▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Einstein-Bogomol'nyi equation and Gravitating Vortex equations on Riemann surfaces

Chengjian Yao

@Institute of Mathematical Sciences, ShanghaiTech University

Talk at Chern Institute of Mathematics, April 8, 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 I. Motivation and Background

- moment map interpretation
- GV equations
- EB equation

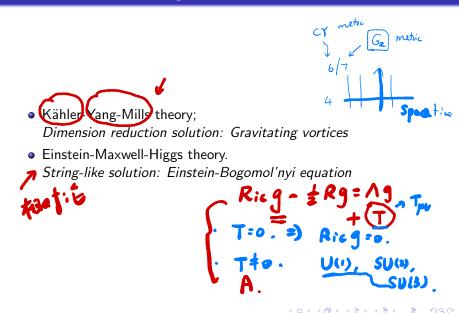
2 II. Gravitating Vortex equations

3 III. Main Theorems

II. Gravitating Vortex equations

III. Main Theorems

I. Motivations and Backgrounds



II. Gravitating Vortex equations

III. Main Theorems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Kähler-Yang-Mills Equations Introduced by Álvarez-Cónsul, Garcia-Fernandez and García-Prada

Let $E \to X$ be a holomorphic vector bundle over a Kählerian manifold, try to find (H, ω) where H is a Hermitian metric on Eand ω a Kähler metric on X, s.t. $\begin{cases} & & & \\ &$

where F_H is the curvature of the Chern connection for H, and S_{ω} is the scalar curvature of ω .

Moment map interpretation

There are two well-known problem::

A. Hermitian-Yang-Mills connection is zero of a moment map for G ∩ (A^{1,1}, ω_A) by [Atiyah-Bott, Donaldson];
B. Constant scalar curvature Kähler metric is zero of a moment map for H ∩ (J^{int} ω_J) by [Fujiki, Donaldson]; "YTD"
Coupling together these two, Álvarez-Cónsul, Garcia-Fernandez and Garcia-Prada studied G̃ ∩ (P, ω_α), where

•
$$\mathcal{P} = \{(J, A) \in \mathcal{J}^{int} \times \mathcal{A} | \mathcal{F}_A^{0,2} = 0\};$$

•
$$\omega_{\alpha} = \alpha_{0}\omega_{\mathcal{J}} + \alpha_{1}\omega_{\mathcal{A}};$$

• $\widetilde{\mathcal{G}}$ is the extended gauge group, full gauge $\widehat{\mathcal{G}} \rightarrow \mathcal{H} \rightarrow 1.$

The zero moment map equation of this action is KYM equation.

III. Main Theorems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gravitating Vortex equations

Assume the rank 2 holomorphic vector bundle $E \to \Sigma \times \mathbb{P}^1$ comes from extension of holomorphic line bundles, i.e. assume E is an extension of L on Σ and $\mathcal{O}_{\mathbb{P}^1}(2)$ determined by $\phi \in H^0(\Sigma, L)$:

$$0
ightarrow p_1^*L
ightarrow E
ightarrow p_2^*\mathcal{O}_{\mathbb{P}^1}(2)
ightarrow 0,$$

 $\omega_{\tau} = p_1^* \omega + -\frac{4}{\omega_{FS}}.$

then the SU(2)-invariant KYM solution is equivalent to **Gravitating Vortex equations**, which therefore also has a moment map interpretation too [AC-GF-GP, 17']. Here,

the action

II. Gravitating Vortex equations

III Main Theorems

Einstein-Maxwell-Higgs Model Physical meaning: describe how gravity and electro-magnetic field interacts

Let M be a 4-manifold, $L \rightarrow M$ a Hermitian line bundle. Consider

$$S(g, A, \phi) = \int_{M} \left(\frac{R_g}{16\pi G} + \mathcal{L} \right) dvol_g,$$

$$Hilbert - Einstein$$

where

٥

• g is Lorentzian of signature (-, +, +, +) on M, A is a unitary connection on L, and ϕ is a section of L; $\frac{1}{\frac{1}{8}}\left(|\phi|^2-\tau\right)^2.$

Euler-Lagrange equation: Einstein-Maxwell-Higgs equations.

III. Main Theorems

Bogomol'nyi reduction

 $M = \mathbb{R}^{1,1} \times \Sigma$, L, A, ϕ are pulled back from Σ , and $g = -dt^2 + dz^2 + g_{\Sigma}$ The EMH equations are equivalent [Comtet-Gibbons, Linet, Yang] to a system of Bogomol'nyi self-dual equations. It admits vortex like solutions. (Physically known as

Kibble.

Figure: T. Kibble & Cosmic strings, Photo source: website

III. Main Theorems

Einstein-Bogomol'nyi equation

The mathematical treatment started from Y. Yang in 1990's. It becomes the following PDEs for (g, u):

$$\begin{cases} \Delta_g u = (e^u - \tau) + 4\pi \sum_{j=1}^d n_j \delta_{p_j}, \\ K_g = -\alpha \left[\tau (e^u - \tau) - \Delta_g e^u \right], \end{cases}$$
(1)

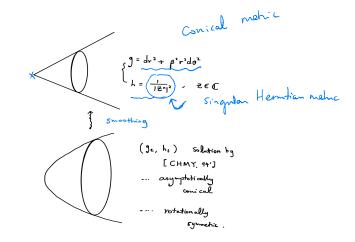
and could be combined to one single semilinear PDE (with $\alpha = \frac{1}{\tau N}$) with an undetermined parameter (see below). • α is the coupling constant;

- τ is the symmetry-breaking scale;
- *p_j*'s are the location of the strings, and *n_j* are local string numbers.

III. Main Theorems

Some model solutions

A singular solution, and its smoothing obtained by [Chen-Hastings-Mcleod-Yang, 94]:



II. Gravitating Vortex equations $_{\rm OOO}$

III. Main Theorems

(2)

EB equation recast as GV equations

The above EB equation fits into the following more general PDE

system:

(L,h)

 $(iF_h + \frac{1}{2}(|\phi|_h^2 - \tau)\omega = 0,$

$$(\Sigma, \omega) \qquad \left\{ \begin{array}{c} \sum_{\mu} (\Delta_{\omega} + \tau)(|\phi|_{h}^{2} - \tau) = c_{\alpha}, \\ \sum_{\nu} (\Delta_{\omega} + \tau)(|\phi|_{h}^{2} - \tau) = c_{\alpha}, \end{array} \right\}$$

called the GV equations (when $c_{\alpha} = 0$, we recover EB equation).

The unknowns are (ω, h) where ω is a Kähler metric on Σ and h is a Hermitian metric on the holomorphic line bundle L, ϕ is a holomorphic section (called the Higgs field).

KEY DIFFERENCE: EB is one PDE while GV is a system of two PDEs for $c_{\alpha} \neq 0$!

Vortex Equation

The first equation in the above system is called the **Vortex** equation, studied throughly by [Jaffe-Taubes, Witten, Noguchi, Bradlow, Garcia-Prada,....].

On $\mathbb{C},$ the unique solution obtained by Li [JGA. 2018]

$$\Delta w = e^w - |\phi|^2 e^{-(k-1)w}$$

gives Vortex solution $h = e^{-kw}$ for the data $((\mathbb{C}, \sigma = e^w |dz|^2), L = \mathcal{K}_{\mathbb{C}}^k \phi = \phi(dz)^{\otimes k}).$

It is proved on compact Riemann surface Σ , for any given Kähler metric with $Vol_{\omega} \ge \frac{4\pi c_1(L)}{\tau}$, there exists a unique *h* solving it for any $\phi \in H^0(\Sigma, L)$.

The solvability does not depend on ϕ . (In Garcia-Prada's proof of relating this vortex equation to Hermitian-Yang-Mills connections, the boxed numerical condition is the *slope stability condition*.

II. Gravitating Vortex equations $\bullet \circ \circ$

III. Main Theorems

II. Gravitating Vortex equations Previous known results: About $c_{\alpha} \ge 0$

The constant $c_{\alpha} = \frac{2\pi(\chi(\Sigma) - 2\alpha\tau N)}{\operatorname{Vol}_{\omega}}$, is topologically determined. And, $c_{\alpha} \ge 0$ implies $\Sigma = \mathbb{P}^1$.

Theorem (Yang)
(97') Let φ be strictly polystable. Then, ∀ V > (4πc₁(L))/τ ∃ a solution (ω, h) to the EB equation with Vol_ω = V.
(95') Let φ be stable. Then, ∀ V > (4πN)/τ ∃ a solution (ω, h) to the EB equation satisfying Vol_ω > V.

A converse was proved recently.

Theorem (AC-GF-GP-P, 20')

The existence of solution to GV equations with $c_{\alpha} \ge 0$ implies ϕ is polystable.

Stability of binary quantics

The holomorphic section ϕ is homogeneous polynomial of degree N in variable z_0, z_1 . It is one of the main themes of classical invariant theory, in 19th century.

It is also the most basic example of Mumford's Geometric Invariant Theory. Let $(\phi = 0) = \sum_{j=1}^{d} n_j p_j \in \text{Sym}^N(\mathbb{P}^1)$,

- ϕ is strictly polystable if d = 2 and $n_1 = n_2 = \frac{N}{2}$;
- ϕ is stable if $n_j < \frac{N}{2}$ for $j = 1, 2, \cdots, d$.

In

▲□▶▲□▶▲□▶▲□▶ □ ● ●

 $SL(2,\mathbb{C}) \otimes S^{M}(\mathbb{P}^{1})$

 $S^{N}(\mathbb{P}^{\prime}) / SL(2, \mathbb{C})$

Questions left

The stability condition was a technical assumption in Yang's proof, its PDE is

$$\Delta f_{\lambda} = \frac{1}{2\lambda} (\tau - (\phi)^2 e^{2f_{\lambda}}) e^{4\alpha \tau f_{\lambda} - 2\alpha |\phi|^2 e^{2f_{\lambda}}} - N,$$

where the assumption on the multiplicities of zeros of ϕ enables one to construct super/subsolutions (cf. also [Han-Sohn, 19']).

Using the moment map picture, [AC-GF-GP-P, 20'] showed the necessity! Some *questions* are left:

a) Existence of solution to EB equation for arbitrary admissible volume $V \in (\frac{4\pi N}{\tau}, +\infty)$;

b) Existence of solutions to $\overline{\text{GV}}$ equations for $\alpha \in (0, (\frac{1}{\tau N});$

c) Uniqueness of solutions.

III. Main Theorems

The first result strengthens Yang's existence theorem, confirming question a) above:

Theorem (Garcia-Fernandez, Pingali & Y., 21')

Let ϕ be polystable. Then $\forall V > \frac{4\pi N}{\tau}$, \exists a solution to the EB equation with $Vol_{\omega} = V$.

Then, we prove a similar existence result for $c_{\alpha} > 0$, answering b):

Theorem (ibid.)

Let ϕ be polystable, $\alpha \in (0, \frac{1}{\tau N}]$. Then, $\forall V > \frac{4\pi N}{\tau}$, \exists a solution (ω, h) to the GV equations with $Vol_{\omega} = V$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline of proof

The two theorems are proved via the same strategy, only two crucial differences in a priori estimates.

Step1 (set up the continuity method): Starting from one of Yang's solution (ω_0, h_0) for EB equation. Then $(\widetilde{\omega}_0, \widetilde{h}_0) = \begin{pmatrix} 2\pi & \omega_0, h_0 \\ VOLDO \end{pmatrix}$ is a solution to the following rescaled system with parameter $\varepsilon = \varepsilon_0 = \frac{2\pi}{\text{Vol}_{\omega_0}}$:

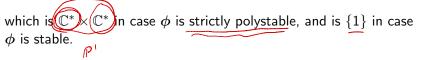
$$\begin{cases} iF_{\widetilde{h}} + \frac{1}{2\varepsilon} (|\phi|_{\widetilde{h}}^2 - \tau)\widetilde{\omega} = 0, \\ S_{\widetilde{\omega}} + \alpha (\Delta_{\widetilde{\omega}} + \frac{\tau}{\varepsilon}) (|\phi|_{\widetilde{h}}^2 - \tau) = 0. \end{cases}$$
(3)

Solve the system for $(\widetilde{\omega}, \widetilde{h}) \in (\mathcal{H}_{\omega_{FS}}, \mathcal{H}_L)$ and $\varepsilon \in (0, \frac{\tau}{2N})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step2 (openness): Kernal of the linearized operator $\mathfrak{L}: (C^{\infty}/\mathbb{R}) \times C^{\infty} \to C^{\infty} \times C^{\infty}$ corresponds to

$\operatorname{Aut}(\mathbb{P}^1, L, \phi)$



III. Main Theorems

Step 3 (closedness): Let $\Phi = |\phi|_b^2$ and $k = e^{2\alpha \Phi}g$ be conformally rescaled metric, then there holds a prior estimates:

• $0 \leq \Phi \leq \tau$. • $c_{\alpha}e^{-2\alpha\tau} \leq S_k \leq c_{\alpha} + \alpha\tau^2$, notice the following formula for a solution (ω, h) : $S_{\sigma} = 2\alpha |\mathrm{d}_{\mathcal{A}} \phi|^2 + \alpha (\tau - |\phi|_{\mathcal{A}}^2)^2$ • $|\nabla_k S_k|_k^2 \leq \frac{3}{2}\alpha\tau^2 \left(2c_\alpha + 2\alpha\tau^2 + \tau\right)^2$, • $Diam(g) \leq C$ for uniform C > 0 (the proofs about EB equation and GV equations diverge at this point). For a family of solutions (g_n, h_n) , we can get a subsequential $C^{2,\beta}$ <u>Cheeger-Gromov limit</u>, i.e. \exists diffeomorphism $\varphi_n : S^2 \to S^2$ s.t. $\varphi_n^* k_n \longrightarrow k_\infty$, in $C^{2,\beta}$ sense. (inj. radius)

A D N A 目 N A E N A E N A B N A C N

Using uniqueness of almost complex structure on S^2 (i.e. any two $C^{2,\beta}$ almost complex structure on S^2 are related by an $C^{3,\beta}$ diffeomorphism) to improve the sequence φ_n to holomorphic automorphism $\sigma_n \in PSL(2,\mathbb{C})$, and

•
$$k'_n = \sigma_n^* k_n \longrightarrow k'_{\infty}$$
, in $C^{2,\beta}$ sense.
• $\|\log \Phi'_n - 4\pi G'_n\|_{C^0(\mathbb{P}^1)} \leq C$, where $\Phi'_n = \sigma_n^* \Phi_n$ and G'_n is the Green's function for the metric k'_n with poles $\sigma_n^*[\phi = 0]$.

This results in $\sigma_n^*(g_n, \Phi_n) \rightarrow_{C^{1,\beta}} (g'_{\infty}, \Phi'_{\infty}).$

Moreover, Φ'_{∞} satisfies

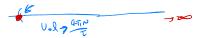
$$\Delta_{g'_{\infty}} \log \Phi'_{\infty} = (\tau - \Phi'_{\infty}) - 4\pi \sum_{j} n_{j} \delta_{p'_{j,\infty}}$$

$$S_{g'_{\infty}} + \alpha (\Delta_{g'_{\infty}} + \tau) (\Phi'_{\infty} - \tau) = c_{\alpha}.$$
(4)

Another regularity result shows that $(g'_{\infty}, \Phi'_{\infty})$ is solution to the GV equations on \mathbb{P}^1 with the Higgs field ϕ'_{∞} determined by $\sum_j n_j p'_{j,\infty}$.

Finally, ϕ'_{∞} is polystable by the above mentioned result of AC-GF-GP-P, and $\phi'_{\infty} = \lim_{n \to \infty} \sigma_n^* \phi \in \underline{PSL(2, \mathbb{C}) \cdot \phi}$. Since ϕ is also polystable, we conclude that $\phi'_{\infty} \in \underline{PSL(2, \mathbb{C}) \cdot \phi}$.

Further results and directions



Recent progresses: fixing ϕ , look at how does the solution to EB equation behave as

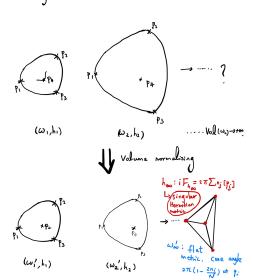
i. $V \rightarrow \frac{4\pi N}{r}$ the family exhibits a Bradlow/Dissolving limit feature as in the study of Vortex equations:

$$\begin{array}{c} \begin{array}{c} h = h_0 e^{2f} \rightarrow 0 \\ \omega - \frac{2N}{\tau} \omega_{FS} \end{array} & \text{i.e.} \quad f \rightarrow -\infty \text{ uniformly;} \end{array} \\ \end{array}$$
 in some sense.

ii. $V \to +\infty$, the family of rescaled solution converges to flat conical metric on \mathbb{P}^1 (polyhedron metrics).

II. Gravitating Vortex equations

Large Volume Limit



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 ののの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

<u>Directions</u>: study *uniqueness* and "Weil-Petersen type" metric on the **conjectured** moduli space of Einstein-Bogomol'nyi solutions/Gravitating Vortices

$$\mathfrak{M}_{\alpha} = \operatorname{Sym}^{N}(\mathbb{P}^{1}) / / PSL(2, \mathbb{C}).$$

Thank you for your attention!