Gromov-Hausdorff Limit of Manifolds and Some Applications

Wenshuai Jiang(Zhejiang University)

April 30, 2021

Outline

Introduction

- Geometry of Nonnegative Ricci Curvature
- Gromov-Hausdorff Topology

2 Ricci Limit Space

- Regular-Singular Decomposition
- Regularity on Bounded Ricci Curvature
- Regularity on Lower Ricci Curvature

3 Applications

- Finite diffeomorphism of Ricci flow
- Nodal Set with Lower Ricci Curvature
- Positive Mass for Singular Metrics

Let (M^n, g) be a closed manifold with $n \ge 2$

- $Sec_M > 0$: $\pi_1(M)$ is finite.
- $Sec_M \equiv 0$: $\pi_1(M)$ is infinite.
- $Sec_M < 0$: $\pi_1(M)$ is infinite.

No intersection of $\{M : Sec_M > 0\}$ and $\{M : Sec_M < 0\}$.

No topological obstruction for negative Ricci and negative Scalar:

- Aubin 1970: For each closed manifold M^n with $n \ge 3$, \exists a complete g such that $R_g \equiv -1$.
- Lohkamp 1994: For each closed manifold Mⁿ with n ≥ 3, ∃ a complete g such that -a(n)g ≤ Ric_g ≤ -b(n)g.

Nonnegative Ricci Curvature

- Milnor 1968: Each finitely generated subgroup of π₁(M) has polynomial growth. (Conjecturally, π₁(M) is finitely generated.)
- Cheeger-Gromoll 1971: If (M^n, g) is compact then $b_1(M) \le n$ and $b_1(M) = n$ iff (M^n, g) is a flat torus.
- Cheeger-Gromoll 1971: Let (M^n, g) be complete then M^n splits isometrically as $M^n \cong N^{n-1} \times \mathbb{R}$ if there exists a geodesic line on M^n .
- Yau 1976: Each complete manifold has infinite volume.

Gromov-Hausdorff distance

• (Gromov-Hausdorff distance) Let (X, d_1) and (Y, d_2) be two compact metric spaces, the Gromov-Hausdorff metric d_{GH} defines as follow

$$d_{GH}((X, d_1), (Y, d_2)) := \inf_{(Z, d)} \inf\{\epsilon : X \subset B_{\epsilon}(Y), Y \subset B_{\epsilon}(X)\}$$

where $(X, d_1), (Y, d_2) \hookrightarrow (Z, d)$ (*isometric embedding*).

- If $\lim_{i\to\infty} d_{GH}((X_i, d_i), (X, d)) = 0$, then we say $(X_i, d_i) \xrightarrow{d_{GH}} (X, d)$.
- Can define Pointed Gromov-Hausdorff convergence for noncompact metric spaces.

- Collapsing: $(\mathbb{T}^2, g_r) = \mathbb{S}^1 \times \mathbb{S}^1_r$, if $r \to 0$, then $(\mathbb{T}^2, g_r) \xrightarrow{d_{GH}} \mathbb{S}^1$.
- Tangent cone: Let (M^n, g) be smooth. Blowing up at $x \in M$ we get GH-limit \mathbb{R}^n .
- Singular Limit: Blowing down of Eguchi-Hanson metrics, we get GH-limit ℝ⁴/ℤ₂.

Theorem 1 (Gromov, 1981)

The space $\mathcal{M}(n, \Lambda, D) = \{(M^n, g) : \operatorname{Ric} \ge -(n-1)\Lambda g, \operatorname{diam}(M, g) \le D\}$ is precompact under Gromov-Hausdorff topology. i.e., any sequence $(M_i, g_i) \in \mathcal{M}(n, \Lambda, D)$ has a subsequence and a metric space (X, d)such that

$$(M_{i'}^n,g_{i'})\xrightarrow{d_{GH}}(X,d).$$

- What can be said about the convergence and the structure of *X*?
- Roughly, "GH-convergence" is " L^{∞} -convergence".

VS L^{∞} -convergence

Let $f_i \in C^{\infty}(\mathbb{R}^n)$ and $f_i \to f$ in L^{∞} norm on $B_1(0^n)$. Regularity of f? Improve the convergence?

- Improve the convergence: If $|\nabla^2 f_i| \leq C$ uniformly, then $f_i \to f$ in $C^{1,\alpha}$ -sense for any $0 < \alpha < 1$ and $f \in C^{1,\alpha}$. (By Arzela-Ascoli theorem)
- Improve the convergence: If $\Delta f_i = 0$ then $f_i \rightarrow f$ in smooth sense and f is smooth.
- Improve the convergence: If $|\Delta f_i| \leq C$ uniformly, then $f_i \to f$ in $C^{1,\alpha}$ -sense for any $0 < \alpha < 1$ and $f \in C^{1,\alpha}$.
- Super-harmonic: If $\Delta f_i \ge 0$, Can not improve the regularity.

Improved GH-convergence

Let $(M_i^n, g_i) \xrightarrow{d_{GH}} (X, d)$ satisfy $\operatorname{Ric}_{g_i} \ge -(n-1)g_i$ and $\operatorname{diam}(M_i, g_i) \le D$.

Note that $\operatorname{Rm} \approx \nabla^2 g_{ij}$ and $\operatorname{Ric}_{ij} \approx \Delta g_{ij}$

- Cheeger-Gromov: If $|\text{Rm}_{g_i}| \le \Lambda$ and $\text{Vol}(M_i, g_i) \ge V > 0$, then d_{GH} -convergence is $C^{1,\alpha}$ -convergence for any $0 < \alpha < 1$ and X is smooth.
- Anderson-Cheeger-Colding: If |Ric_{gi}| ≤ Λ and X is a smooth n-manifold, then d_{GH}-convergence is C^{1,α}-convergence for any 0 < α < 1.
- For Ric $\geq -(n-1)g$: Cannot improve the convergence. What can we say about the limit?

Noncollapsing: Let $(M_i^n, g_i, p_i) \xrightarrow{d_{GH}} (X, d, p)$ satisfy $\operatorname{Ric}_i \ge -(n-1)g_i$ and $\operatorname{Vol}(B_1(p_i)) \ge v > 0$.

- Volume Convergence: $Vol(M_i^n) \rightarrow Vol(X)$.
- Tangent cones are metric cones, i.e., $Y = C(Z) = Z \times [0, \infty)/Z \times \{0\}$ for some metric space Z.
- Splitting: If $\operatorname{Ric}_i \ge -\lambda_i g_i \to 0$ and *X* contains one geodesic line, then *X* splits off a factor $\mathbb{R} \times X_1$.

Regular-Singular Decomposition: Cheeger-Colding

Let $(M_i^n, g_i, p_i) \xrightarrow{d_{GH}} (X, d, p)$ satisfy $\operatorname{Ric}_i \ge -(n-1)g_i$ and $\operatorname{Vol}(B_1(p_i)) \ge v > 0$.

- Regular-Singular Decomposition: $X = \mathcal{R} \cup \mathcal{S}$.
- Regular set \mathcal{R} : Tangent cone is \mathbb{R}^n .
- Local Regularity of \mathcal{R} : For any $x \in \mathcal{R}$, exists r_x such that $B_{r_x}(x)$ is bi-Hölder to \mathbb{R}^n .(Conjecturally, locally bi-Lipschitz)
- Singular set $S: S := X \setminus \mathcal{R}$.
- Structure of Singular set: dim $S \le n 2$. (S may be not closed and may be dense in X)

Regularity on Bounded Ricci curvature-Limit Space I

Let $(M_i^n, g_i, p_i) \xrightarrow{d_{GH}} (X, d, p)$ satisfy $Vol(B_1(p_i)) \ge v > 0$ and $|Ric| \le n - 1$. Then:

- Anderson-Cheeger-Colding 1997: S is closed
- Colding-Naber 2012: *R* is convex
- Anderson, Bando-Kasue-Nakajima, Tian, 1989: If $\int_{B_1(p_i)} |\text{Rm}|^{n/2} \le \Lambda$ then $S \cap B_1(p)$ is a finite set
- Cheeger-Colding-Tian 2002, Cheeger 2003, Chen-Donaldson 2014: If $\int_{B_1(p_i)} |\text{Rm}|^q \le \Lambda$ for q < n/2 then $H^{n-2q}(S \cap B_1(p)) \le C(n, v, q, \Lambda)$

Regularity on Bounded Ricci curvature-Limit Space II

Let $(M_i^n, g_i, p_i) \xrightarrow{d_{GH}} (X, d, p)$ satisfy $Vol(B_1(p_i)) \ge v > 0$ and $|Ric| \le n - 1$. Then:

- $|\text{Ric}| \le \Lambda \text{ implies } |\text{Rm}| \le C(\Lambda) \text{ for } n = 3, \text{ then } S = \emptyset.$
- Codimension four conjecture: dim $S \le n 4$ solved by Tian, Cheeger for Kähler case, general case by Cheeger-Naber 2015.
- Finite measure conjecture: $H^{n-4}(B_1(p) \cap S) \leq C(n, v)$ solved by Jiang-Naber 2021.

Regularity on Bounded Ricci Curvature-Manifold

Let (M^n, g, p) be pointed Riemannian manifold with $|\text{Ric}| \le n - 1$ and $\text{Vol}(B_1(p)) \ge v > 0$.

• Cheeger-Naber 2015: $\int_{B_1(p)} |\text{Rm}|^{2-\epsilon} \leq C_{\epsilon}(n, v)$ for any $n \geq 5$, $0 < \epsilon < 1$ and $\int_{B_1(p)} |\text{Rm}|^2 \leq C(v)$ for n = 4 based on Chern-Gauss-Bonnet formula.

• L^2 -Conjecture: $\int_{B_1(p)} |\mathbf{Rm}|^2 \le C(n, \mathbf{v})$ solved by Jiang-Naber 2021. Remarks:

- L^2 -estimate is sharp.
- Chern-Weil theory: $\int_M |\mathbf{Rm}|^2 \le C$ for Kähler manifolds with topological restrictions.
- In the cases of Harmonic map and minimal hypersurface, the best is a weak L^2 , no strong L^2 .

Singular Set on Lower Ricci Curvature

Let $(M_i^n, g_i, p_i) \xrightarrow{d_{GH}} (X, d, p)$ satisfy $\operatorname{Ric}_i \ge -(n-1)g_i$ and $\operatorname{Vol}(B_1(p_i)) \ge v > 0$.

- Cheeger-Colding 1997: dim $S \le n 2$.
- $H^{n-2}(S)$ could be infinite.
- Cheeger-Naber's Quantitative Estimate 2013: Decomposition $S = \bigcup_{\epsilon>0} S_{\epsilon}$ such that $\operatorname{Vol}(B_r(S_{\epsilon}) \cap B_1(p)) \leq C(n, v, \epsilon, \eta)r^{2-\eta}$ for any $0 < \eta, \epsilon, r < 1$.

Structure on Lower Ricci Curvature

Let $(M_i^n, g_i, p_i) \xrightarrow{d_{GH}} (X, d, p)$ satisfy $\operatorname{Vol}(B_1(p_i)) \ge v > 0$ and $\operatorname{Ric}_{g_i} \ge -(n-1)g_i$.

Theorem 2 (Cheeger-Jiang-Naber 2021)

For any $0 < \epsilon < 1$, there exists $S_{\epsilon} \subset S$ such that

- Decomposition: $X = S_{\epsilon} \cup \mathcal{R}_{\epsilon}$.
- $\operatorname{Vol}(B_r(\mathcal{S}_{\epsilon}) \cap B_1(p)) \leq C(\epsilon, n, v)r^2 \text{ for any } 0 < \epsilon, r < 1.$
- $H^{n-2}(\mathcal{S}_{\epsilon} \cap B_1(p)) \leq C(\epsilon, n, v)$ and \mathcal{S}_{ϵ} is (n-2)-rectifiable.
- \mathcal{R}_{ϵ} is (1ϵ) -bi-Hölder to a smooth n-manifold.
- S is (n-2)-rectifiable.

Remark 1

Recently, for limit space of polarized Kähler manifolds, Liu-Szekelyhidi proved the singular sets are given by a countable union of analytic subvarieties.

Finite diffeomorphism of Ricci flow

Let $(M^n, g_t)_{t \in [1,2]}$ be Ricci flow on closed manifold with bounded scalar curvature $|R| \le \Lambda$ and lower *v*-entropy $\nu[g_1, 2] \ge -\Lambda$. Then

Theorem 3 (Jiang 2021)

If n = 4, the manifold M has at most $C(\Lambda)$ many diffeomorphism types.

Let (M^n, g) satisfy Ric $\geq -(n-1)\Lambda$, Vol $(M) \geq V > 0$, diam $(M, g) \leq D$. Consider Ricci flow (M^n, g_t) starting at $g_0 = g$.

- Jiang 2016: If *M* is Fano, then $|R_{g_t}| \leq C(n, \Lambda, V, D, t^{-1})$ for $0 < t \leq 1$.
- Simon-Topping 2017: If n = 3, $|R_{g_t}| \le C(\Lambda, V, D, t^{-1})$ for $0 < t \le 1$.
- Bamler-Cabezas Rivas-Wilking 2019: If curvature operator $\text{Rm} \ge -1$, then $|R_{g_t}| \le C(n, \Lambda, V, D, t^{-1})$ for $0 < t \le 1$.
- Jiang 2021: There is no uniform $|R_{g_l}| \le C(n, \Lambda, V, D, t^{-1})$ for $n \ge 4$.(If the flow exists for a uniform time.)

Nodal Set with Lower Ricci Curvature

Yau's conjecture: Let (M^n, g) be closed manifold and u be a nonconstant eigenfunction: $-\Delta u = \lambda u$, then $0 < C_0(M, g) \sqrt{\lambda} \le \mathcal{H}^{n-1}(\{u = 0\}) \le C_1(M, g) \sqrt{\lambda}$.(lower bound solved by Logunov 2018)

- Question: Uniform estimate for $C_0(M, g)$ and $C_1(M, g)$?
- Chu-Ge-Jiang 2020: $C_0(M, g) = C(\Lambda, V, D)$ where $|\text{Ric}| \le \Lambda$, Vol $(M, g) \ge V > 0$ and diam $(M, g) \le D$.

Theorem 4 (Chu-Ge-Jiang 2020)

Let (M^n, g, p) be a manifold with $\operatorname{Ric} \geq -(n-1)$ and $\operatorname{Vol}(B_1(p)) \geq v > 0$. Let $\Delta u = 0$ and $D_u(p, 2) := \sup_{B_r(x) \subset B_2(p)} \frac{\sup_{B_{2r}(x)} |u|}{\sup_{B_r(x)} |u|} \leq \Lambda$. Then for any $0 < r \leq 1$, (1) $\operatorname{Vol}(B_r(Z_u) \cap B_1(p)) \leq C(n, v, \Lambda)r$, where $Z_u = \{u = 0\}$

- (2) If u(p) = 0, then $\mathcal{H}^{n-1}(Z_u \cap B_1(p)) \ge C(n, \mathbf{v}, \Lambda)$.
 - Remark: No apriori $C^{1,\alpha}$ -estimate for harmonic function on manifold with Ricci curvature bounds.

Positive Mass for Singular Metrics

Let (M^n, g, Σ) be asymptotic flat manifold with $g \in C^{\infty}$ away from a closed bounded subset Σ and $R_g \ge 0$ on $M \setminus \Sigma$.

- Question: What are the conditions of *g* and Σ such that the positive mass theorem still hold.
- Progress by Miao, Shi-Tam, McFeron-Szekelyhidi, Li-Mantoulidis, Lee,...

Theorem 5 (Jiang-Sheng-Zhang, 2021)

If g is locally Lipschitz and $\mathcal{H}^{n-1}(\Sigma) = 0$, the positive mass theorem still hold.

Remarks:

- The result is sharp, which confirms a conjecture of Dan Lee.
- The result improves Shi-Tam, Lee's results and generalize Lee-Lefloch from Spin to non-Spin.
- The rigidity part involves RCD theory.

Thank you for your attention!