decomposition of TUx®R C 
as a real vector bundle on U~, 

(2.4) TUx ®R C = EB N>.(h) EB TU/: ®R C. 
>.EQn)0,1( 

Here N>.(h) is the complex vector bundle over U~ with h acting by e21ri>. on it. 
The complex conjugation provides a C anti-linear isomorphism between N>.(h) and 
N(l->.)(h). If the order of h is even, this produces a real structure on N! (h), so this 
bundle is the complexification of a real vector bundle N~h) on u~. Thus, TUx is 
isomorphic, as a real vector bundle, to 

(2.5) ffi ffi R ffi -h 
TUx':::' W N>.(h)WN!(h)'l/TUx. 

>.EQn)O,! ( 

Note that N>.(h) (resp. N~h)) extends to a complex (resp. real) vector bundle on 

I:X. We will still denote them by N>.(h), N~h)" 
Assume that a compact Lie group H acts differentiably on X. If 'Y E H, let 

X' = { x E X, "fX = x}. In the index theorem, we will use the following orbifold as 
fixed point set of 'Y which is a resolution of singularities of X' [8, p180]. For x E X', 
then on local chart (Gx, Ux), "'f) acts on Ux as a linear map. The compatibility 
condition for "'f) means that there exists an automorphism a of Gx such that for 
each g E Gx, "'f) o go 'Y[/ = a(g). For h E Gx, let (h), = {gha(g)- 1 ; g E Gx} be 
the 'Y conjugacy class in Gx. Let 

(2.6) fj~h)-, = {(y,hr) E Ux X Gxi(h1 O"ff))(y) = y,h1 E (h),}. 

Let fJ/:Orfj be the fixed point set of h 0 "'f) in Ux, then u/:O'u is connected, and 
U-ho'Yu 

X E X 0 

ForgE Gx, g acts on fJ~hh by the transformation 

(y,h) ____. (g(y),gohoa(g)- 1). 

Indeed, if(h o "'f) )(y) = y, as a(g )-1 o "'f) = "'f) o g-1 o 'Y"f/ o "'f) = "'f) o g- 1 , we know 

(2.7) (gh o a(g)- 1hu o g(y) = gh o 'Yf)(Y) = g(y). 

Let ZZ,cx = {g E Gx,ghoa(g)-1 = h}, KZ,cx = Ker{ZZ,cx ____. Diffeo(U/:0 'u)}. 
Then 

(2.8) 

defi~es an orbifold. We denote it by X'. Clearly, m(X') = IKZ,cx I is local constant 
on X'. 

DEFINITION 2.6. The oriented orbifold X is spin if there exists 2-sheeted cov-
ering of SO(X) (SO(X) is the oriented orthonormal frame bundle of TX), such 
that for U E U, there exists a principal Spin(n) bundle Spin(U) on U, such that 
Spin(X)IU ____. SO(X)IU is induced by Spin(U) ____. SO(U), and Spin(U) also verifies 
the corresponding compatible condition. 
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Then spin(X) is clearly a smooth manifold. 
Assume that orbifold X is spin. Let hTX be a metric on TX and S(TX) = 

s+ (T X) EfJ s- (T X) the corresponding orbifold spinor bundle on X. Let c( ·) be the 
Clifford action ofT X on S(TX). Let vs(TX) be the connection on S(TX) induced 
by the Levi-Civita connection "\\T X on T X. Let W be a complex orbifold vector 
bundle on X. Let vw beaconnectionon w. Then V 8(TX)®W = vs(TX)®1+1® 
vw is a connection on S(TX)®W. Let r(s±(TX)®W) be the set of coo sections 
of s±(TX) ®Won X. Let Dx ® W be the Dirac operator on r(S+(TX) ® W) to 
r(s-(TX) ® W), defined by 

dim X 

(2.9) nX ® w = L c(ei)"\l~i+(TX)®W. 
i=l 

Here { ei} is an orthonormal basis of T X. 
Let H be a compact Lie group. If 'Y E H acts on X and lifts to Spin(X) and 

W, then V 8 (TX) is 'Y invariant and we can always find a 'Y invariant connection 
vw on w. Note that nx ® w is a 'Y invariant elliptic operator on X. For X EX, 
let K'f = Ker(G~ ~ Gx)· On fj(h)-.,, let N be the normal bundle of fJho-ru in Ux. 
Let W 0 be the sub bundle of W on Ux which is K'f -invariant. Then W 0 extends 
to a proper orbifold vector bundle on X. We have the following decompositions: 

(2.10) N = E9 No EfJ N1r, 

where No, Wo (resp. N1r) are complex (resp. real) vector bundles on which h o 'Yu 
acts as multiplication by ei0. Then vTx induces connection vNe on No, and 
"\\T X = Ef)"\1N8 EfJ "\\T X"~. Let Rw' Rwo' RN8 ' RTX"'~ be the curvatures of vw' vwo' 
"\1N8 , "\\T X"~ ("\1W0 is the connection on W0 induced by "\JW). 

DEFINITION 2.7. For hE Gx,9 = ho'Yfi• 0 < ():::;; 1r, set 

If we denote by {xi, -xi} (j = 1, · · · , l) the Chern roots of No, TUY (where 
we consider No as a real vector bundle) such that ITxi defines the orientation of No 
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and TUY, then 

(2.12) A(TU9,\lTU) = ITx~ jsinh(x~), 
j 

~ l 1 l d<xi+iO) 

Ao(No, vNo) = Tl IT . h l( . + "()) =IT eXi+iO- 1" 
j=l sm 2 x1 z j=l 

Recall that for 'Y E H, the Lefschetz number Ind1 (Dx ® W), which is the index 
of vx ® W if 'Y = 1, is defined by 

(2.13) Ind1 (Dx ® W) = TqjKerDx ® W- Tr"(jCokerDx ® W . 

By using the heat kernel, as in [8, Th. 14.1], we get 

THEOREM 2.8. For"( E H, we have the following equality: 

(2.14) lnd1 (Dx ® W) = ~ m!F) i aF, 
FEX"' 

where aF is the characteristic class 

~ -h TUhoy, ~ ( N ) ( W) A(TU o'u, \l )Ilo<O:::;'I\"Ao No, \l o chho1 W, \l 

Let 8 1 act differentiably on X. Let X 81 ={x E X,"((x) = x,forall"( E 8 1}. 

Let V be the canonical basis of Lie( 8 1) = R. For x E X, let V x be the smooth 
vector field on (Gx, Ux) corresponding to V. Then Vx is Ox-invariant [8, p181]. 
We still denote by Vx the corresponding smooth vector field on X. We have X 81 = 
{x EX, Vx(x) = 0}. 

For x E X, let (1), · · · (h1), · · · be the conjugacy classes of Gx. Let X81 = 
{(x, (h1))jx E X 81 , h1 E Gx}· Then X81 has a natural orbifold structure defined 
by 

(2.15) 
-hi -hi - . 

where Uvx = Uxx n {y E UxiVx(Y) =0} and K;,,v is the kernel of the natural map 
. -hi 

ZcJh1) __.,. Diffeo{Uvx}. 
We have the following decomposition of smooth vector bundles on fft : 

(2.16) N>.(h) = ffijN>.,j, 

Nf(h) = ffij>oN 1 j ffi Nf0 , 
2 2' 2' 

- -hi 
TUh = ffij>oNo,j ffi TUvx, 

wo = ffi>.,jw~,j· 
- 1 

Note that N>.,j, N~,J' No,j and W~,j extend to complex vector bundles on X 8 , and 

'Y = e211"it E 81 acts on them as multiplication by e211"ijt. Also, Nf0 and TU~~ 
2' 

extend to real vector bundles on X81 , and 8 1 acts trivially on them. In fact, 
- -hi 

TUh = TUvx ffiv#o No,v,R, where No,v,R denotes the underling real bundle of the 
complex vector bundle Nv on which g E 8 1 acts by multiplying by gv. Since we can 
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choose either Nv or N v as the complex vector bundle for Nv,R, in what follows, we 
always assume N 1 3., No 3· are zero if j < 0. 

2' ' 
By (2.16), for given a E C, the eigenspace of h o 'Yu with eigenvalue a is equal 

to the sum of the above elements N>.,j such that 

(2.17) 

Let A c R consist of a E R such that there exists x E X 81 , such that more than 
one non-zero N>.,i on U~~ is in the eigenspace of h o 'Yu with eigenvalue e21ria. As 
X is compact, A is a discrete set of R. 

If 'Y = e21rit, t E R \ A, then X"~ = X81 by the construction. An immediate 
consequence of Theorem 2.8 is the following. 

THEOREM 2.9. Under the condition of Theorem 2.8, fort E R \A, 'Y = e21rit, 

we have 

(2.18) 

where aF is the characteristic class 

A(TUO, VTU~) E>. . e211'i(>.+tj)ch(W2 ., vw0 ) 
,J ,J 

3. Equivariant index theorem for almost complex orbifolds 

If X is an almost complex orbifold, then on the orbifold chart (Gx, Ux) for 
x E X, we have the following h-equivariant decomposition of TUx as a complex 
vector bundle on u: 
(3.1) TUx~ EB N>.(h)· 

>..EQn[O,l[ 

Here N>.(h) are complex vector bundles over u: with h acting by e21ri>. on it, and 
No(h) is TU:. Again N>.(h) extends to a complex vector bundle on 'EX. We will 
still denote it by N>.(h)· 

Let W be an orbifold complex vector bundle on X. Let Dx ® W be the Spine 
Dirac operator on A(T*(O,l) X)® W [16, Appendix D]. 

Let H be a compact Lie group acting on X. We assume that the action H 
on X lifts on W, and preserves the complex structures of TX and W. Now for 
'Y E H, the decomposition (2.10) on fJ~hh also preserves the complex structure of 
the normal bundle N. We denote by RN the curvature of VN as complex vector 
bundle. Then 

(3.2) N= EB No, 

W 0 = EB Wo. 
0:50<211' 

Here No, Wo are complex vector bundles on which h o 'Yu acts as multiplication by 
ei0 • The following theorem is proved in [8, Th. 14.1]. 
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THEOREM 3.1. Let 

Td(TiJho'Yu \i'TfJho-ru) = det ( - RTfJho-ru /2i7r ) 
, 1 - exp(-RTfJho-ru /2i7r) 

be the Chern- Weil Todd form of Tifhoru. Then we have 

(3.3) Ind,(Dx ® W) = ~ mtF) Lap. 
FEX-r 

Here on iJhoru, ap is the characteristic class 

Td(TiJho'Yu, \i'TfJho-ru )chho1 (W, \lw) 

det(1- (h o 'Y) exp( 2~RN)) 

If H = 8 1 , on U{; as in (2.15), we have the following decomposition of complex 
vector bundles, 

Here N>..(h),j' No,j extend to complex vector bundles on X81 , and 'Y = e2n:it E 8 1 

acts on them as multiplication by e2n:ijt. By Theorem 3.1, we get 

THEOREM 3.2. Under the condition of Theorem 3.1, fortE R \A, 'Y = e2n:it, 
we have 

Ind,(Dx ® W) = ~ mtF) 1 ap. 
FEXsl F 

Here on U{;, ap is the characteristic class 

Td(TUh \i'TfJf;.)"' . e2n:i(>..+ti)ch(Wo . \lwo) 
V' L....>..,J A,J' 

Il>..,jdet ( 1 - e2n:i(A+tj) exp( 2 ~ RN>-.,j)) 

Note that we can also get Theorems 2.9 and 3.2 from [26, Theorem 1]. 

4. Elliptic genus for almost complex orbifolds 

In this section, we define an elliptic genus for a general almost complex orbifold 
and prove its rigidity property. We are using the setting of Section 2. 

For 7 E H = {7 E C;lm7 > 0}, q = e2n:ir, t E C, let 

(4.1) (}(t,7) = c(q)q118 2sin(7rt) TI%"= 1(1- qke2n:it) IJ%"=1(1- qke-2n:it). 

be the classical Jacobi theta function [6], where c(q) = TI%"= 1(1- qk). Set 

(4.2) e'(o )-ae(·, 7 )1 ,7 - at t=O· 

Recall the following transformation formulas for the theta-functions [6]: 

(4.3) e(t + 1, 7) = -e(t, 7), e(t + 7, 7) = -q- 112e-2n:ite(t, 7), 
t 1 1 If .,..;,2 .,..; {}(-,--)=-:- -;-e-7' (}(t,7), (}(t,7+1)=e4(}(t,7). 
7 7 z z 
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For a complex or real vector bundle F on a manifold X, let 

(4.4) Symq(F) = 1 + qF + q2Sym2 F + ... , 
Aq(F) = 1+qF+q2A2F+ ... , 

be the symmetric and the exterior power operations on F, respectively. 
Let X be an almost complex orbifold, and dime X = l. In this Section, all 

vector bundles are complex. 
Under the notati~of (3.1), let F(x, h) = E>. .X dime N>.(h) be the fermionic 

shift, then F : XU :EX -t Q is locally constant. For a connected component 
Xi c XU :EX , we define F(Xi) to be the values ofF on Xi. 

Let W be a proper orbifold complex vector bundle on X with dime W = 
m; then W 0 in (3.2) is W. Now for the vector bundle W, the fermionic shift 
F(Xi, W) = E>. .X dim W>. is well defined on each connected component Xi C XU 
:EX. For x E X, y = e271'iz, we use the orbifold chart (Gx, Ux)· For h E Gx, by 

-h (3.1), we define on u:z;' 
(4.5) 

00 

e~,x,(h) (T X) = ® ( ® ( A_y-lqk-1+>-<hl N~(h) ® A-yqk->-(h) N>.(h))) 
>.EQn(O,l( k=l 

00 

® ( ® ( Symqk-1+>-<hlN~(h) ® Symqk->-(hJN>.(h))) 
>.EQn]O,l( k=l 

00 

® ( Symqk N0 ® Symqk No), 
k=l 

00 

e~,x,(h) (T XIW) = ® ( ® ( A_y-lqk-l+>.(h) w~(h) ® A-yqk->.(h) W>.(h))) 
>.EQn(O,l( k=l 

00 

® ( ® ( Symqk-1+>-<hJN~(h) ® Symqk->-(hJN>.(h))) 
>.EQn]O,l( k=l 

00 

® ( Symqk N0 ® Symqk No). 
k=l 

One verifies that each coefficient of qa (a E Q) in e~,x,(h)(TX) and e~,x,(h)(TXIW) 
defines an orbifold vector bundle on :EX. We denote the restrictions of e~,x,(h) (T X) 
and e~,x,(h)(TXIW) to the connected component Xi of Xu :EX by e~.xi(TX) and 
e~,xi(TXIW) respectively. Note that e~.xi(TX) is the usual Witten element on 
Xi (see [10] and [27]). Also if X is a manifold the elliptic genus defined here is the 
Witten element on X : 

(4.6) e~(TX) = 
00 00 

® (A-y-lqk-lT* X ®A-yqkTX) ® (symqkT*X ® SymqkTX). 
k=l k=l 
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DEFINITION 4.1. The orbifold elliptic genus of X is defined to be 

(4.7) l 
F(y, q) = y2 

XiCXUI:X 

More generally, we define the orbifold elliptic genus associated to W as 

(4.8) F(y, q, W) = y~ 
XiCXUI:X 

If X is a global quotient M/G where the action of a finite group G on an almost 
complex manifold M preserves its complex structure, the equation ( 4. 7) coincides 
with [3, Definition 4.1]. 

We next prove that the orbifold elliptic genus is rigid for an 8 1 action on X. 
Let 8 1 act on X, preserving the complex structure on TX, and lifting toW. 

We define the Lefschetz number for 'Y E S 1 , 

(4.9) F1 (y, q, W) = y~ 
XiCXUI:X 

Let P be a compact manifold with an infinitesimally free action by a compact 
Lie group G (need not be connected), with X= P/G the corresponding orbifold. 
We still denote by W the corresponding vector bundle on P for W. Then Kx = 
det(T(l,O) X) and K w = det Ware naturally induced by complex line bundles on P, 
which we will still denote by Kx, Kw. We may also consider Kx, Kw as orbifold 
line bundles on X. 

We will assume that 8 1 acts on P and commutes with the G-action such that it 
induces the 8 1 action on X (For example, 8 1 acts naturally on SO(X), the oriented 
orthonormal frame bundle of T X, and induces the 8 1 action on X.). 

Recall that the equivariant cohomology group H';Jl (P, Z) of Pis defined by 

(4.10) H';p(P,Z) = H*(P x 8 1 ES\Z). 

where ES1 is the universal 8 1-principal bundle over the classifying space BS1 of 
8 1 . So H8 1 ( P, Z) is a module over H* ( B Sl, Z) induced by the projection 1f : 
P x 8 1 ES1 ---> BS1 . Let p1 (W) 8 1,p1 (TX) 8 1 E H8 1 (P,Z) be the equivariant first 
Pontrjagin classes of W and T X respectively. Also recall that 

(4.11) H*(BS\ Z) = Z[u] 

with u a generator of degree 2. 
Recall from [17, Theorem B] that for smooth manifold X one needs the condi-

tions 

(4.12) Pl(W- TX)s1 = 0, cl(W- TX) 8 1 = 0. 

for the rigidity theorem. 
Note that if the connected component Xi of XUL:X is defined by (iJ;, Zax(h)), 

h -forgE Zax(h), set Uv'9 ={bE Uxlhb = gb = b, Vx(b) = 0}. Then the connected 
component Xik of xt is defined by (U~' 9 , Zzax(h)(g)). We have the following 
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ON ORBIFOLD ELLIPTIC GENUS 97 

decomposition of complex vector bundles on ut·9 , 

(4.13) TUx= 2::: N>.(h),>.(g),v, 
>.(h) ,>.(g) EQn(O,l (, vEZ 

W = 2::: W>.(h),>.(g),v· 
>.(h) ,>.(g) EQn(o, 1 (,vEZ 

where g, h E Gx (resp. "( = e21rit E 8 1 ) act on N>.(h),>.(g),v, W>.(h),>.(g),v as multi-
plication by e21ri>.(g) e21ri>.(h) (resp. e21rivt). Let 27rixj 21riwj be ' >.(h),>.(g),v' >.(h),>.(g),v 
the formal Chern roots of N>.(h),>.(g),v, W>.(h),>.(g),v respectively. To simplify the 
notation, we will omit the superscript j. 

Then N>.(h),>.(g),v, W>.(h),>.(g),v extend to orbifold vector bundles on Xik· Now 
the natural generalization of (4.12) for orbifolds is the following: there exists n EN, 
such that on each connected component Xik of xt, 

'"""' [ j 2 (4.14) ~ (w>.(h),>.(g),v + .A(g)- TA(h) + vu) 
>.(h) ,>.(g), v,j 

- (x{(h),>.(g),v + .A(g) - T >.(h) + vu) 2 J = n1f*u2 E H* (Xik, Q) [T, u], 

(4.15) 2::: (w{(h),>.(g),v+.A(g)-T.A(h)+vu) 
>.(h) ,>.(g), v,j 

2::: (x{(h),>.(g),v +>.(g)- TA(h) + vu) = 0 E H*(Xik, Q)[T, u]. 
>.(h) ,>.(g) ,v,j 

THEOREM 4.2. Assume that 8 1 acts on P inducing the 5 1 -action on X, and 
lifts to W, and c1 (W) = 0 in H* ( P, Z). Also assume that there exists n E Z such 
that equations (4.14} and (4.15} hold. Then we have 

i} If n = 0, then F'Y(y, q, W) is constant on 'Y E 8 1 . 

ii} If n < 0, then F'Y(y, q, W) = 0. 

Note that, in case W = TX, the conditions (4.14), (4.15) are automatic, and 
as a consequence we get the rigidity and vanishing theorems for the usual orbifold 
elliptic genus F(y, q). In particular we know that for a Calabi-Yau almost complex 
orbifold manifold X, F(y, q) is rigid for any y. 

Proof: To prove Theorem 3.1, we only need prove for any N E N, N > 1, 
i) and ii) holds for any N-th root of unity y = e21riz. From now on, we assume 
that y is an N-th root of unity. Using Theorem 3.2, for 'Y = e21rit, t E R \ A, 
y = e21riz' q = e21rir, we get 

(4.16) F'Y(y, q, W) = yE? 2:::- y-F(X;,W) ~ mtF) lap, 
X;CXUEX Fcxf' 

Recall that Vx is the smooth vector field generated by 5 1-action on X. For x EX, 
take the orbifold chart (Gx,ifx)· If Xi C XU ~X is represented by fi'; /Za, (h) on 
fix as in (2.3), the normal bundle Nx;,g,V = Nu~·· ;u:; of ut·9 in fi'; extends to 
an orbifold vector bundle on xt. By Theorem 3.2, the contribution of the chart 
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98 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA 

(Gx,Ux) for Ind"~(Dxi ®8~,xi(TXIW)) is 

(4.17) 1 L 1 Td(TU~' 9 )ch 9 o"'(e~,:·<h~~~~W)) 
IZax(h)lgh=hg,gEGx u~·· det(1-(go')')e-2'rriR ,,, ) 

Let 

(4.18) Nv = L N>.(h),>.(g),v' 
>.(h) ,>.(g)EQn[O,l[ 

Wv = L W>.(h),>.(g),v· 
>.(h),>.(g)EQn[O,l[ 

As the vector field Vx commutes with the action of Gx, Nv and Wv extend to 
- 1 vector bundles on X f . 

For a holomorphic function f ( x) we denote by 

f(x)(N>.(h),>.(g),v) =II f(x{(h),>.(g),v) 
j 

the symmetric polynomial which gives characteristic class of N>.(h),>.(g),v' etc. Let 
F"'(y, q,W)Iifx be the contribution of the chart (Gx, Ux) for F"'(y, q, W). Then by 
( 4.17) we have 

(4.19) 

1 "" '¥--F(X;,W) 1 Td(TU~' 9 )ch 9 o"'e~,x,(h)(TXIW) 
IG I L....t Y 1 RNx. • v 

X gh=hg;g,hEGx u~·· det(1- (g 0 ')')e- 2'rri ,, ' ) 

= 1 "" y'i--F(X,W) 1 (27rix)(No(h),O(g),o) 
IGxl L....t uh,g ILc ) (1 - e 27ri(x+>.(g)+tv))(No(h) >.(g) v) gh=hg;g,hEGx v 9 ,v , , 

+oo { [ (1 _ y-lqk-H>.(h)e27ri(-w->.(g)-tv)) 
X II II II ( (1 _ qk-H>.(h)e27ri( -x->.(g)-tv)) 

k=l >.(g),v >.(h)>O 

(1 _ yqk->.(h)e27ri(w+>.(g)+tv)) (W>.(h),>.(g),v) )] 

X (1 _ qk->.(h)e27ri(x+>.(g)+tv))(N>.(h),>.(g),v) 

( 1 _ y-lqk-le27ri(-w->.(g)-tv))(1- yqke27ri(w+>.(g)+tv))(Wo(h),>.(g),v)} 

X (1 _ qke27ri(-x->.(g)-tv))(1- qke27ri(x+>.(g)+tv))(No(h),>.(g),v) 

= (i- 1c(q)q118 ) 1-m ~~ I L 1 (27rix)(No(h),O(g),o) 
X gh=hg;g,hEGx u~·· 

x II (B(w +>.(g)- r>.(h) + z +tv, r)e- 21l'iz>.(h))(W>.(h),>.(g),v) 

B(x +>.(g)- TA(h) +tv, T)(N>.(h),>.(g),v) >.(h),>.(g),v 

Here we have used (4.1), (4.15) to get the last equality of (4.19). 
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ON ORBIFOLD ELLIPTIC GENUS 99 

If we consider F'Y(y, q, W) as a function of (t, z, T), we can extend it to a mero-
morphic function on C x H x C. From now on, we denote 

by F(t, T, z). Set 

( ) ( ) __ (·-1 ( ) l/8)m-z 0'(0,T)1 ( ) _ 4.20 F t,T,Z w,,- Z C q q O(z,T)mF'Y y,q, W lUx' 

Now, the equation (4.14) implies the equalities 

(4.21) L W~(h),>.(g),v- L X~(h),>.(g),v = 0, 
>.(h),>.(g),v >.(h),>.(g),v 

L V W>.(h),>.(g),v - L V X>.(h),>.(g),v = 0, 
>.(h),>.(g) >.(h),>.(g) 

L >-.(h)>-.(g) (dim W>.(h),>.(g)- dimN>.(h),>.(g)) = 0, 
>.(h),>.(g) 

L >-.(h)v (dim W>.(h),>.(g),v- dimN>.(h),>.(g),v) = 0, 
>.(h),>.(g),v 

L >-.(g )v (dim W>.(h),>.(g),v -dim N>.(h),>.(g),v) = 0, 
>.(h),>.(g),v 

L >-.(g) 2 (dim W>.(g)- dimN>.(g)) = 0, 
>.(g) 

L v2 (dim Wv- dimNv) = n. 
v 

By (4.1), for a, bE 2Z, kEN, 

(4.22) O(x + k(t +aT+ b), T) = e-1ri(2kax+2k2at+k2a2T)O(x + kt, T). 

As c1 (Kw) = 0 in H*(P,Z), by the same argument as [10, §8] or [22, Lemma 2.1, 
Remark 2.6], Eu vdim Wv is constant on each connected component of X. 

By (4.19), (4.21), (4.22), we know for a, bE 2Z, 

(4.23) F(t +aT+ b, T, z) = e-21riza2:v vdim Wve-1rin(a2T+2at) F(t, T, z). 

Especially, for a, b E 2NZ, 

F(t +aT+ b, T, z) = e-1rin(a2,.+2at) F(t, T, z). 

For A= ( ~ ! ) E SL2 (Z), we define its modular transformation on C x H by 

(4.24) ( t aT+ b) A(t,T) = --d,--d . 
cT+ cT+ 
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100 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA 

By (4.19), under the action A= ( ~ ~ ) E SL2 (Z), we have 

(4.25) 

For g, hE Gx, by looking at the degree 2dimc U~· 9 part, that is the dime U~' 9 -
th homogeneous terms of the polynomials in x, w's, on both sides of the following 
equation, we get 

{ [e21riczw(cr+d)8(w(cT +d)+ .A(g)(cT +d) 
(4.26) Jr h,g (x)(No(h),O(g),o) II B(x(cT +d)+ (cT + d).A(g) 

Uv >.(h),>.(g),v 

-(aT+ b).A(h) + z(cT +d)+ tv, T)(W>.(h),>.(g),v)] 

-(aT+ b).A(h) +tv, T)(N>.(h),>.(g),v) 

r [e21riczw8(w + .A(g)(cT +d) 
= Jr h,g (x)(No(h),O(g),o) II B(x + (cT + d).A(g) 

Uv >.(h),>.(g),v 

-(aT+ b).A(h) + z(cT +d)+ tv, T)(W>.(h),>.(g),v)] 
-(aT+ b).A(h) +tv, T)(N>.(h),>.(g),v) · 

By (4.3), (4.19), (4.21), (4.25) and (4.26), we easily derive the following identity: 

(4.27) F(A(t T) z)- = _1_(cT+d)le7ricnt2j(cr+d) B'(O,T)l 
' ' lUx IGxl 8(z(cT +d), T)m 

L r (27rix)(No(h),O(g),o) lug,h gh=hg;g,hEGx v 

X II { ( e21ricz((w+(>.(g)- ~;$~>.(h)))(cr+d)+tv)e-21riz>.(h)) (W>.(h),>.(g),v) 

>.(h),>.(g),v 

x B(w + (cT + d).A(g)- (aT+ b).A(h) + z(cT +d)+ tv, T)(W>.(h),>.(g),v)}. 
B(x + (cT + d).A(g)- (aT+ b).A(h) +tv, T)(N>.(h),>.(g),v) 
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By (4.3), (4.15), (4.21), (4.22), (4.27), we have 

(4.28) (cT + d)-le-1l"icnt2 /(cr+d) O(z(cT +d), T)m F(A(t T) z) -
0'(0, T)l ' ' lUx 

tel I L j (27rix)(No(h),O(g),o) 
x uh,g gh=hg;g,hEGx v 

IT [ ( e21l"icz(d>.(g)-b>.(h)+r(c>.(g)-a>.(h))) e27ricz( w+tv) 

>.(h),>.(g),v 

X e -21l"iz(c>.(g)-a>.(h)+>.(g-c ha))(cr+d) e -21l"iz>.(h)) (W>.(h),>.(g),v) 

X e(w + >..(gdh-b)- TA(g-cha) + z(cT +d)+ tv, T)(W>.(h),>.(g),v)] 

O(x + >..(gdh-b)- T >..(g-cha) +tv, T)(N>.(h),>.(g),v) 

I ~ I L 1 (27rix)(No(h),O(g),o) 
X gh=hg;g,hEGx u~·g 

IT [ ( e21l"icz(w+tv)e-21l"iz(cr+d)>.(g-cha)) (W>.(h),>.(g),v) 

>.(h),>.(g),v 

e(w + >..(gdh-b)- TA(g-cha) + z(cT +d)+ tv, T)(W>.(h),>.(g),v)]· 

O(x + >..(gdh-b)- TA(g-cha) +tv, T)(N>.(h),>.(g),v) 

101 

Recall that c1 ( K w) = 0; this implies that L:v v dim Wv is constant on each con-
nected component of X. 

Now, observe that if A = ( ~ ~ ) E SL2 (Z), then as g, h run through all 

pairs of commuting elements in Gx, the elements g-cha, gdh-b run through all pairs 
of commuting elements in Gx as well. Then by (4.28), 

( 4.29) F(A( t, T ), z) = e27ricz Z:v v dim Wv ( CT + d)le1l"icnt2 /(cr+d) F( t, T, ( CT + d)z ). 

The following lemma implies that the index theory comes in to cancel part of 
the poles of the functions F. 

LEMMA 4.3. For z E C, the function F(t, T, z) is holomorphic in (t, T) for 
(t,T) E R X H. 

The proof of the above Lemma is the same as the proof of [17, Lemma 1.3] or 
[19, Lemma 2.3]. To be complete, we include a proof here. 

Proof of Lemma 4.3 : Let x = e21rit, and M 1 = maxNv,.oolvl, set M2 = 
inf>.E]O,l[,N>.(h)#O {>.., 1- .X} under the notation of (4.13), and max, inf should also 
consider for all the component of the fixe set of 8 1 . Set M = MI/M2 . Denote by 
D M c C 2 the domain 

(4.30) 

By (4.4), (4.19), we know that in DM, F(t,T,z) has a convergent Laurent series 
expansion of the form 

(4.31) 
00 L L bij(x)qj/L 

i j=O 
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102 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA 

where LEN, the subscript i means the sum on Xi, each component of XU EX, 
L E N, and {bij(x)} are rational functions of x with possible poles on the unit 
circle. 

Now considered as a formal power series of q, 
00 

ylf-F(x.,w)eq,X•(TXIW) = Laij(y)"\lijqi/L 
j=O 

with Vii are 8 1 equivariant vector bundle on Xi, and aii(Y) are polynomial on 
y11L. Note that the terms in the above two sums correspond to each other. Now, 
we apply the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula to each Vj~l-'' 
for t E R \ A, we get 
(4.32) 
This implies that for t E R \ A, x = e21rit, 

N(j) 

(4.33) bij(x) = L 

for N(ij) some positive integer depending on i,j and a~i E C. Since both sides are 
analytic functions of x, this equality holds for any x E C. 

On the other hand, multiplying F(t, r, z) by f(x) = flet,N.,;.6o(1- xve21ri.>.(g))lv 
(l = dim X) wih o: running over all the connected component of 8 1 fixed point set 
of X U EX, we get holomorphic functions which have a convergent power series 
expansion of the form '£";0 cj(x)qiiL, with {cj(x)} polynomial functions in DM. 
Comparing the above two expansions, one gets 

(4.34) 

for each j. So by the Weierstrass preparation theorem, we get F( t, r, z) is holomor-
~~~- D 

Now, we return to the proof of Theorem 4.2. Note that the possible polar 
divisors of F in C x H are of the form t = ~ ( cr + d) with k, c, d, j integers and 

( c, d) = 1. Then there are integers a, b such that ad-be = 1. Set A = E ( d -b) 
-c a 

SL2(Z). We have 

F(t, r, ( -CT + a)z) = e-211"icz Ev vdim w., ( -CT + a)-le11"icnt2 /(-cr+a) F( A(t, r), z). 

Now, if t = ~(cr +d) is a polar divisor of F(t,r,z), then one polar divisor of 
F(t, r, ( -cr + a)z) is given by 

(4.35) - _t __ ~ ( dr- b d) - . c + ' -cr + a J -cr + a 

which exactly gives t = kjj. This contradicts Lemma 4.3. 
This means F(t, r, z) is holomorphic function on C x H. 
For fixed r E H, if F(·,r,z) isn't identically zero, we let 8 be the contour 

zo +2s, zo +2+2sr, zo +2+2(1- s)r, zo +2(1- s)r (s E [0, 1]), such that F(·, r, z) 
does not have any zero on 8. Then by (4.23), 

1 1 1 8 (4.36) -2 . F( ) j:l F(t,r,z)dt = 4n. 
1l"Z 0 t,r,z ut 
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ON ORBIFOLD ELLIPTIC GENUS 103 

This means that F(t, r, z) has exactly 4n zeros inside 8. Therefore, if n < 0, 
F(t, r, z) must be identically zero. If n = 0, F(t, r, z) is a double periodic holo-
morphic function, it must be independent of t. Thus we completes the proof of 
Theorem 4.2. D 

5. Elliptic genus for spin orbifolds 

We are following the setting of Section 1. 
For r E H = {r E C;Imr > 0}, q = e21TiT, let 

00 00 

(5.1) Oa(v, r) = c(q) 11 (1 + qk-1/2e21Tiv) 11 (1 + qk-lf2e-21Tiv). 
k=l k=l 

be the other three classical Jacobi theta-functions [6], where c(q) = IIk:,1 (1_-=_l). 
Let X be a compact orbifold, dim a X = 2n. We assume that X and EX are 

spin in the sense of Definition 2.6. For x EX, take the orbifold chart (Gx, Ux)· By 
(2.5), for hE Gx, we define on U/; 

00 

(5.2) e~,x,(h) (T X) = Q9 ( Q9 ( Aqk-1+>-<h> N~(h) ® Aqk->-<h> N.>.(h)) 
.>.EQn]o,! [ k=l 

00 

Q9 ( Symqk-1+>-<h> N~(h) ® Symqk->-<h> N.x(h))) 
k=l 

It is easy to verify that each coefficient of qa (a E Q) in E>~,x,(h) (T X) defines an 
orbifold vector bundle on X U EX. We denote it by e~,x, (T X) on the connected 
component Xi of XU EX. Especially, E>~,x(TX) is the usual Witten element 

(5.3) 

on X. We propose the following definition for the elliptic genus of a spin orbifold: 

DEFINITION 5.1. The orbifold elliptic genus of X is 

(5.4)F(q) = L Ind(DX; ® (S+(TXi) EB s-(TXi)) ® e~,x.(TX)). 
X;CXUEX 

Let 8 1 act on X and preserve the spin structure of X U EX. We define the 
Lefschetz number for 'Y E 8 1 

(5.5) Fd.,,(q) = L Ind, ( Dx• ® (s+(TXi) EB s-(TXi)) ® eq,x, (TX)) 
X;CXUEX 

- . -h On local chart (Gx, Ux), for h, g E Gx, gh = hg, so as m (2.5), on Ux, we have 

(5.6) TUx = No EB ffi N.x(h) EB N~h)" 
.>.(h)E]O,![ 

Licensed to Biblio University Jussieu.  Prepared on Thu Oct  5 09:01:13 EDT 2017for download from IP 81.194.27.158.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



104 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA 

here h acts on the real vector bundles N 0 = TU~, Nfch) as multiplication by 1, e1'\ 

and h acts on complex vector bundles N>.(h) as multiplication by e21ri>.(h). Now on 
fJ~,g, the fixed point set of g on U/:, we have the following decomposition 

(5.7) N)..(h) = EB N)..(h),>.(g) ffi EB N)..(h),l->.(g) 
>.(g)E[O, !J >.(g)E]O,! [ 

No = E9 No,>.(g), 
>.(g)E[O,!J 

Nfch) = EB N!(h),>.(g)· 
>.(g)E[O,!J 

1 
for 0<.A(h)< 2, 

Here N>.(h),>.(g) (.>..(h), .>..(g) E {0, ~})are real vector bundles on fJ~,g, and N>.(h),>.(g) 
(for (.A( h) or .A(g) not in {0, H)) are complex vector bundles on fJ/},g. The elements 
h, g act on N>.(h),>.(g) as multiplication by e21ri>.(h), e21ri>.(g) respectively. Again 
N>.(h),>.(g) extends to a vector bundle on xt. 

For a holomorphic function p( x) we denote by 

p(x)(N>.(h),>.(g)) = IIp(x{(h),>.(g)) 
j 

the symmetric polynomial which gives characteristic class of N>.(h),>.(g)· Then the 
contribution of the chart (Gx, Ux) for Fd.,"f(q) is 

i-n '"""' 1 ( . Bl(Xo(h),O(g),T)) 
(5.8) Fd. (t, T)IUx = !Gx! L...t uh,g 211'ZX B(x, T) (No(h),O(g)) 

gh=hg;g,hEGx v 

II Bl(x+.A(g)-T.A(h),T) 
B(x +.>..(g)- T .A( h), T) (N>.(h),>.(g)) 

.\(h)E{O, ~ },O::;A(g):S ~ 
(>.(h),>.(g))#(O,O) 

II [ II Bl(x+.A(g)-T.A(h),T) 
B(x +.>..(g)- T.A(h) T) (N>.(h),>.(g)) 

O<>.(h)<! O::;A(g):S! ' 

II B1(x- .>..(g)- TA(h), T) J 
B(x- .>..( ) - TA(h) T) (N>.(h),l->.(g)) · 

0<>-.(g)<~ g ' 

We plan to return to the study of their rigidity and vanishing properties on a later 
occasion. 
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