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© Introduction
@ Geometry of Nonnegative Ricci Curvature
@ Gromov-Hausdorff Topology

© Ricci Limit Space
@ Regular-Singular Decomposition
@ Regularity on Bounded Ricci Curvature
@ Regularity on Lower Ricci Curvature

9 Applications
@ Finite diffeomorphism of Ricci flow

@ Nodal Set with Lower Ricci Curvature
@ Positive Mass for Singular Metrics



Let (M", g) be a closed manifold with n > 2
@ Secy > 0: (M) is finite.
@ Secy; = 0: m(M) is infinite.
@ Secy < 0: m(M) is infinite.

No intersection of {M : Secy; > 0} and {M : Secy; < 0}.



No topological obstruction for negative Ricci and negative Scalar:

@ Aubin 1970: For each closed manifold M" with n > 3, 9 a com-
plete g such that R, = —1.

o Lohkamp 1994: For each closed manifold M" withn > 3, 4 a
complete g such that —a(n)g < Ric, < —b(n)g.



@ Milnor 1968: Each finitely generated subgroup of 71 (M) has poly-
nomial growth. (Conjecturally, 71 (M) is finitely generated.)

@ Cheeger-Gromoll 1971: If (M", g) is compact then b1(M) < n and
b1 (M) = n iff (M", g) is a flat torus.

@ Cheeger-Gromoll 1971: Let (M", g) be complete then M" splits
isometrically as M" = N"~! x R if there exists a geodesic line on
M".

@ Yau 1976: Each complete manifold has infinite volume.



@ (Gromov-Hausdorff distance) Let (X, d;) and (Y, d) be two com-
pact metric spaces, the Gromov-Hausdorftf metric dgy defines as
follow

do((X,d)), (Y,d)) = inf infle: X © B(Y), ¥ € BX))
where (X, dy), (Y, dr) — (Z,d) (isometric embedding).
. dey
o Iflim; e dor((Xi» dy), (X, d)) = 0, then we say (X, d;) —> (X, d).

@ Can define Pointed Gromov-Hausdorft convergence for noncom-
pact metric spaces.



o Collapsing: (T?, g,) = S' x S;, if r — 0, then (T%, g,) dot, 1.

@ Tangent cone: Let (M", g) be smooth. Blowing up at x € M we
get GH-limit R".

@ Singular Limit: Blowing down of Eguchi-Hanson metrics, we get
GH-limit R*/Z,.



Theorem 1 (Gromov, 1981)

The space M(n, A, D) = {(M", g) : Ric > —(n—1)Ag, diam(M, g) < D}
is precompact under Gromov-Hausdorff topology. i.e., any sequence
(M;, g;) € M(n,A,D) has a subsequence and a metric space (X,d)
such that

M, g1) 2 (X, d).

@ What can be said about the convergence and the structure of X?

@ Roughly, “GH-convergence” is “L*-convergence’.



Let fi € C*(R") and f; — f in L* norm on B1(0"). Regularity of f?
Improve the convergence?

o Improve the convergence: If |[V?f;| < C uniformly, then f; — f in
C'%-sense forany 0 < a < 1 and f € C1?. (By Arzela-Ascoli
theorem)

o Improve the convergence: If Af; = 0 then f; — f in smooth sense
and f is smooth.

o Improve the convergence: If |Afj| < C uniformly, then f; — f in
C'?-sense forany 0 < @ < 1 and f € C!2.

@ Super-harmonic: If Af; > 0, Can not improve the regularity.



d
Let (M, ;) < (X, d) satisfy Ricy, > —(n—1)g; and diam(M;, g;) < D.
Note that Rm ~ Vg;; and Ric;; = Ag;i

@ Cheeger-Gromov: If [Rmg| < A and Vol(M;,g;) > V > 0, then
dgr-convergence is C'**-convergence for any 0 < @ < 1 and X is
smooth.

@ Anderson-Cheeger-Colding: If |Ricy,| < A and X is a smooth n-
manifold, then dgy-convergence is C*-convergence for any 0 <
a< 1.

@ For Ric > —(n — 1)g: Cannot improve the convergence. What can
we say about the limit?



d
Noncollapsing: Let (M}, gi, ;) BN (X,d, p) satisty Ric; > —(n — 1)g;
and Vol(B;(p;)) = v > 0.

@ Volume Convergence: Vol(M}') — Vol(X).

@ Tangent cones are metric cones, i.e., Y = C(Z) = Zx[0, 00)/Zx{0}
for some metric space Z.

@ Splitting: If Ric; > —A;g; — 0 and X contains one geodesic line,

then X splits off a factor R x X.



d
Let (M7, gi, pi) —> (X, d, p) satisfy Ric; > —(n—1)g; and Vol(B (p;)) >
v > 0.
@ Regular-Singular Decomposition: X = RU S.

@ Regular set R: Tangent cone is R".

@ Local Regularity of R: For any x € R, exists r, such that B, (x) is
bi-Holder to R”.(Conjecturally, locally bi-Lipschitz)

o Singularset S: S =X\ R.

@ Structure of Singular set: dimS < n — 2. (S may be not closed
and may be dense in X)



d
Let (M, g, pi) — (X,d, p) satisfy Vol(Bi(p;)) = v > 0 and [Ric| <
n — 1. Then:

@ Anderson-Cheeger-Colding 1997: S is closed
@ Colding-Naber 2012: R is convex

@ Anderson, Bando-Kasue-Nakajima, Tian, 1989: If fBl - IRm|"/? <
A then S N B (p) is a finite set

@ Cheeger-Colding-Tian 2002, Cheeger 2003, Chen-Donaldson 2014:
If fBl(p_) IRm|? < A for g < n/2then H"24(SNB;(p)) < C(n, v, q, A)



d
Let (M7, gi,pi) — (X, d, p) satisfy Vol(Bi(p;)) = v > 0 and [Ric| <
n— 1. Then:

@ [Ric| < A implies |Rm| < C(A) for n = 3, then S = 0.

@ Codimension four conjecture: dimS < n — 4 solved by Tian,
Cheeger for Kéhler case, general case by Cheeger-Naber 2015.

o Finite measure conjecture: H"*(B1(p) N S) < C(n,v) solved by
Jiang-Naber 2021.



Let (M", g, p) be pointed Riemannian manifold with |Ric| < n — 1 and
Vol(Bi(p)) = v > 0.

@ Cheeger-Naber 2015: fm(p) IRm[>~¢ < Cc(n,v) for any n > 5,
0 <e<1and 3%1 ® [Rm[> < C(v) for n = 4 based on Chern-
Gauss-Bonnet formula.

° L2—Conjecture: 3231 ® [Rm[*> < C(n, V) solved by Jiang-Naber 2021.

Remarks:

o [*-estimate is sharp.

@ Chern-Weil theory: fM IRm[?> < C for Kihler manifolds with topo-
logical restrictions.

@ In the cases of Harmonic map and minimal hypersurface, the best
is a weak L2, no strong L.



d
Let (M}, gi, pi) N (X, d, p) satisty Ric; > —(n—1)g; and Vol(B;(p;)) >
v>0.

@ Cheeger-Colding 1997: dimS < n — 2.
e H"2(S) could be infinite.

@ Cheeger-Naber’s Quantitative Estimate 2013: Decomposition S =
Ues0Se such that Vol(B.(S¢) N Bi(p)) < C(n, v, €, n)r*™" for any
0<n,er<l.



d,
Let (M, gi,p;)) — (X, d, p) satisfy Vol(B1(p;)) > v > 0 and Ricg, >
—(n—-1)g;.

Theorem 2 (Cheeger-Jiang-Naber 2021)

For any 0 < € < 1, there exists S¢ C S such that
@ Decomposition: X = S¢ U R..
@ Vol(B,(S.) N Bi(p)) < C(e,n,v)r* forany 0 < €,r < 1.
e H"2(S. N Bi(p)) < C(e,n,v) and Sc is (n — 2)-rectifiable.
o R. is (1 — e)-bi-Holder to a smooth n-manifold.
o Sis (n— 2)-rectifiable.

| \

Remark 1

Recently, for limit space of polarized Kdhler manifolds, Liu-
Szekelyhidi proved the singular sets are given by a countable union
of analytic subvarieties.

V.




Let (M", g:)ref1.21 be Ricci flow on closed manifold with bounded scalar
curvature |[R| < A and lower v-entropy v[g1,2] > —A. Then

Theorem 3 (Jiang 2021)

If n = 4, the manifold M has at most C(\) many diffeomorphism types.

Let (M", g) satisfy Ric > —(n— 1)A, Vol(M) > V > 0,diam(M, g) < D.
Consider Ricci flow (M", g;) starting at gg = g.
@ Jiang 2016: If M is Fano, then Ry, | < C(n,A,V,D, 1) for 0 <
t<1.

@ Simon-Topping 2017: If n = 3, |R,,| < C(A,V,D, t‘l) forO <t <
1.

@ Bamler-Cabezas Rivas-Wilking 2019: If curvature operator Rm >
—1, then |Ry,| < C(n, A, V,D,t7 ") for0 <7 < 1.

@ Jiang 2021: There is no uniform |Ry | < C(n, A, V, D, 1) forn >
4.(If the flow exists for a uniform time.)



Yau’s conjecture: Let (M", g) be closed manifold and u be a non-
constant eigenfunction: —Au = Au, then 0 < Co(M, g) VA < H" ' ({u =
0) <CiM, g) VA.(lower bound solved by Logunov 2018)

@ Question: Uniform estimate for Co(M, g) and C1(M, g)?

@ Chu-Ge-Jiang 2020: Co(M,g) = C(A,V,D) where [Ric| < A,
Vol(M, g) > V > 0 and diam(M, g) < D.

Theorem 4 (Chu-Ge-Jiang 2020)
Let (M", g, p) be a manifold with Ric > —(n — 1) and Vol(B1(p)) = v >
0. Let Au = 0 and Du(p,2) = SUDp,cocy) St < A Then for
any0<r<1,

(1) Vol(B,(Z,) N B1(p)) < C(n, v, N)r, where Z,, = {u = 0}

(2) Ifu(p) = 0, then H"Y(Z, N B1(p)) > C(n, v, A).

V.

e Remark: No apriori C!*-estimate for harmonic function on man-
ifold with Ricci curvature bounds.



Let (M", g,X) be asymptotic flat manifold with g € C* away from a
closed bounded subset X and R, > 0 on M \ X.

@ Question: What are the conditions of g and X such that the posi-
tive mass theorem still hold.

@ Progress by Miao, Shi-Tam, McFeron-Szekelyhidi, Li-Mantoulidis,
Lee,...

Theorem 5 (Jiang-Sheng-Zhang, 2021)

If g is locally Lipschitz and H""'(X) = 0, the positive mass theorem
still hold.

Remarks:
@ The result is sharp, which confirms a conjecture of Dan Lee.

@ The result improves Shi-Tam, Lee’s results and generalize Lee-
Lefloch from Spin to non-Spin.

o The rigidity part involves RCD theory.



Thank you for your attention!



