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Introduction: Higgs bundle and Hitchin equation

X closed Riemann surface of genus ≥ 2. Fix ω a Kähler form on X .
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X closed Riemann surface of genus ≥ 2. Fix ω a Kähler form on X .

Definition
A Higgs bundle is a pair (E,Φ) of holomorphic objects: E is a
holomorphic vector bundle on X ; Φ a holomorphic 1-form valued in
endomorphisms: Φ ∈ H0(X ,End(E) ⊗ KX ). KX is canonical line bundle of
X , i.e. the holomorphic cotangent bundle.
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Definition
A Higgs bundle is a pair (E,Φ) of holomorphic objects: E is a
holomorphic vector bundle on X ; Φ a holomorphic 1-form valued in
endomorphisms: Φ ∈ H0(X ,End(E) ⊗ KX ). KX is canonical line bundle of
X , i.e. the holomorphic cotangent bundle.
(E,Φ) is (semi)stable if for each proper Φ-invariant subbundle E′ ⊂ E we
have

µ(E′) = degE′
rankE′ < (≤) µ(E) = degE

rankE
where degE = deg detE.
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X closed Riemann surface of genus ≥ 2. Fix ω a Kähler form on X .

Definition
A Higgs bundle is a pair (E,Φ) of holomorphic objects: E is a
holomorphic vector bundle on X ; Φ a holomorphic 1-form valued in
endomorphisms: Φ ∈ H0(X ,End(E) ⊗ KX ). KX is canonical line bundle of
X , i.e. the holomorphic cotangent bundle.
(E,Φ) is (semi)stable if for each proper Φ-invariant subbundle E′ ⊂ E we
have

µ(E′) = degE′
rankE′ < (≤) µ(E) = degE

rankE
where degE = deg detE.
(E,Φ) is polystable if (E,Φ) = ⊕i(Ei ,Φi), where (Ei ,Φi) stable with same
slopes.
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Introduction: Higgs bundle and Hitchin equation

Topologically smooth complex vector bundles E over compact
Riemann surface is classified by rank r and degree d, where degree
is defined by deg ΛrE = deg detE, or by Chern-Weil theory with
choice of a connection ∇ with curvature F∇,

deg E =

∫

X

√
−1

2π
trF∇
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Introduction: Higgs bundle and Hitchin equation

Topologically smooth complex vector bundles E over compact
Riemann surface is classified by rank r and degree d, where degree
is defined by deg ΛrE = deg detE, or by Chern-Weil theory with
choice of a connection ∇ with curvature F∇,

deg E =

∫

X

√
−1

2π
trF∇

Mumford invented geometric invariant theory (GIT) in 60s and studied
moduli of vector bundles Nr ,d of rank r and degree d over compact
Riemann surfaces and introduced notion of (slope) stability
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Introduction: Higgs bundle and Hitchin equation

Narasimhan & Seshadri (’65) identified Nr ,d with the character variety
Hom (π̂1,U(n)) � U(n) of irreducible projective unitary representation
of fundamental group
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Introduction: Higgs bundle and Hitchin equation

Narasimhan & Seshadri (’65) identified Nr ,d with the character variety
Hom (π̂1,U(n)) � U(n) of irreducible projective unitary representation
of fundamental group

Donaldson (’82) further identified this with the moduli space of
projectively flat irred. unitary conn. on underlying bundle E. Later
generalized by Uhlenbeck-Yau (’86) characterizing stability over
compact Kähler manifold (X , ω) with existence of
Hermitian-Yang-Mills connection

√
−1F∇ ∧ ωn−1 = µIdEω

n
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Introduction: Higgs bundle and Hitchin equation

Hitchin (’87) studied a dimension reduction of self-dual Yang-Mills
equation FA = ∗FA from d = 4 to d = 2, which retains conformal
symmetry and is naturally defined on Riemann surfaces, leading to
Hitchin equation. The moduli spaceM of its solutions has very rich
geometry and contains T∗N2,d as open dense subset.
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Hitchin (’87) studied a dimension reduction of self-dual Yang-Mills
equation FA = ∗FA from d = 4 to d = 2, which retains conformal
symmetry and is naturally defined on Riemann surfaces, leading to
Hitchin equation. The moduli spaceM of its solutions has very rich
geometry and contains T∗N2,d as open dense subset.

Hitchin showed that the moduli spaceM of solutions is equivalent to
that of the pair (E,Φ) with above stability condition, along the same
line as Donaldson-Uhlenbeck-Yau. A wide range of similar results are
now referred to collectively as Hitchin-Kobayashi correspondence.
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Hitchin (’87) studied a dimension reduction of self-dual Yang-Mills
equation FA = ∗FA from d = 4 to d = 2, which retains conformal
symmetry and is naturally defined on Riemann surfaces, leading to
Hitchin equation. The moduli spaceM of its solutions has very rich
geometry and contains T∗N2,d as open dense subset.

Hitchin showed that the moduli spaceM of solutions is equivalent to
that of the pair (E,Φ) with above stability condition, along the same
line as Donaldson-Uhlenbeck-Yau. A wide range of similar results are
now referred to collectively as Hitchin-Kobayashi correspondence.

The name ‘Higgs bundle’: Gauge fields A3, A4 in the direction of
reduction gives a field similar to that of Higgs boson in the standard
model of particle physics, which he calls Higgs field.
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Introduction: Higgs bundle and Hitchin equation

There are two equivalent formulations of Hitchin equation for (E,Φ):
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Introduction: Higgs bundle and Hitchin equation

There are two equivalent formulations of Hitchin equation for (E,Φ):
Fix hermitian metric h0 on E underlying complex vector bundle.
Hitchin equation is an equation of the pair (A ,Φ):















√
−1Λ

(

FA + [Φ ∧ Φ†]
)

= µ(E)IdE

d′′AΦ = 0

where FA curvature 2-form and the holomorphic structure of E is
given by ∂̄E = d′′A .

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 6 / 52



Introduction: Higgs bundle and Hitchin equation

There are two equivalent formulations of Hitchin equation for (E,Φ):
Fix hermitian metric h0 on E underlying complex vector bundle.
Hitchin equation is an equation of the pair (A ,Φ):












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√
−1Λ

(

FA + [Φ ∧ Φ†]
)

= µ(E)IdE

d′′AΦ = 0

where FA curvature 2-form and the holomorphic structure of E is
given by ∂̄E = d′′A .

Fix holomorphic structure ∂̄E , Hitchin equation is an equation of
hermitian metric h on E:

√
−1Λ

(

R(h) + [Φ ∧ Φ†h]
)

= µ(E)IdE

where R(h) = F∇h curvature 2-form of Chern connection
A = A(∂̄E , h).
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−1Λ

(

FA + [Φ ∧ Φ†]
)

= µ(E)IdE

d′′AΦ = 0

where FA curvature 2-form and the holomorphic structure of E is
given by ∂̄E = d′′A .

Fix holomorphic structure ∂̄E , Hitchin equation is an equation of
hermitian metric h on E:

√
−1Λ

(

R(h) + [Φ ∧ Φ†h]
)

= µ(E)IdE

where R(h) = F∇h curvature 2-form of Chern connection
A = A(∂̄E , h).

In this talk we will adopt the second. The tuple (E, ∂̄E ,Φ, h) is called
harmonic bundle.
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Introduction: Higgs bundle and Hitchin equation

There is also a version of Higgs bundle for principal bundles (eqv. for
vector bundle but with some additional structure).
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Introduction: Higgs bundle and Hitchin equation

There is also a version of Higgs bundle for principal bundles (eqv. for
vector bundle but with some additional structure).

Definition

GC complex reductive Lie group. A GC-Higgs bundle is a pair (P,Φ), P a
holomorphic principal GC-bundle and Φ a holomorphic 1-form valued in
the adjoint bundle, Φ ∈ H0(X ,P ×Ad g

C ⊗ K).
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holomorphic principal GC-bundle and Φ a holomorphic 1-form valued in
the adjoint bundle, Φ ∈ H0(X ,P ×Ad g
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For GC ⊂ GL(n,C) we may associate with any GC-Higgs bundle a (vector)
Higgs bundle (E,Φ).
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Introduction: Higgs bundle and Hitchin equation

There is also a version of Higgs bundle for principal bundles (eqv. for
vector bundle but with some additional structure).

Definition

GC complex reductive Lie group. A GC-Higgs bundle is a pair (P,Φ), P a
holomorphic principal GC-bundle and Φ a holomorphic 1-form valued in
the adjoint bundle, Φ ∈ H0(X ,P ×Ad g

C ⊗ K).

For GC ⊂ GL(n,C) we may associate with any GC-Higgs bundle a (vector)
Higgs bundle (E,Φ).

Examples GC = SL(n,C){ (E,Φ) with rankE = n with a trivialization
detE ∼−→ OX and trΦ = 0; GC = Sp(2n,C){ (E,Φ) with E of rank 2n with
a holomorphic simplectic form Ω and Φ satisfied Ω(Φv ,w) = −Ω(v ,Φw).
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Introduction: Higgs bundle and Hitchin equation

Theorem (Hitchin ’87, Simpson ’88)

An SL(n,C)-Higgs bundle (E,Φ) admits unique solution h to Hitchin
equation iff it is polystable

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 8 / 52



Introduction: Higgs bundle and Hitchin equation

Theorem (Hitchin ’87, Simpson ’88)

An SL(n,C)-Higgs bundle (E,Φ) admits unique solution h to Hitchin
equation iff it is polystable

In other words there is a unique harmonic bundle structure (E, ∂̄E ,Φ, h) on
a polystable Higgs bundle (E, ∂̄E ,Φ). This will also provide a flat
connection ∇ = ∇h +Φ+ Φ†h

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 8 / 52



Introduction: Higgs bundle and Hitchin equation

Theorem (Hitchin ’87, Simpson ’88)

An SL(n,C)-Higgs bundle (E,Φ) admits unique solution h to Hitchin
equation iff it is polystable

In other words there is a unique harmonic bundle structure (E, ∂̄E ,Φ, h) on
a polystable Higgs bundle (E, ∂̄E ,Φ). This will also provide a flat
connection ∇ = ∇h +Φ+ Φ†h

Introduction: Higgs bundle and Hitchin equation
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Introduction: spectral curve and spectral data

Definition

The Hitchin map for GC-Higgs bundle is given by

Hit :MGC → BGC =
k

⊕

i=1

H0(X ,K⊗dj)

(P,Φ) 7→ (p1(Φ), . . . , pk (Φ))

where {p1, . . . , pr } is a basis of GC-invariant polynomials on gC and
dj = deg pj. For GC = SL(n,C), Hit simply takes coefficients of
characteristic polynomial.

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 9 / 52



Introduction: spectral curve and spectral data

Definition

The Hitchin map for GC-Higgs bundle is given by

Hit :MGC → BGC =
k

⊕

i=1

H0(X ,K⊗dj)

(P,Φ) 7→ (p1(Φ), . . . , pk (Φ))

where {p1, . . . , pr } is a basis of GC-invariant polynomials on gC and
dj = deg pj. For GC = SL(n,C), Hit simply takes coefficients of
characteristic polynomial.

Hit is a proper and surjective map and as remarked by Hitchin (1987)
‘Somewhat miraculously’ dimBGC = dimMGC/2, Hit makesMGC into an
integrable system – Hitchin system . Almost all integrable systems in
classical mechanics may be realized as special cases.
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Introduction: spectral curve and spectral data

Let π : Tot(K)→ X be the canonical line bundle and p ∈ B a polynomial.
λ ∈ π∗K the tautological section. The spectral curve π : Σp → X given by
the zero locus of p(λ).

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 10 / 52



Introduction: spectral curve and spectral data

Let π : Tot(K)→ X be the canonical line bundle and p ∈ B a polynomial.
λ ∈ π∗K the tautological section. The spectral curve π : Σp → X given by
the zero locus of p(λ).
In other words, for a rank r Higgs bundle (E,Φ) 7→ p under Hitchin map,
Σp marks the eigenvalues of Higgs field Φ. π : Σp → X is an r-sheeted
branched covering.
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Introduction: spectral curve and spectral data

Let π : Tot(K)→ X be the canonical line bundle and p ∈ B a polynomial.
λ ∈ π∗K the tautological section. The spectral curve π : Σp → X given by
the zero locus of p(λ).
In other words, for a rank r Higgs bundle (E,Φ) 7→ p under Hitchin map,
Σp marks the eigenvalues of Higgs field Φ. π : Σp → X is an r-sheeted
branched covering.

Consider SL(2,C) Higgs bundle with Hit:(E,Φ) 7→ q = detΦ simple zeros
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Introduction: spectral curve and spectral data

Theorem (Beauville-Narasimhan-Ramanan ’89)

For p with Σp an integral (i.e. reduced and irreducible) curve, there is a
natural equivalence between

Pairs (E,Φ) with char(Φ) = p, and

rank-one torsion free sheaves on Σp (Note: not necessarily an
invertible sheaf, i.e. line bundles for singular Σp)
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Theorem (Beauville-Narasimhan-Ramanan ’89)

For p with Σp an integral (i.e. reduced and irreducible) curve, there is a
natural equivalence between

Pairs (E,Φ) with char(Φ) = p, and

rank-one torsion free sheaves on Σp (Note: not necessarily an
invertible sheaf, i.e. line bundles for singular Σp)

The extra data for constructing a pair (E,Φ) after fixing p ∈ B is called
spectral data, equivalently spectral data gives description of the Hitchin
fiber.
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Introduction: spectral curve and spectral data

Theorem (Beauville-Narasimhan-Ramanan ’89)

For p with Σp an integral (i.e. reduced and irreducible) curve, there is a
natural equivalence between

Pairs (E,Φ) with char(Φ) = p, and

rank-one torsion free sheaves on Σp (Note: not necessarily an
invertible sheaf, i.e. line bundles for singular Σp)

The extra data for constructing a pair (E,Φ) after fixing p ∈ B is called
spectral data, equivalently spectral data gives description of the Hitchin
fiber.
In particular the data is given by the ‘eigen-line-subbundle’

0 L(−∆) π∗E π∗ (E ⊗ KX )
π∗Φ−λ

Conversely we recover (E,Φ) from (L , λ) by applying direct image functor /
pushforward π∗. For G =SL(n,C) when Σp is smooth curve, the Hitchin
fiber can be identified with Prym(Σp ,X), an abelian variety.
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Introduction: G-Higgs bundle

Non-abelian Hodge correspondence opens door to study the
character varieties Hom+(π,G) � G by Higgs bundles. The work of
Hitchin (1992) for G =SL(n,R) motivated the notion of G-Higgs
bundle for G real form of complex Lie group GC.
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Introduction: G-Higgs bundle

Non-abelian Hodge correspondence opens door to study the
character varieties Hom+(π,G) � G by Higgs bundles. The work of
Hitchin (1992) for G =SL(n,R) motivated the notion of G-Higgs
bundle for G real form of complex Lie group GC.

gC Lie algebra of reductive Lie group GC. Recall we have

{

real form g
of gC

}

1−1−−−→
{

conjugacy cls. of
antihol’c involution

}

1−1−−−→
{

conj. cls. of
hol’c involutions θ

}

θ is the Cartan involution of the real form and its eigenspace
decomposition is Cartan decomposition. Let g (resp. G) a
non-compact real form with Cartan decomposition g = h ⊕m (Killing
form negative definite on h). H: maximal compact subgroup corresp
to h.
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Introduction: G-Higgs bundle

Non-abelian Hodge correspondence opens door to study the
character varieties Hom+(π,G) � G by Higgs bundles. The work of
Hitchin (1992) for G =SL(n,R) motivated the notion of G-Higgs
bundle for G real form of complex Lie group GC.

gC Lie algebra of reductive Lie group GC. Recall we have

{

real form g
of gC

}

1−1−−−→
{

conjugacy cls. of
antihol’c involution

}

1−1−−−→
{

conj. cls. of
hol’c involutions θ

}

θ is the Cartan involution of the real form and its eigenspace
decomposition is Cartan decomposition. Let g (resp. G) a
non-compact real form with Cartan decomposition g = h ⊕m (Killing
form negative definite on h). H: maximal compact subgroup corresp
to h.

[h,m] ⊆ m, restriction of adjoint rep’n gives isotropy representation
ι : HC → GL(mC)
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Introduction: G-Higgs bundle

Definition (Bradlow, Garcı́a-Prada & Gothen 2006)

A G-Higgs bundle is a pair (P,Φ): P is a holomorphic principal-HC,
Φ ∈ H0(X ,P ×Ad m

C ⊗ K).
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Definition (Bradlow, Garcı́a-Prada & Gothen 2006)

A G-Higgs bundle is a pair (P,Φ): P is a holomorphic principal-HC,
Φ ∈ H0(X ,P ×Ad m

C ⊗ K).

The Hitchin map is given byM→ B =
⊕a

i=1 H0(X ,K mi) by
evaluating Higgs field at a basis of the ring of polynomial
HC-invariants. mi are exponents of G and a is real rank.
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Definition (Bradlow, Garcı́a-Prada & Gothen 2006)

A G-Higgs bundle is a pair (P,Φ): P is a holomorphic principal-HC,
Φ ∈ H0(X ,P ×Ad m

C ⊗ K).

The Hitchin map is given byM→ B =
⊕a

i=1 H0(X ,K mi) by
evaluating Higgs field at a basis of the ring of polynomial
HC-invariants. mi are exponents of G and a is real rank.

As a first step in extension of work of Mazzeo-Swoboda-Weiss-Witt
(2014) to G-Higgs bundle, we will consider G with real rank one, e.g.
SU(1, n), SO(1, n). We will consider the simplest of these, the Lie
group G =SU(1,2).
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Definition (Bradlow, Garcı́a-Prada & Gothen 2006)

A G-Higgs bundle is a pair (P,Φ): P is a holomorphic principal-HC,
Φ ∈ H0(X ,P ×Ad m

C ⊗ K).

The Hitchin map is given byM→ B =
⊕a

i=1 H0(X ,K mi) by
evaluating Higgs field at a basis of the ring of polynomial
HC-invariants. mi are exponents of G and a is real rank.

As a first step in extension of work of Mazzeo-Swoboda-Weiss-Witt
(2014) to G-Higgs bundle, we will consider G with real rank one, e.g.
SU(1, n), SO(1, n). We will consider the simplest of these, the Lie
group G =SU(1,2).

H = S (U(1) × U(2)), HC = S (GL(1) × GL(2)) and mC consists of

matrices





















0 x1 x2

x3 0 0
x4 0 0





















, xj ∈ C.
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SU(1,2) Higgs bundle, stability and spectral data

An SU(1,2) Higgs bundle is a rank three Higgs bundle

(

L ⊕ F ,Φ =

(

0 γ

β 0

))

rankL = 1, rankF = 2, L = detF∗, β : L → F ⊗ K , γ : F → LK .
Alternatively the data is contained in the triple of holomorphic objects
(F , β, γ):

LK−1 β
−→ F

γ
−→ LK
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SU(1,2) Higgs bundle, stability and spectral data

An SU(1,2) Higgs bundle is a rank three Higgs bundle

(

L ⊕ F ,Φ =

(

0 γ

β 0

))

rankL = 1, rankF = 2, L = detF∗, β : L → F ⊗ K , γ : F → LK .
Alternatively the data is contained in the triple of holomorphic objects
(F , β, γ):

LK−1 β
−→ F

γ
−→ LK

The Hitchin equation for hermitian metric h on F ,

R(h) + β ∧ β†h + γ
†
h ∧ γ = 0

By ‘decoupled equation’ we mean:

R(h) = 0, β ∧ β†h + γ
†
h ∧ γ = 0
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SU(1,2) Higgs bundle, stability and spectral data

G-Higgs bundles (principal-HC bundles) over X are topologically classified
by a characteristic class in π1(HC) = π1(H) = π1(G). In case of
G =U(p,q), SU(p,q) this is given by the Toledo invariant, which is constant
on connected components of the moduli space. For SU(1,2) Higgs bundle
the Toledo invariant is 2 deg L = −2 deg F .
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SU(1,2) Higgs bundle, stability and spectral data

G-Higgs bundles (principal-HC bundles) over X are topologically classified
by a characteristic class in π1(HC) = π1(H) = π1(G). In case of
G =U(p,q), SU(p,q) this is given by the Toledo invariant, which is constant
on connected components of the moduli space. For SU(1,2) Higgs bundle
the Toledo invariant is 2 deg L = −2 deg F .

By direct generalization of the result of G =SL(2,R) the Toledo invariant
satisfies a Milnor-Wood type inequality (Domic & Toledo ’87):

|2d| ≤ rank(G/H)(g − 1) = 2(g − 1)

In fact by work of Bradlow, Garcia-Prada & Gothen ’03, the stability and
polystability of SU(p,q) Higgs bundle agrees with that of underlying
SL(p + q,C)-Higgs bundle, therefore give further information of β, γ we
may enhance the Toledo inequality for SU(1,2) Higgs bundle!
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SU(1,2) Higgs bundle, stability and spectral data

The data of (F , β, γ) in B is determined by q = γ ◦ β which we assume has
simple zeros D =

{

p1, . . . , p4g−4

}

. For each p ∈ D,
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The data of (F , β, γ) in B is determined by q = γ ◦ β which we assume has
simple zeros D =

{

p1, . . . , p4g−4

}

. For each p ∈ D,

either β(p) = 0, denote p ∈ Dβ, dβ := |Dβ|
or γ(p) = 0, denote p ∈ Dγ, dγ := |Dγ|
or neither, denote p ∈ Dr , dr := |Dr |
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SU(1,2) Higgs bundle, stability and spectral data

The data of (F , β, γ) in B is determined by q = γ ◦ β which we assume has
simple zeros D =

{

p1, . . . , p4g−4

}

. For each p ∈ D,

either β(p) = 0, denote p ∈ Dβ, dβ := |Dβ|
or γ(p) = 0, denote p ∈ Dγ, dγ := |Dγ|
or neither, denote p ∈ Dr , dr := |Dr |

SU(1,2) Higgs bundle is (semi)stable iff Φ-invariant proper subbundles of the form
L ′ ⊕ F ′ ⊂ E = L ⊕ F has less slope. Equivalently:
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The data of (F , β, γ) in B is determined by q = γ ◦ β which we assume has
simple zeros D =

{

p1, . . . , p4g−4

}

. For each p ∈ D,

either β(p) = 0, denote p ∈ Dβ, dβ := |Dβ|
or γ(p) = 0, denote p ∈ Dγ, dγ := |Dγ|
or neither, denote p ∈ Dr , dr := |Dr |

SU(1,2) Higgs bundle is (semi)stable iff Φ-invariant proper subbundles of the form
L ′ ⊕ F ′ ⊂ E = L ⊕ F has less slope. Equivalently:

Proposition
(F , β, γ) is (semi)stable iff

−(g − 1) +
dγ
2
< (≤) deg L < (≤)(g − 1) −

dβ
2

and polystable iff either stable or F � LK−1(Dβ) ⊕ LK(−Dγ).
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The data of (F , β, γ) in B is determined by q = γ ◦ β which we assume has
simple zeros D =

{

p1, . . . , p4g−4

}

. For each p ∈ D,

either β(p) = 0, denote p ∈ Dβ, dβ := |Dβ|
or γ(p) = 0, denote p ∈ Dγ, dγ := |Dγ|
or neither, denote p ∈ Dr , dr := |Dr |

SU(1,2) Higgs bundle is (semi)stable iff Φ-invariant proper subbundles of the form
L ′ ⊕ F ′ ⊂ E = L ⊕ F has less slope. Equivalently:

Proposition
(F , β, γ) is (semi)stable iff

−(g − 1) +
dγ
2
< (≤) deg L < (≤)(g − 1) −

dβ
2

and polystable iff either stable or F � LK−1(Dβ) ⊕ LK(−Dγ).

We will also call partition D (semi)stable.
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SU(1,2) Higgs bundle, stability and spectral data

Given a stable Higgs bundle (E,Φ), the pair (E, tΦ) for t ∈ C× is also
stable { a C×-action onMHiggs. For |t | = 1, this gives a S1-action
whose fixed points are the critical points of the Morse function
(A ,Φ) 7→ ‖Φ‖2L2 and was used by Hitchin ’87 to study topology ofMHiggs.
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SU(1,2) Higgs bundle, stability and spectral data

Given a stable Higgs bundle (E,Φ), the pair (E, tΦ) for t ∈ C× is also
stable { a C×-action onMHiggs. For |t | = 1, this gives a S1-action
whose fixed points are the critical points of the Morse function
(A ,Φ) 7→ ‖Φ‖2L2 and was used by Hitchin ’87 to study topology ofMHiggs.

On the other hand for t ∈ R+ we will be focusing on the limiting behavior of
unique solution ht as t →∞.

Goal
Given family of stable SU(1,2) Higgs bundles (F , tβ, tγ), study behavior of
unique solution ht , a hermian metric on the fixed rank two bundle F as
t → ∞.
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Limiting configuration

Theorem (Mazzeo-Swoboda-Weiss-Witt ’14)

(E, tΦ) family of SL(2,C) Higgs bundle, q = detΦ has simple zeros D. We
have uniform convergence

ht → h∞ as t → ∞

where h∞ solves decoupled equation

R(h) = 0, [Φ ∧ Φ†h] = 0

Conversely any solution to decoupled equation arise as such a limit.
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Theorem (Mazzeo-Swoboda-Weiss-Witt ’14)

(E, tΦ) family of SL(2,C) Higgs bundle, q = detΦ has simple zeros D. We
have uniform convergence

ht → h∞ as t → ∞

where h∞ solves decoupled equation

R(h) = 0, [Φ ∧ Φ†h] = 0

Conversely any solution to decoupled equation arise as such a limit.

In particular, the moduli of limiting configuration is a torus of
dimR = 6g − 6.
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Limiting configuration

Collier & Li (2014) describes the limiting behavior for cyclic
SL(n,R)-Higgs bundle;
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Collier & Li (2014) describes the limiting behavior for cyclic
SL(n,R)-Higgs bundle;
Mochizuki (2016): general case for SL(2,C), reduce to
Σ = Im(ω) ∪ Im(−ω) with q = −ω2; Fredrickson (2018): extends to
SL(n,C) Higgs bundle where ramification index of Σ is at most 2
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Limiting configuration

Collier & Li (2014) describes the limiting behavior for cyclic
SL(n,R)-Higgs bundle;
Mochizuki (2016): general case for SL(2,C), reduce to
Σ = Im(ω) ∪ Im(−ω) with q = −ω2; Fredrickson (2018): extends to
SL(n,C) Higgs bundle where ramification index of Σ is at most 2

To study the space of limiting config for SU(1,2) Higgs bundle, it is
necessary to get a better description of the Hitchin fiber / spectral
data.
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SU(1,2) Higgs bundle, stability and spectral data

Given stable SU(1,2) Higgs bundle (F , β, γ)

Idea: transform data in LK−1 β
−→ F

γ
−→ LK , to get F as a Hecke modification

of fixed bundle V = L−2K ⊕ LK .
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SU(1,2) Higgs bundle, stability and spectral data

Given stable SU(1,2) Higgs bundle (F , β, γ)

Idea: transform data in LK−1 β
−→ F

γ
−→ LK , to get F as a Hecke modification

of fixed bundle V = L−2K ⊕ LK .

For this, we may first dualize to get F∗
βt

−→ L−1K then use the canonical
map φF : F∗ ⊗ Λ2F → F , which is an isom for rank two bundle F , to get
composition

ι1 : F
φ−1

F−−−→ F∗ ⊗ Λ2F = F∗ ⊗ L−1 βt⊗1
−−−→ L−1K ⊗ L−1 = L−2K
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SU(1,2) Higgs bundle, stability and spectral data

Given stable SU(1,2) Higgs bundle (F , β, γ)

Idea: transform data in LK−1 β
−→ F

γ
−→ LK , to get F as a Hecke modification

of fixed bundle V = L−2K ⊕ LK .

For this, we may first dualize to get F∗
βt

−→ L−1K then use the canonical
map φF : F∗ ⊗ Λ2F → F , which is an isom for rank two bundle F , to get
composition

ι1 : F
φ−1

F−−−→ F∗ ⊗ Λ2F = F∗ ⊗ L−1 βt⊗1
−−−→ L−1K ⊗ L−1 = L−2K

and let ι2 = γ : F → LK . This gives an SES of coherent sheaves on X :

0→ F
ι=ι1⊕ι2−−−−−−→ V

π−→ OD → 0

with OD skyscraper sheaf of length 1 at p ∈ D.
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SU(1,2) Higgs bundle, stability and spectral data

It turns out that the above idea can be used to construct a family of SU(1,2) Higgs
bundles parametrized by a fiber bundle over the Jacobian variety with local
universal property .
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SU(1,2) Higgs bundle, stability and spectral data

It turns out that the above idea can be used to construct a family of SU(1,2) Higgs
bundles parametrized by a fiber bundle over the Jacobian variety with local
universal property .
Fix |d| < g − 1 and let L be a Poincaré line bundle over X × PicdX and
V = L −2pr∗XK ⊕L pr∗XK and let ιx : PicdX → X × PicdX be ℓ 7→ (x , ℓ),
the fiber bundle is given by

P = P1 ×
PicdX

. . . ×
Picd X

P4g−4, where Pj = P
(

ι∗xj
V∗

)

.

with fiber �
(

P
1
)4g−4

. SinceV is decomposable, there is a well-defined
C
×-action given fiber-wise by [x0 : x1] 7→ [cx0 : x1], and
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SU(1,2) Higgs bundle, stability and spectral data

It turns out that the above idea can be used to construct a family of SU(1,2) Higgs
bundles parametrized by a fiber bundle over the Jacobian variety with local
universal property .
Fix |d| < g − 1 and let L be a Poincaré line bundle over X × PicdX and
V = L −2pr∗XK ⊕L pr∗XK and let ιx : PicdX → X × PicdX be ℓ 7→ (x , ℓ),
the fiber bundle is given by

P = P1 ×
PicdX

. . . ×
Picd X

P4g−4, where Pj = P
(

ι∗xj
V∗

)

.

with fiber �
(

P
1
)4g−4

. SinceV is decomposable, there is a well-defined
C
×-action given fiber-wise by [x0 : x1] 7→ [cx0 : x1], and

Theorem (N ’21)

For |d| < g − 1, q ∈ H0(X ,K 2
X) with simple zeros D = x1 + . . .+ x4g−4, P

and C×-action as above, there is an appropriate linearization using an
ample line bundle L ′ over P such that

Hit−1
d (q) � P � C×
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SU(1,2) Higgs bundle, stability and spectral data

Given a stable SU(1,2) Higgs bundle (F , β, γ) corresponding to some point ℓ ∈ P
in the fiber P

(

V∗x1

)

× . . . × P
(

V∗x4g−4

)

over L ∈ PicdX . Write ℓ = (ℓ1, . . . , ℓ4g−4) with

ℓj ∈
(

V∗xj

)

� P
1, we have a correspondence
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SU(1,2) Higgs bundle, stability and spectral data

Given a stable SU(1,2) Higgs bundle (F , β, γ) corresponding to some point ℓ ∈ P
in the fiber P

(

V∗x1

)

× . . . × P
(

V∗x4g−4

)

over L ∈ PicdX . Write ℓ = (ℓ1, . . . , ℓ4g−4) with

ℓj ∈
(

V∗xj

)

� P
1, we have a correspondence

ℓj = [0 : 1] iff ι : F → V = L−2K ⊕ LK at pj lands in second summand,
iff β(pj) = 0

ℓj = [1 : 0] iff ι : F → V = L−2K ⊕ LK at pj lands in first summand, iff
γ(pj) = 0

ℓj , [0 : 1], [1 : 0] iff ι : F → V = L−2K ⊕ LK at pj does not land in
either axes, iff β(pj), γ(pj) , 0.
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SU(1,2) Higgs bundle, stability and spectral data

Given a stable SU(1,2) Higgs bundle (F , β, γ) corresponding to some point ℓ ∈ P
in the fiber P

(

V∗x1

)

× . . . × P
(

V∗x4g−4

)

over L ∈ PicdX . Write ℓ = (ℓ1, . . . , ℓ4g−4) with

ℓj ∈
(

V∗xj

)

� P
1, we have a correspondence

ℓj = [0 : 1] iff ι : F → V = L−2K ⊕ LK at pj lands in second summand,
iff β(pj) = 0

ℓj = [1 : 0] iff ι : F → V = L−2K ⊕ LK at pj lands in first summand, iff
γ(pj) = 0

ℓj , [0 : 1], [1 : 0] iff ι : F → V = L−2K ⊕ LK at pj does not land in
either axes, iff β(pj), γ(pj) , 0.

Let n1(ℓ) (resp. n2(ℓ)) be the number of [0 : 1] (resp. [1 : 0]) in its components,
the stable locus in Hit−1(q) is then given by the C× quotient of

Y =



















ℓ = (ℓ1, . . . , ℓ4g−4) ∈ P

∣

∣

∣

∣

∣

∣

∣

∣

ℓj ∈ Pj ,

n1(ℓ) < 2(g − 1 + d),
n2(ℓ) < 2(g − 1 − d),


















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SU(1,2) Higgs bundle, stability and spectral data

The partition of D into three cases (zero of β; zero of γ; neither) then gives a
stratification

Y =
∐

D stable

YD ,
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SU(1,2) Higgs bundle, stability and spectral data

The partition of D into three cases (zero of β; zero of γ; neither) then gives a
stratification

Y =
∐

D stable

YD ,

Each stratum is of the form (C×)dr :

YD

∣

∣

∣

L
:= FL ,Dr �

∏

x∈Dr

(

L3
∣

∣

∣

x

)×
=

{

b = (bx)
∣

∣

∣ bx ∈ L3
∣

∣

∣

x
− {0} , x ∈ Dr

}

.

In the following we fix coord nbhd (Dj; ζj) with pj ∈ Dr and q = ζj (ζj)
2.
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SU(1,2) Higgs bundle, stability and spectral data

The partition of D into three cases (zero of β; zero of γ; neither) then gives a
stratification

Y =
∐

D stable

YD ,

Each stratum is of the form (C×)dr :

YD

∣

∣

∣

L
:= FL ,Dr �

∏

x∈Dr

(

L3
∣

∣

∣

x

)×
=

{

b = (bx)
∣

∣

∣ bx ∈ L3
∣

∣

∣

x
− {0} , x ∈ Dr

}

.

In the following we fix coord nbhd (Dj; ζj) with pj ∈ Dr and q = ζj (ζj)
2.

Corollary

The stable Higgs bundle (F , β, γ) correspond to b ∈ FL ,Dr iff there are
compatible hol’c frames s0,j of L = detF∗ and

{

s1,j , s2,j

}

of F over Dj with

s⊗3
0,j = bpj for pj ∈ Dr

under such frames β = 1√
2

(

1
ζj

)

dζj and γ = 1√
2

(

ζj 1
)

dζj .
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Hecke transformation representation

The tuple b specifies the subsheaf by matching the two summands in
V = L−2K ⊕ LK over Dr , will be called fiber-matching parameters . These also
give (up to equivalence) holomorphic frames in which Higgs field has standard
form
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Parabolic weights

Recall notion of filtered bundle . Let OX (∗D) be sheaf of meromorphic
functions with possibly poles at D and E a locally free OX(∗D) module of
finite rank. A filtered bundle structure P∗E on E is a family of coherent
OX -submod of E labelled by tuple of real numbers a,
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OX -submod of E labelled by tuple of real numbers a,

PaE ⊗OX OX(∗D) = E.

Stalk PaPEP of PaE at p ∈ D depends only on aP ∈ R.

PaEP ⊂ PbEP iff a ≤ b and there is ǫ > 0 such that PaEP = Pa+ǫEP .
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Parabolic weights

Recall notion of filtered bundle . Let OX (∗D) be sheaf of meromorphic
functions with possibly poles at D and E a locally free OX(∗D) module of
finite rank. A filtered bundle structure P∗E on E is a family of coherent
OX -submod of E labelled by tuple of real numbers a,

PaE ⊗OX OX(∗D) = E.

Stalk PaPEP of PaE at p ∈ D depends only on aP ∈ R.

PaEP ⊂ PbEP iff a ≤ b and there is ǫ > 0 such that PaEP = Pa+ǫEP .

For n ∈ Z, PaEP ⊗OX ,P OX (nP)P = Pa+nEP .
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Parabolic weights

A hermitian metric h is adapted to P∗E if

s ∈ PaE ⇔ |s|h = O(|zP |−aP−ǫ) ∀ ǫ > 0

where (U, zP) centered at P ∈ D, s a holc. section of E. Below essentially
follow from Hodge theory ( later we will see an explicit construction) :
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Parabolic weights

A hermitian metric h is adapted to P∗E if

s ∈ PaE ⇔ |s|h = O(|zP |−aP−ǫ) ∀ ǫ > 0

where (U, zP) centered at P ∈ D, s a holc. section of E. Below essentially
follow from Hodge theory ( later we will see an explicit construction) :

Fact
L a line bundle. For degL+

∑

j λj = 0, ∃ herm. metric h on X − D with
R(h) = 0 and for any sj(pj) , 0

log |sj |h = λj log |ζj |+ O(1)

h is unique up to positive const, called the harmonic metric adapted to
parabolic line bundle (L, λ).
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Decoupled equation

Decoupled solution : a solution to decoupled equation with logarithmic Chern
conn.: ∂h : F → F ⊗ Ω(1,0)

X (logD).
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Decoupled equation

Decoupled solution : a solution to decoupled equation with logarithmic Chern
conn.: ∂h : F → F ⊗ Ω(1,0)

X (logD).

Lemma
Any decoupled solution have the form

h∞ = ι∗
(

h−2
L hK ⊕ hL hK

)

where ι : F → L−2K ⊕ LK the Hecke transf. as above, |q|hK
≡ 1 and hL is a

harmonic metric adapted to (L , λ).
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Decoupled equation

Decoupled solution : a solution to decoupled equation with logarithmic Chern
conn.: ∂h : F → F ⊗ Ω(1,0)

X (logD).

Lemma
Any decoupled solution have the form

h∞ = ι∗
(

h−2
L hK ⊕ hL hK

)

where ι : F → L−2K ⊕ LK the Hecke transf. as above, |q|hK
≡ 1 and hL is a

harmonic metric adapted to (L , λ).

Let D be stable. It will be useful to define a tuple λ to be admissible if

λj = 1/4 for pj ∈ Dβ

λj = −1/4 for pj ∈ Dγ

−1/4 < λj < 1/4 for pj ∈ Dr .
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Admissible parabolic weights

Let PD be the space of admissible weights corresp to D. The union over all
semistable D gives a polytope in a hyperplane H ⊂ R4g−4.
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Limiting configuration of SU(1,2) Hitchin equation

Let (F , β, γ) be stable SU(1,2) Higgs bundle and ι : F → V = L−2K ⊕ LK the
corresp Hecke transf. Let Sa = diag(a−2, a) endom. on V hence F outside D. Fix
a base point p0 ∈ X − D and v0 ∈ L |p0

.
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Limiting configuration of SU(1,2) Hitchin equation

Let (F , β, γ) be stable SU(1,2) Higgs bundle and ι : F → V = L−2K ⊕ LK the
corresp Hecke transf. Let Sa = diag(a−2, a) endom. on V hence F outside D. Fix
a base point p0 ∈ X − D and v0 ∈ L |p0

.

Theorem 2 (N ’21)

On any compact subset of X − D we have uniform convergence

S∗|v0|det h−1
t

ht → h∞ as t → ∞

where h∞ = ι∗
(

h−2
L hK ⊕ hL hK

)

, hK satisfy |q|hK
≡ 1 and hL is a harmonic

metric adapted to (L , λ∞) with λ∞ admissible and

λ∞,j = −
1
dr

(

deg L +
1
4

(

dβ − dγ
)

)

, ∀ pj ∈ Dr
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Limiting configuration of SU(1,2) Hitchin equation

Let (F , β, γ) be stable SU(1,2) Higgs bundle and ι : F → V = L−2K ⊕ LK the
corresp Hecke transf. Let Sa = diag(a−2, a) endom. on V hence F outside D. Fix
a base point p0 ∈ X − D and v0 ∈ L |p0

.

Theorem 2 (N ’21)

On any compact subset of X − D we have uniform convergence

S∗|v0|det h−1
t

ht → h∞ as t → ∞

where h∞ = ι∗
(

h−2
L hK ⊕ hL hK

)

, hK satisfy |q|hK
≡ 1 and hL is a harmonic

metric adapted to (L , λ∞) with λ∞ admissible and

λ∞,j = −
1
dr

(

deg L +
1
4

(

dβ − dγ
)

)

, ∀ pj ∈ Dr

The parabolic weight characterizing limiting configurations are in the barycenter
of the simplex corresponding to D.
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Strategy of proof

Step 1 Construct local model solution with Higgs field in standard forms
via good filtered Higgs bundle on P1 with parabolic weights at ∞
determined by λj . Stability of local model⇔ admissibility of λ
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Strategy of proof

Step 1 Construct local model solution with Higgs field in standard forms
via good filtered Higgs bundle on P1 with parabolic weights at ∞
determined by λj . Stability of local model⇔ admissibility of λ

Step 2 Glue local models in
∣

∣

∣ζj

∣

∣

∣ ≤ R/3 to an decoupled solution of same
weight in

∣

∣

∣ζj

∣

∣

∣ > R by smooth interpolation on annuli. There is a
global compatibility condition depending on t .
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via good filtered Higgs bundle on P1 with parabolic weights at ∞
determined by λj . Stability of local model⇔ admissibility of λ

Step 2 Glue local models in
∣

∣

∣ζj

∣

∣

∣ ≤ R/3 to an decoupled solution of same
weight in

∣

∣

∣ζj

∣

∣

∣ > R by smooth interpolation on annuli. There is a
global compatibility condition depending on t .
For t ≫ 1, there is t-compatible family λ(t)→ λ∞, giving approx.
soln happ

t
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Strategy of proof

Step 1 Construct local model solution with Higgs field in standard forms
via good filtered Higgs bundle on P1 with parabolic weights at ∞
determined by λj . Stability of local model⇔ admissibility of λ

Step 2 Glue local models in
∣

∣

∣ζj

∣

∣

∣ ≤ R/3 to an decoupled solution of same
weight in

∣

∣

∣ζj

∣

∣

∣ > R by smooth interpolation on annuli. There is a
global compatibility condition depending on t .
For t ≫ 1, there is t-compatible family λ(t)→ λ∞, giving approx.
soln happ

t

Step 3 Use small perturbation to find solution ht nearby
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Local model solution
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Good filtered Higgs bundle and harmonic metric

A filtered Higgs bundle is a pair (P∗E, θ : E → E ⊗ Ω1
X ). It is called unramifiedly

good if there is a finite collection of germs of meromorphic functions at P,
I(P) ⊂ OX (∗D)P and a decomposition PaEP =

⊕

f∈I(P) PaEP,f such that
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Good filtered Higgs bundle and harmonic metric

A filtered Higgs bundle is a pair (P∗E, θ : E → E ⊗ Ω1
X ). It is called unramifiedly

good if there is a finite collection of germs of meromorphic functions at P,
I(P) ⊂ OX (∗D)P and a decomposition PaEP =

⊕

f∈I(P) PaEP,f such that

(θ − (df)Id)PaEP,f ⊂ PaEP,f ⊗ Ω1
X(log D)P
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Good filtered Higgs bundle and harmonic metric

A filtered Higgs bundle is a pair (P∗E, θ : E → E ⊗ Ω1
X ). It is called unramifiedly

good if there is a finite collection of germs of meromorphic functions at P,
I(P) ⊂ OX (∗D)P and a decomposition PaEP =

⊕

f∈I(P) PaEP,f such that

(θ − (df)Id)PaEP,f ⊂ PaEP,f ⊗ Ω1
X(log D)P

Degree of a filtered bundle is defined by

degP∗E = degPcE −
∑

P∈D

∑

cP−1<a≤cP

a dimC (PaEP/P<aEP) .

Stability of good filtered Higgs bundle is defined similarly to that of Higgs bundle
with this notion of degree.
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Good filtered Higgs bundle and harmonic metric

A filtered Higgs bundle is a pair (P∗E, θ : E → E ⊗ Ω1
X ). It is called unramifiedly

good if there is a finite collection of germs of meromorphic functions at P,
I(P) ⊂ OX (∗D)P and a decomposition PaEP =

⊕

f∈I(P) PaEP,f such that

(θ − (df)Id)PaEP,f ⊂ PaEP,f ⊗ Ω1
X(log D)P

Degree of a filtered bundle is defined by

degP∗E = degPcE −
∑

P∈D

∑

cP−1<a≤cP

a dimC (PaEP/P<aEP) .

Stability of good filtered Higgs bundle is defined similarly to that of Higgs bundle
with this notion of degree.

Theorem (Biqard-Boalch ’04)

A stable unramifiedly good filtered Higgs bundle (P∗E, θ) with degP∗E = 0
admits a harmonic metric adapted to it. This metric is unique up to mult.
by positive constant.
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Admissibility and local model stability

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 33 / 52



Admissibility and local model stability
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Admissibility and local model stability
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Local model symmetries

The weights c = (c1, c2, c3) for which unramifiedly good filtered Higgs bundle
(Pc
∗E, θ̃) on P1 with at ∞ is stable with degPc

∗E = 0 lies in a regular hexagon.
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Local model symmetries

The weights c = (c1, c2, c3) for which unramifiedly good filtered Higgs bundle
(Pc
∗E, θ̃) on P1 with at ∞ is stable with degPc

∗E = 0 lies in a regular hexagon.
For such weight by Biquard-Boalch theorem there exists harmonic metric h̃c

t uniq
up to positive const.
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Local model symmetries

The weights c = (c1, c2, c3) for which unramifiedly good filtered Higgs bundle
(Pc
∗E, θ̃) on P1 with at ∞ is stable with degPc

∗E = 0 lies in a regular hexagon.
For such weight by Biquard-Boalch theorem there exists harmonic metric h̃c

t uniq
up to positive const.
For c1 = c2 the harmonic metric respects HC-symmetry of the vector bundle.
Then 1/2 < c1 < 3/2. Normalize by det h̃c

t ≡ 1. To get
log det h̃c

t = −2λ log |ζ |+ O(1) at ∞ we have

c = (1 + 2λ, 1 + 2λ, 1 − 4λ) with λ ∈ (−1/4, 1/4)

where

−1
4
< λ <

1
4
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Local model symmetries

Standard form of Higgs field

θ̃ =
√

2z





















z2 1
1
z2





















dz

have some symmetries, by uniqueness of h̃c
t we get corresp symmetries of local

model. First note it descends to ht ,λ down the branched covering, denote its local
form by matix Ht ,λ.
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Local model symmetries

Standard form of Higgs field

θ̃ =
√

2z





















z2 1
1
z2





















dz

have some symmetries, by uniqueness of h̃c
t we get corresp symmetries of local

model. First note it descends to ht ,λ down the branched covering, denote its local
form by matix Ht ,λ. We have rotational symmetry:

Ht ,λ(ζe iφ) = g†φHt ,λ(ζ)gφ, gφ =

(

e−iφ/2

e iφ/2

)
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Local model symmetries

Standard form of Higgs field

θ̃ =
√

2z





















z2 1
1
z2





















dz

have some symmetries, by uniqueness of h̃c
t we get corresp symmetries of local

model. First note it descends to ht ,λ down the branched covering, denote its local
form by matix Ht ,λ. We have rotational symmetry:

Ht ,λ(ζe iφ) = g†φHt ,λ(ζ)gφ, gφ =

(

e−iφ/2

e iφ/2

)

as well as scaling law

H1,λ(t2/3ζ) = Γ†t Ht ,λ(ζ)Γt , Γt =

(

t1/3

t−1/3

)
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Local model symmetries

Standard form of Higgs field

θ̃ =
√

2z





















z2 1
1
z2





















dz

have some symmetries, by uniqueness of h̃c
t we get corresp symmetries of local

model. First note it descends to ht ,λ down the branched covering, denote its local
form by matix Ht ,λ. We have rotational symmetry:

Ht ,λ(ζe iφ) = g†φHt ,λ(ζ)gφ, gφ =

(

e−iφ/2

e iφ/2

)

as well as scaling law

H1,λ(t2/3ζ) = Γ†t Ht ,λ(ζ)Γt , Γt =

(

t1/3

t−1/3

)

in particular we have scalar radial functions h1,λ, h2,λ ∈ R, and h3,λ ∈ C:

Ht ,λ(ρe iθ) =













ρh1,λ(t2/3ρ) h3,λ(t2/3ρ)e−iθ

h3,λ(t2/3ρ)e iθ 1
ρ
h2,λ(t2/3ρ)












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Local model explicit form

Note in particular if λ = 0 the Hitchin equation reduces to an ODE of a single
radial function f = h1:

(ρ∂ρ)
2 log f = 2ρ3

(

f − 1
f

)
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Local model explicit form

Note in particular if λ = 0 the Hitchin equation reduces to an ODE of a single
radial function f = h1:

(ρ∂ρ)
2 log f = 2ρ3

(

f − 1
f

)

With f(ρ) = exp
(

2ψ
(

4ρ3/2/3
))

, ψ satisfies a Painlevé III equation

ψ′′ + 1
xψ
′ − 1

2 sinh(2ψ) = 0. The unique solution in this case is characterized by
ψ(x) ∼ x1/2e−x as x → ∞. For points in Dβ, Dγ we use local frame in which Higgs
field and local model has the following form with log detHt = −2λ log |ζ |+ O(1)
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Local model explicit form

Note in particular if λ = 0 the Hitchin equation reduces to an ODE of a single
radial function f = h1:

(ρ∂ρ)
2 log f = 2ρ3

(

f − 1
f

)

With f(ρ) = exp
(

2ψ
(

4ρ3/2/3
))

, ψ satisfies a Painlevé III equation

ψ′′ + 1
xψ
′ − 1

2 sinh(2ψ) = 0. The unique solution in this case is characterized by
ψ(x) ∼ x1/2e−x as x → ∞. For points in Dβ, Dγ we use local frame in which Higgs
field and local model has the following form with log detHt = −2λ log |ζ |+ O(1)

Φ =





















1 0
ζ

0





















dζ, Ht =

















1

c
√
|ζ |

e−ψ(
8
3 t |ζ |3/2)

c2

















, λ = 1/4 for p ∈ Dβ

Φ =





















ζ 0
1
0





















dζ, Ht =

(

1
c

√

|ζ |eψ( 8
3 t |ζ |3/2)

c2

)

, λ = −1/4 for p ∈ Dγ
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Asymptotics of local model

Let b corresp to (F , β, γ) stable. Let frames
{

s1,j , s2,j

}

as in Thm 1 near pj ∈ Dr .

The corresp section s0,j = (s1,j ∧ s2,j)
−1 gives rise to a frame σ1,j = (s−2

0,j dζj , 0),
σ2,j = (0, s0,jdζj) of V = L−2K ⊕ LK . Let (ht ,λ)σ = t2/3Mλ(t2/3ρ), its entries are
radial functions

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 39 / 52



Asymptotics of local model

Let b corresp to (F , β, γ) stable. Let frames
{

s1,j , s2,j

}

as in Thm 1 near pj ∈ Dr .

The corresp section s0,j = (s1,j ∧ s2,j)
−1 gives rise to a frame σ1,j = (s−2

0,j dζj , 0),
σ2,j = (0, s0,jdζj) of V = L−2K ⊕ LK . Let (ht ,λ)σ = t2/3Mλ(t2/3ρ), its entries are
radial functions

Theorem (Mochizuki ’16)

Let
(

E, ∂̄E , θ, h
)

=
⊕N

j=1

(

Lj , ∂̄Lj , fjdz
)

decomp. of harmonic bundle on disk
D = {|z| < R} into line bundles with |fj | < M. Let hj = h|Lj

. Then for any 0 < r < R
we have C, c > 0 depending on rkE, M, R, r such that on {|z| < r}:

∣

∣

∣R(h)
∣

∣

∣

h
,
∣

∣

∣R(hj)
∣

∣

∣

hj
≤ Ce−cd ,

h(si , sj) ≤ Ce−cd |si |h
∣

∣

∣sj

∣

∣

∣

h
for i , j

where d = mini,j

∣

∣

∣fi − fj
∣

∣

∣.
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Asymptotics of local model

Let b corresp to (F , β, γ) stable. Let frames
{

s1,j , s2,j

}

as in Thm 1 near pj ∈ Dr .

The corresp section s0,j = (s1,j ∧ s2,j)
−1 gives rise to a frame σ1,j = (s−2

0,j dζj , 0),
σ2,j = (0, s0,jdζj) of V = L−2K ⊕ LK . Let (ht ,λ)σ = t2/3Mλ(t2/3ρ), its entries are
radial functions

Theorem (Mochizuki ’16)

Let
(

E, ∂̄E , θ, h
)

=
⊕N

j=1

(

Lj , ∂̄Lj , fjdz
)

decomp. of harmonic bundle on disk
D = {|z| < R} into line bundles with |fj | < M. Let hj = h|Lj

. Then for any 0 < r < R
we have C, c > 0 depending on rkE, M, R, r such that on {|z| < r}:

∣

∣

∣R(h)
∣

∣

∣

h
,
∣

∣

∣R(hj)
∣

∣

∣

hj
≤ Ce−cd ,

h(si , sj) ≤ Ce−cd |si |h
∣

∣

∣sj

∣

∣

∣

h
for i , j

where d = mini,j

∣

∣

∣fi − fj
∣

∣

∣.

i.e. over locus where Higgs field is semisimple, harmonic metric becomes
asymptotically flat and orthogonal, at rate exponential in distance between
eigenvalues.
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Asymptotics of local model

Using this we see there is ρ0 > 1 such that for all λ ∈ I ⊂⊂ (−1/4, 1/4) there is C,
c > 0 such that

∣

∣

∣∂ℓρ (Mλ −M∞,λ)
∣

∣

∣ ≤ Ce−cρ

for ℓ = 0, 1, 2 and

M∞,λ =

(

ρ−1µλ(ρ)
2

ρ−1µλ(ρ)
−1

)

, µλ(ρ) =
c(λ)

4
ρ−2λ

where c : (−1/4, 1/4)→ R+ can be shown to be continuous.
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Asymptotics of local model

Using this we see there is ρ0 > 1 such that for all λ ∈ I ⊂⊂ (−1/4, 1/4) there is C,
c > 0 such that

∣

∣

∣∂ℓρ (Mλ −M∞,λ)
∣

∣

∣ ≤ Ce−cρ

for ℓ = 0, 1, 2 and

M∞,λ =

(

ρ−1µλ(ρ)
2

ρ−1µλ(ρ)
−1

)

, µλ(ρ) =
c(λ)

4
ρ−2λ

where c : (−1/4, 1/4)→ R+ can be shown to be continuous.

Definition
Admissible weight λ and fiber-matching param. b are t-compatible if there is

hL = hL ,λ,t adapted to (L , λ) such that
(

h−2
L hK ⊕ hL hK

)

σ
= t2/3M∞,λj(t

2/3ρ)

Equivalently for s0,j any section with s⊗3
0,j = bpj we have

log
∣

∣

∣s0,j

∣

∣

∣

2

hL ,λ,t
= log

c(λj)

4
+

4
3
(log t) λj + 2λj log |ζj |+ O(1)
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Asymptotics of local model

Using this we see there is ρ0 > 1 such that for all λ ∈ I ⊂⊂ (−1/4, 1/4) there is C,
c > 0 such that

∣

∣

∣∂ℓρ (Mλ −M∞,λ)
∣

∣

∣ ≤ Ce−cρ

for ℓ = 0, 1, 2 and

M∞,λ =

(

ρ−1µλ(ρ)
2

ρ−1µλ(ρ)
−1

)

, µλ(ρ) =
c(λ)

4
ρ−2λ

where c : (−1/4, 1/4)→ R+ can be shown to be continuous.

Definition
Admissible weight λ and fiber-matching param. b are t-compatible if there is

hL = hL ,λ,t adapted to (L , λ) such that
(

h−2
L hK ⊕ hL hK

)

σ
= t2/3M∞,λj(t

2/3ρ)

Equivalently for s0,j any section with s⊗3
0,j = bpj we have

log
∣

∣

∣s0,j

∣

∣

∣

2

hL ,λ,t
= log

c(λj)

4
+

4
3
(log t) λj + 2λj log |ζj |+ O(1)

Now recall . . .
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Construct harmonic metric on parabolic line bundle

For simplicity focus on case dβ = dγ = 0, deg L = 0 (PD is top dim. simplex,
barycenter at origin). We can construct a harmonic metric h0

L ,λ adapted to (L , λ)

from Hermitian-Einstein metric hL ,HE satisfying
√
−1ΛR(hL ,HE) = deg L :

h0
L ,λ = hL ,HEeϕλ , ϕλ =

4g−4
∑

j=1

















j
∑

ℓ=1

λℓ

















Gj
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Construct harmonic metric on parabolic line bundle

For simplicity focus on case dβ = dγ = 0, deg L = 0 (PD is top dim. simplex,
barycenter at origin). We can construct a harmonic metric h0

L ,λ adapted to (L , λ)

from Hermitian-Einstein metric hL ,HE satisfying
√
−1ΛR(hL ,HE) = deg L :

h0
L ,λ = hL ,HEeϕλ , ϕλ =

4g−4
∑

j=1

















j
∑

ℓ=1

λℓ

















Gj

where Gj are bipolar Green’s function for j = 1, . . . ,N − 1 satisfying

∆∂Gj =















0 on X −
{

pj , pj+1

}

, j = 1, . . . , 4g − 5

1 on X −
{

p4g−4

}

, j = 4g − 4
,



























Gj − 2 log |ζj | bdd at pj

Gj + 2 log |ζj+1| bdd at pj

G4g−4 − 2 log |ζ4g−4| bdd at p4g−4

Let gjℓ = Gj − log terms on Dℓ.
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Migration of the parabolic weight

By uniqueness up to positive const mult. we have hL ,λ,t = h0
L ,λe

cλ,t and

log
∣

∣

∣s0,j

∣

∣

∣

2

hL ,λ,t
= cλ,t + log

∣

∣

∣s0,j(0)
∣

∣

∣

2

hL ,HE
+

4g−4
∑

ℓ=1

















ℓ
∑

k=1

λk

















gℓj + 2λj log |ζj |
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Migration of the parabolic weight

By uniqueness up to positive const mult. we have hL ,λ,t = h0
L ,λe

cλ,t and

log
∣

∣

∣s0,j

∣

∣

∣

2

hL ,λ,t
= cλ,t + log

∣

∣

∣s0,j(0)
∣

∣

∣

2

hL ,HE
+

4g−4
∑

ℓ=1

















ℓ
∑

k=1

λk

















gℓj + 2λj log |ζj |

Comparing the two expressions of log
∣

∣

∣s0,j

∣

∣

∣

2

hL ,λ,t
with log terms removed,

t-compatibility is equivalent to:

cλ,t = log
c(λj)

4
+

4
3
(log t) λj

− log
∣

∣

∣s0,j(0)
∣

∣

∣

2

hL ,HE
−

4g−4
∑

ℓ=1

















ℓ
∑

k=1

λk

















gℓj
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Migration of the parabolic weight

By uniqueness up to positive const mult. we have hL ,λ,t = h0
L ,λe

cλ,t and

log
∣

∣

∣s0,j

∣

∣

∣

2

hL ,λ,t
= cλ,t + log

∣

∣

∣s0,j(0)
∣

∣

∣

2

hL ,HE
+

4g−4
∑

ℓ=1

















ℓ
∑

k=1

λk

















gℓj + 2λj log |ζj |

Comparing the two expressions of log
∣

∣

∣s0,j

∣

∣

∣

2

hL ,λ,t
with log terms removed,

t-compatibility is equivalent to:

cλ,t = log
c(λj)

4
+

4
3
(log t) λj

− log
∣

∣

∣s0,j(0)
∣

∣

∣

2

hL ,HE
−

4g−4
∑

ℓ=1

















ℓ
∑

k=1

λk

















gℓj

for all j with pj ∈ Dr !
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Migration of the parabolic weight

Therefore λ and b being t-compatible is equivalent to

π :

(

4

3
(log t) λj + r(λ)

)

j

7→ 0

where π : R4g−4 → H =
{

λ|∑j λj = 0
}

is the map (vj)j 7→ (vj −
∑

ℓ vℓ)j and

r(λ) = log
c(λj)

4
− log

∣

∣

∣s0,j(0)
∣

∣

∣

hL ,HE
−

4g−4
∑

ℓ=1

















ℓ
∑

k=1

λk

















gℓj(0)
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Migration of the parabolic weight

Therefore λ and b being t-compatible is equivalent to

π :

(

4

3
(log t) λj + r(λ)

)

j

7→ 0

where π : R4g−4 → H =
{

λ|∑j λj = 0
}

is the map (vj)j 7→ (vj −
∑

ℓ vℓ)j and

r(λ) = log
c(λj)

4
− log

∣

∣

∣s0,j(0)
∣

∣

∣

hL ,HE
−

4g−4
∑

ℓ=1

















ℓ
∑

k=1

λk

















gℓj(0)

For fixed b, λ is t-compatible iff it is fixed by

λ 7→ − 3
4 log t

π ◦ r(λ)

π ◦ r is continuous, so by Brouwer’s fixed point theorem for t ≫ 1 we can get a
family of t-compatible weights λ(t)
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Perturbation of approximate solution

ConsiderHt ,h : Herm(F , h)→ Herm(F , h) given by
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Perturbation of approximate solution

ConsiderHt ,h : Herm(F , h)→ Herm(F , h) given by

Ht ,h : u 7→
√
−1Λeu/2

(

R(hexp(u)) + t2β ∧ β†
hexp(u) + t2γ

†
hexp(u) ∧ γ

)

e−u/2

and linearize it at h = happ
t , givingHt ,h(u) = Ht ,h(0) + Ltu + Rt(u) with Lt a linear

operator
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Perturbation of approximate solution

ConsiderHt ,h : Herm(F , h)→ Herm(F , h) given by

Ht ,h : u 7→
√
−1Λeu/2

(

R(hexp(u)) + t2β ∧ β†
hexp(u) + t2γ

†
hexp(u) ∧ γ

)

e−u/2

and linearize it at h = happ
t , givingHt ,h(u) = Ht ,h(0) + Ltu + Rt(u) with Lt a linear

operator
Lt(u) = ∆hu + t2

{√
−1Λ

(

β ∧ β†h − γ
†
h ∧ γ

)

, û
}

with û = u + (tru) Id and {A ,B} = AB + BA .
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Perturbation of approximate solution

ConsiderHt ,h : Herm(F , h)→ Herm(F , h) given by

Ht ,h : u 7→
√
−1Λeu/2

(

R(hexp(u)) + t2β ∧ β†
hexp(u) + t2γ

†
hexp(u) ∧ γ

)

e−u/2

and linearize it at h = happ
t , givingHt ,h(u) = Ht ,h(0) + Ltu + Rt(u) with Lt a linear

operator
Lt(u) = ∆hu + t2

{√
−1Λ

(

β ∧ β†h − γ
†
h ∧ γ

)

, û
}

with û = u + (tru) Id and {A ,B} = AB + BA . We have

Qt(u) = ((Ltu, u)) =
∥

∥

∥d (tru)
∥

∥

∥

2

L2 + 2
∥

∥

∥∂̄u
∥

∥

∥

2

L2 + 2t2
∥

∥

∥û ◦ β
∥

∥

∥

2

L2 + 2t2
∥

∥

∥γ ◦ û
∥

∥

∥

2

L2

where ((u, v)) = (u, v̂) = (û, v).
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Perturbation of approximate solution

By estimating first eigenvalue of a related operator bounding Qt from below, we
show L2 → L2 lower bound of Lt : there is C > 0, for t ≫ 1 and u ∈ L2

2 ,

‖Lt u‖2L2,happ
t
≥ C

log t
‖u‖2

L2,happ
t

Note that we will need to fix the problem of t-dependeng norm in the estimate.
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Perturbation of approximate solution

By estimating first eigenvalue of a related operator bounding Qt from below, we
show L2 → L2 lower bound of Lt : there is C > 0, for t ≫ 1 and u ∈ L2

2 ,

‖Lt u‖2L2,happ
t
≥ C

log t
‖u‖2

L2,happ
t

Note that we will need to fix the problem of t-dependeng norm in the estimate.
Using asymptotics of local model proved by Mochizuki’s theorem plus careful
analysis of the form of the approximate solution, we can show various upper
bounds for any u ∈ L2

2

(

Herm(F , happ
t )

)

, t0 ≫ 1 and t ≥ t0:

1

Ct13
|u|happ

t0
≤ |u|2

happ
t
≤ Ct13 |u|happ

t0
for some C > 1

∥

∥

∥

∥
∆happ

t
u −∆happ

t0
u
∥

∥

∥

∥

2

L2,happ
t0

≤ Ct4

(

∥

∥

∥

∥
dhapp

t0
u
∥

∥

∥

∥

2

L2,happ
t0

+ ‖u‖2
L2,happ

t0

)

∥

∥

∥

∥

∥

{(

β ∧ β†
happ

t

− γ†
happ

t

∧ γ
)

, û
}

∥

∥

∥

∥

∥

L2,happ
t0

≤ Ct11/3 ‖u‖L2,happ
t0
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Perturbation of approximate solution

We may use elliptic estimate of ∆happ
t0

combining with prev. estimates to get

‖Ltu‖L2
2
≥ Ct−20 ‖u‖L2
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Perturbation of approximate solution

We may use elliptic estimate of ∆happ
t0

combining with prev. estimates to get

‖Ltu‖L2
2
≥ Ct−20 ‖u‖L2

with some more effort we show for u0, u1 ∈ B(0, r) with r ≪ 1
∥

∥

∥Rt(u0) − Rt(u1)
∥

∥

∥

L2 . t17/3 ‖u0 − u1‖L2
2
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Perturbation of approximate solution

We may use elliptic estimate of ∆happ
t0

combining with prev. estimates to get

‖Ltu‖L2
2
≥ Ct−20 ‖u‖L2

with some more effort we show for u0, u1 ∈ B(0, r) with r ≪ 1
∥

∥

∥Rt(u0) − Rt(u1)
∥

∥

∥

L2 . t17/3 ‖u0 − u1‖L2
2

The huge power of t is no cause of worry since we have

∣

∣

∣

∣

Ht ,happ
t
(0)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

R(happ
t ) + t2β ∧ β†

happ
t

+ t2γ
†
happ

t

∧ γ
∣

∣

∣

∣

∣

≤ Ce−ct2/3

Xuesen Na (UMD) SU(1,2) Higgs bundle CIM 2021 46 / 52



Perturbation of approximate solution

We may use elliptic estimate of ∆happ
t0

combining with prev. estimates to get

‖Ltu‖L2
2
≥ Ct−20 ‖u‖L2

with some more effort we show for u0, u1 ∈ B(0, r) with r ≪ 1
∥

∥

∥Rt(u0) − Rt(u1)
∥

∥

∥

L2 . t17/3 ‖u0 − u1‖L2
2

The huge power of t is no cause of worry since we have

∣

∣

∣

∣

Ht ,happ
t
(0)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

R(happ
t ) + t2β ∧ β†

happ
t

+ t2γ
†
happ

t

∧ γ
∣

∣

∣

∣

∣

≤ Ce−ct2/3

Consider on L2
2 (End(F)),

Ft : u 7→ −L−1
t

(

2
√
−1Λeu/2Ht ,happ

t
(0)e−u/2 + Rt(u)

)

Iterated sequence u,Ftu,F 2
t u, . . . converges to u∞ giving an actual solution

ht =
(

happ
t

)exp u∞
by contraction mapping argument. ht and happ

t is exponentially
close in t .
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Perturbation of approximate solution
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Thank you !
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More on SU(1,2) spectral data
Fiber matching

Given a reduced curve C = C0 ∪ C1 with two irreducible non-singular
components and simple nodes at N ⊂ C. Let ιj : Cj → C, rank one locally
free sheaf F on C are characterized by line bundles Fj := ι∗j F on Cj ,
j = 0, 1 and |N| parameters at each node p ∈ N. In nbhd around each
p ∈ N, suppose s ∈ F and sj ∈ Fj the pullback sections, this parameter is
given by the ratio [s0(p) : s1(p)].
Let π : C0

∐

C1 → C be the normalization. The connection to Hecke
transformation viewpoint is given by canonical sheaf map
F → π∗π∗F = F0 ⊕ F1. If we have a further map to some non-singular
curve X , the latter will be a decomposable bundle.
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More on SU(1,2) spectral data
SU(1,2) Fiber matching

Note that the resulting Hecke transformation is of L ⊕ LK ⊕ L−2K where the fiber
matching of rank 2 bundle L ⊕ LK with L−2K must occur only in second
summand. This is because it is corresponding to OX summand of p∗OΣ1 , which
are not vanishing at branch points.
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