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Teichmuller theory

Let S be a connected closed surface of genus g ≥ 2.

定理

Riemann Uniformization Theorem: Complex structure J on S
⇐⇒ a discrete faithful representation π1(S)→ PSL(2,R) such
that (S , J) is conformal to H2/ρ(π1(S)).

Teichmuller space T (S) is

the space of complex structures on S up to equivalence;

or the space of hyperbolic structures on S up to equivalence;

or a special connected component of
Hom(π1(S),PSL(2,R))/PSL(2,R).

T (S)/Mod(S) is the moduli space of the Riemann surface.
Teichmuller theory is a crossroad of complex analysis,
algebraic/hyperbolic geometry, dynamical system etc.
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Higher Teichmuller theory

Let G be a semisimple reductive algebraic group, e.g. GLn,
PGLn, SLn, Sp2n.

Hom(π1(S),G) = Gk/ ∼ is an algebraic variety equipped with
compact-open topology.

Hom(π1(S),G)/G is not Hausdorff where G acts by
conjugation and we take only the closed G -orbit.

Higher Teichmuller theory is the study of special components
of Hom(π1(S),G)/G which are nice.

Hom(π1(S),G)/G can be viewed as the space of G -flat
connections on principal G -bundle over S up to gauge
transformations, the space of flat connections on certain
vector bundle of S , or the space of certain geometric
structures up to equivalence depending on G .
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Higher Teichmuller theory

n-Fuchsian representation

ρ : π1(S)
d .f .−→ PSL(2,R)

irr .ι−→ PGL(n,R).
ι : PSL(2,R)→ PGL(n,R) is defined by

v(M · [x , y ]T ) = ι(M) · v([x , y ]T )

where v : RP1 → RPn−1 is the Veronese curve:
[x , y ] 7→ [xn−1, xn−2y , · · · , yn−1].

(Hitchin) A representation is called Hitchin if it can be
deformed from a n-Fuchsian representation.
The collection of Hitchin representations up to conjugations is
the Hitchin component Hitn(S).

Using Higgs bundle technique

定理

(Hitchin 92’) The Hitchin component Hitn(S) is topologically a
unit ball.
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Geometric structures

定理

(Fock–Goncharov 06’( positive), Labourie 06’( Anosov)) Any
Hitchin representation is discrete and faithful, π1(S) into G is a
quasi-isometric embedding. There is a lift ρ̃ of ρ into SL(n,R),
such that any non-peripheral γ ∈ π1(S) is loxodromic: the
eigenvalues are λ1 > · · · > λn > 0

When n = 2, Hit2(S) is Teichmuller space T (S)—the space
of hyperbolic metrics on S up to isotopy.

(Goldman–Choi) When n = 3, Hit3(S) =
{strictly convex connected RP2 structure on S}/ ∼.

(Guichard–Wienhard) When n = 4, Hit4(S) =
{strictly convex connected foliated RP3 structure on T 1S}/ ∼.

n in general, Guichard-Wienhard, domain of discontinuity.
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Atiyah–Bott–Goldman symplectic structure

TρHom(π1(S),G)/G = H1
ρ(π1(S), g).

(φt(x) = exp(tu(x) + O(t2)) · φ(x) ⇒
u(xy) = u(x) + Adφ(x)u(y))

Group cohomology H1
ρ (π1(S), g) is isomorphic to De Rham

cohomology H1
ρ (S , g), extending Hurewicz theorem for g = R.

定义

(Atiyah–Bott 83’) The Atiyah–Bott–Goldman symplectic
structure on Hom(π1(S),G)/G is defined to be:

H1
ρ (S , g)× H1

ρ (S , g)→ R

ω(α, β) =

∫
S
α ∧ β.

Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 6 / 48



Atiyah–Bott–Goldman symplectic structure

TρHom(π1(S),G)/G = H1
ρ(π1(S), g).

(φt(x) = exp(tu(x) + O(t2)) · φ(x) ⇒
u(xy) = u(x) + Adφ(x)u(y))

Group cohomology H1
ρ (π1(S), g) is isomorphic to De Rham

cohomology H1
ρ (S , g), extending Hurewicz theorem for g = R.

定义

(Atiyah–Bott 83’) The Atiyah–Bott–Goldman symplectic
structure on Hom(π1(S),G)/G is defined to be:

H1
ρ (S , g)× H1

ρ (S , g)→ R

ω(α, β) =

∫
S
α ∧ β.

Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 6 / 48



Atiyah–Bott–Goldman symplectic structure

TρHom(π1(S),G)/G = H1
ρ(π1(S), g).

(φt(x) = exp(tu(x) + O(t2)) · φ(x) ⇒
u(xy) = u(x) + Adφ(x)u(y))

Group cohomology H1
ρ (π1(S), g) is isomorphic to De Rham

cohomology H1
ρ (S , g), extending Hurewicz theorem for g = R.

定义

(Atiyah–Bott 83’) The Atiyah–Bott–Goldman symplectic
structure on Hom(π1(S),G)/G is defined to be:

H1
ρ (S , g)× H1

ρ (S , g)→ R

ω(α, β) =

∫
S
α ∧ β.

Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 6 / 48



Atiyah–Bott–Goldman symplectic structure

定义

(Goldman 84’) View from group cohomology

ω : H1
ρ (S , g)× H1

ρ (S , g)
∪−→ H2

ρ (S , g⊗ g)
B−→ H2

ρ (S ,R)
[S]−→ R.

(Goldman 86’) Poisson bracket
{Trα,Trβ} =

∑
p∈α∩β ε(p, α, β)

(
Trαpβp − 1

nTrαTrβ
)
.

The space of holomorphic quadratic differentials (T∗T (S)) is
naturally dual to the space of harmonic Beltrami differentials
(TT (S)). The Hermitian inner product on T∗T (S) induces
the Weil–Petersson Kähler metric on T (S), its imaginary part
is the Weil–Petersson symplectic structure.

(Goldman 84’) In T (S), ABG symplectic structure ω is a
constant multiple of the Weil–Petersson symplectic form.

猜想

ω is Kählerian for Hitn(S) when n ≥ 3.
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Wolpert formula

Given a pants decomposition and transverse arcs to the pants
curves, Fenchel-Nielsen coordinates {`i , θi}3g−3

i=1 are the
lengths and twists around the pants curves.

Wolpert formula 83’: ω =
∑3g−3

i=1 dli ∧ dθi .

(Goldman 86’): Generalized Hamiltonian twist flow and length
function for general G .

(Kim 99’+Choi–Jung–Kim 21’) Generalize Wolpert formula
for Hit3(S) using Fox calculus. Latter paper fixed the twisted
functions.

We generalize Wolpert formula for Hitn(S).
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Limit curve

The space of (complete) flags
B = {F = (0 ⊂ F1 ⊂ · · · ⊂ Fn−1)| dimFi = i} ' G/B.
FRn = {continous ξ : S1 → B Frenet}/PGL(n,R).
Frenet: Firstly ξ(x1)n1 ⊕ · · · ⊕ ξ(xk)nk , n1 + · · ·+ nk ≤ n.
Secondly x ∈ S1, {(xi ,1, . . . , xi ,k)}∞i=1 pairwise distinct, ∀j ,
limi→∞ xi ,j = x , we have

lim
i→∞

k∑
j=1

ξ(xi ,j)nj = ξ(d)(x).

定理

(Labourie 06’, Guichard 08’)
ρ ∈ Hitn(S)⇔ ∃! ξρ : ∂∞π1(S) ∼= S1 → B ρ-equivariant Frenet up
to PGL(n,R), we call ξρ a limit curve.

Hitn(S)“⊂” FRn, we study the deformation of Hitn(S) via
deforming FRn.
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Toy model B3/PGL3

图: The flags are F = (a, yz), G = (b, zx), H = (c , xy). Let | · | be the

Euclidean norm. Then the triple ratio T (F ,G ,H) = |ya|
|az|
|zb|
|bx|
|xc|
|cy | . By

Ceva theorem, T (F ,G ,H) = 1 if and only if ax , by and cz are colinear.
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Toy model B4/PGL3

图: The flags are X = (a, bh), W = (c , bd), Y = (e, df ), Z = (g , fh).
Up to PGL(3,R), the position of (X ,W ,Y ) is decided by the triple ratio
T (X ,W ,Y ). The convention for cross ratio in RP1 is
CR(α, β, γ, δ) := α−γ

α−δ ·
β−δ
β−γ . The cross ratio CR(ab, ae, ag , ac) decides

the line ag and CR(ef , ea, ec , eg) decides the line eg , which fix the point
G . In the end, the line hf is decided by the triple ratio T (X ,Y ,Z ).
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Parameterizing BN/PGLn(R>0)

For BN/PGLn(R>0), fix a triangulation T and its
n-triangulation Tn of a N-gon, fix quiver ε.

{fi}ni=1 a base of a flag F in Rn. f 0 := 1,

f k := f1 ∧ · · · ∧ fk .

Each vertex I ∈ V (Tn)\V (T ) associates with three flags
X ,Y ,Z and a, b, c ≥ 0 such that a + b + c = n, Ω volume
form of Rn

AI = ±Ω
(
xa ∧ yb ∧ zc

)
.

For I ∈ V (Tn)\V (T ) not on the boundary, Fock–Goncharov
X coordinate at I is

XI =
∏
J

AεIJJ .
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Fock–Goncharov and ABG Poisson algebras

i

X

Y Z

TU

图: εij = #{arrow i to j} −#{arrow j to i}. Xk =
∏

i A
εki
i .

Fock–Goncharov Poisson bracket {Xi ,Xj} = εijXiXj .

定理

(Labourie 18’) ABG Poisson algebra is Poisson embedded into the
rank n swapping multifraction algebra for S̃ .
(S. 20’) Fock–Goncharov Poisson algebra is Poisson embedded into
Rank n swapping multifraction algebra.
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Triple ratio and edge function

When I is in the interior of a triangle, the triple ratio is

Ta,b,c(X ,Y ,Z) := XI

=
Ω
(
xa+1 ∧ yb ∧ zc−1

)
Ω
(
xa−1 ∧ yb+1 ∧ zc

)
Ω
(
xa ∧ yb−1 ∧ zc+1

)
Ω (xa+1 ∧ yb−1 ∧ zc) Ω (xa ∧ yb+1 ∧ zc−1) Ω (xa−1 ∧ yb ∧ zc+1)

> 0.

When I is on an edge, suppose x > y > z > t, the edge function
is

Ca(X ,Y ,T ,Z ) := −XI

=
Ω
(
xa ∧ zn−a−1 ∧ t1

)
· Ω
(
xa−1 ∧ zn−a ∧ y1

)
Ω (xa ∧ zn−a−1 ∧ y1) · Ω (xa−1 ∧ zn−a ∧ t1)

< 0.
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Elementary eruption flow

B i1,i2,i3
F1,F2,F3

:= {f1,1, . . . , f1,i1 , f2,1, . . . , f2,i2 , f3,1, . . . , f3,i3}

bi1,i2,i3F1,F2,F3
(t) := e

(−i2+i3)t
3n ·

 idi1 0 0

0 e
t
3 · idi2 0

0 0 e−
t
3 · idi3

 ,

bi2,i3,i1F2,F3,F1
(t) := e

(−i3+i1)t
3n ·

 e−
t
3 · idi1 0 0
0 idi2 0

0 0 e
t
3 · idi3

 ,

bi3,i1,i2F3,F1,F2
(t) := e

(−i1+i2)t
3n ·

 e
t
3 · idi1 0 0

0 e−
t
3 · idi2 0

0 0 idi3

 ,
Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 15 / 48



Elementary eruption flow

with respect to the basis B i1,i2,i3
F1,F2,F3

.

x1 < x2 < x3 < x1 ∈ S1, the (i1, i2, i3)-elementary eruption
flow is (

εi1,i2,i3x1,x2,x3

)
t

: FRn → FRn

defined by

(
εi1,i2,i3x1,x2,x3

)
t

(ξ) := ξt(p) =


b1(t) · ξ(p) if p ∈ [x2, x3]

b2(t) · ξ(p) if p ∈ [x3, x1]

b3(t) · ξ(p) if p ∈ [x1, x2]

where bm(t) := b
im,im+1,im−1

ξ(xm),ξ(xm+1),ξ(xm−1)(t) for m = 1, 2, 3.
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Elementary eruption flow

ξ(x1)

ξ(x2)

ξ(x3)

图: n = 3 case
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Properties of elementary eruption flow

定理

(S.–Wienhard–Zhang 20’) ξt is Frenet for any t.

引理

(SWZ) Let δ(j1, j2, j3) =

{
1 if (i1, i2, i3) = (j1, j2, j3)
0 otherwise

Then

Tj1,j2,j3

(
ξt(x1), ξt(x2), ξt(x3)

)
= etδ(j1,j2,j3) · Tj1,j2,j3

(
ξ(x1), ξ(x2), ξ(x3)

)
.
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Elementary shearing flow

bi ,n−iF1,F2
(t) := e

(2n−3i)t
6n ·

[
e

t
6 idi 0

0 e−
2t
6 · idn−i

]
with basis B i ,n−i

F1,F2
.

Let x1, x2 ∈ S1, the (i , n − i)-elementary shearing flow is

(ψi ,n−i
x1,x2

)t : FR(V )→ B

defined by

ξt(p) =

{
b(−t) · ξ(p) if p ∈ [x2, x1]

b(t) · ξ(p) if p ∈ [x1, x2]

where ξt :=
(
ψi ,n−i
x1,x2

)
t

(ξ), and b(t) := bi ,n−iξ(x1),ξ(x2)(t).
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Properties of elementary shearing flow

定理

(SWZ) ξt is Frenet for any t.

引理

(SWZ) x1 < x2 < x3 < x4 in S1,

Cj

(
ξt(x1), ξt(x2), ξt(x4), ξt(x3)

)
= etδ(j) · Cj

(
ξ(x1), ξ(x2), ξ(x4), ξ(x3)

)
.

We have commutativity for the flows with disjoint associated
geometric figure (triangles, lines).
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Ideal triangulation

Given an ideal triangulation T , Q = {isolated edge} where
#Q = 6g − 6, P = {closed edge} where 1 ≤ #P ≤ 3g − 3,
Θ = {ideal triangle} where #Θ = 4g − 4.
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Bridge system

z2 x2

z1

x1

图: A bridge {T1,T2} ∈ J̃ is a pair of ideal triangles “across” a closed

edge (green line). J = J̃ /π1(S) is a bridge system compatible with T .
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Bonahon-Dreyer parameterization

Given an ideal triangulation T , fix a representative ξ of
[ξ] ∈ Hitn(S), one can associate ξ invariant flags to all the vertices
of T . Then one can define the Fock–Goncharov X coordinates in
each polygon of the fundamental domain as before. The problem is
along the closed edge of T .

定理

(Bonahon-Dreyer 14’) Given an ideal triangulation T and a bridge
system, adding the edge invariant along the closed edges with
respect to the bridge system, there is a polytope PT satisfying
closed leaf equations and closed leaf inequalities and a
homeomorphism

ΦT ,J : Hitn(S)→ PT .

Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 23 / 48



Bonahon-Dreyer parameterization

Given an ideal triangulation T , fix a representative ξ of
[ξ] ∈ Hitn(S), one can associate ξ invariant flags to all the vertices
of T . Then one can define the Fock–Goncharov X coordinates in
each polygon of the fundamental domain as before. The problem is
along the closed edge of T .

定理

(Bonahon-Dreyer 14’) Given an ideal triangulation T and a bridge
system, adding the edge invariant along the closed edges with
respect to the bridge system, there is a polytope PT satisfying
closed leaf equations and closed leaf inequalities and a
homeomorphism

ΦT ,J : Hitn(S)→ PT .

Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 23 / 48



Bonahon-Dreyer parameterization

For ξ ∈ Hitn(S) and closed edge γ ∈ T , we have

λ1(ξ(γ)) > · · · > λn(ξ(γ)) > 0, then `iξ(γ) := log
∣∣∣ λi (ξ(γ))
λi+1(ξ(γ))

∣∣∣ .

`iξ(γ) can be written as a linear combination of
Fock–Goncharov X coordinates.

Closed leaf equation: `iξ(γ) can be written in two ways for
both sides of γ.

Closed leaf inequalities: `iξ(γ) > 0.
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Bonahon-Dreyer parameterization

p1 = q2 = x2 q1 = p2 = x1

T1
T1,2

T1,C1+1 = γ1 · T1

T2,1 = T2

γ−1
2 · T2

z1 = z1,0 w1 = z1,1

γ1 · z1 = z1,C1

γ1 · w1 = z1,C1+1

γ−1
2 · w2 γ−1

2 · z2

w2 = z2,1

z2 = z2,0
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Symplectic closed-edge invariants

For a bridge J connecting two ideal triangles (p1,w1, z1) and
(p2,w2, z2) on two sides of the closed edge (x1, x2), let
um ∈ PGL(V ) be the unique unipotent projective transformation
that fixes the flag ξ(pm) and sends the flag ξ(zm) to ξ(qm) where
[pm, qm] = [x1, x2].

定义

(SWZ) The symplectic closed-edge invariants of {x1, x2} ∈ P̃ is

αi ,n−i
x1,x2,J

[ξ] := log
(
− Ci

(
ξ(x1), u2 · ξ(w2), u1 · ξ(w1), ξ(x2)

))
.

定理

(SWZ) Given T and J , by replacing the edge invariants along the
closed edges of Bonahon–Dreyer by the symplectic closed-edge
invariants, we have a homeomorphism

ΩT ,J : Hitn(S)→ PT .

Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 26 / 48



Symplectic closed-edge invariants

For a bridge J connecting two ideal triangles (p1,w1, z1) and
(p2,w2, z2) on two sides of the closed edge (x1, x2), let
um ∈ PGL(V ) be the unique unipotent projective transformation
that fixes the flag ξ(pm) and sends the flag ξ(zm) to ξ(qm) where
[pm, qm] = [x1, x2].

定义

(SWZ) The symplectic closed-edge invariants of {x1, x2} ∈ P̃ is

αi ,n−i
x1,x2,J

[ξ] := log
(
− Ci

(
ξ(x1), u2 · ξ(w2), u1 · ξ(w1), ξ(x2)

))
.

定理

(SWZ) Given T and J , by replacing the edge invariants along the
closed edges of Bonahon–Dreyer by the symplectic closed-edge
invariants, we have a homeomorphism

ΩT ,J : Hitn(S)→ PT .

Zhe Sun, IHES Flows and symplectic structure on Hitn(S) 26 / 48



Symplectic closed-edge invariants

引理

(SWZ) Let ξt :=
(
ψi ,n−i
x1,x2

)
t

(ξ). Then for all i = 1, . . . , n − 1,

αi ,n−i
x1,x2,J

[ξt ] = αi ,n−i
x1,x2,J

[ξ] + t.

Let WT ⊂ PT be the vector space satisfying the closed leaf
equations. The above theorem provides WT ∼= Tξ Hitn(S).

定义

(SWZ) The (T ,J )-parallel flow associated to µ is
φµt : Hitn(S)→ Hitn(S)

φµt :=

(∏
c∈P

(φµc )t

)
◦
(
φµQ,Θ

)
t
.
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Main Theorem

定理

(SWZ) Given T and J , for any ξ ∈ Hitn(S) and µ ∈WT , φµt is
well-defined. Let

I[ξ],µ := {t ∈ R : Ω[ξ] + t · µ satisfy the closed leaf inequalities}

For any t ∈ I[ξ],µ, let

[ξt ] := Ω−1
(
Ω[ξ] + tµ

)
.

Then φµt [ξ] = [ξt ].

Consequence: Every pair of (T ,J )-parallel flows on Hitn(S)
commute, and the space of (T ,J )-parallel flows on Hitn(S) is
naturally in bijection with T[ξ]Hitn(S). In particular, the pair
(T ,J ) determines a trivialization of THitn(S).
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Reason of convergence

z0 w0
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Tangent cocycle

View the cohomology classes in [ν] ∈ H1
ξ (S , sl(n,R)Ad ◦ξ) as

describing infinitesimal deformations of Frenet curves instead
of representations.

ξt(xh,0) = ξ0(xh,0), ξt(yh,0) = ξ0(yh,0), ξ
(1)
t (zh,0) = ξ

(1)
0 (zh,0),

∃!gh,t ∈ PGL(n,R) so that

gh,t · ξ0(xh,1) = ξt(xh,1), gh,t · ξ0(yh,1) = ξt(yh,1),

gh,t · ξ
(1)
0 (zh,1) = ξ

(1)
t (zh,1).

t 7→ gh,t with gh,0 = id. We define

µ̃ξ,[ν](h) :=
d

dt

∣∣∣∣
t=0

gh,t .
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Tangent cocycle

xh,0

yh,0

zh,0

xh,1

yh,1

zh,1

h

T ′h,0

T ′h,1

图: 1-simplices considered in Step 1.
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Barrier system B̃
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Admissible labellings

For F ,G ,H ∈ B,

Ai,j,k
F ,G ,H =

[
n−i
n
· idi 0

0 − i
n
· idn−i

]
with basis B i ,j ,k

F ,G ,H .

An admissible labelling is a Ad ◦ ξ-equivariant map
L : B̃ → sl(n,R) satisfying certain symmetries w.r.t. triple
ratios and edge functions and the “tangent version of closed
leaf equation”. The images are linear combinations of Ai ,j ,k

F ,G ,H .

Denote the set of admissible labellings at ξ by A(ξ, T ).
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Admissible labellings and tangent cocycles

Define Ad ◦ ξ-equivariant µ̃L on piecewise h : [0, 1]→ S̃

µ̃L(h) :=
∑
b∈B̃

î(h, b)L(b)

where h cross closed edge e ∈ P̃ via a bridge J ∈ J̃ .

Ad ◦ ξ-equivariant µ̃L induce µL ∈ C 1(S , sl(n,R)Ad ◦ξ).

定理

(S.–Zhang) Φξ,T ,J : A(ξ, T )→ H1(S , sl(n,R)Ad ◦ξ): L 7→ [µL] is
an isomorphism.

Note that we identify both A(ξ, T ) and the space of (T ,J )-vector
fields at ξ with Tξ Hitn(S).
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Simplicial complex

图: Pick one point in each isolated edge, two points in each closed edge.
T cuts S into triangles and cylinders.
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Triangle

r1

r2

p

eδ̃,1

eδ̃,2

e

qe

T

δ(T )
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Cylinder
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Simplicial complex

Choose triangulation T based on T
Label on all the vertices T.

The Goldman symplectic pairings:

ω
(
[µL1 ], [µL2 ]

)
=
∑
δ∈T

sgn(δ) tr
(
µ̃L1(e

δ̃,1
) · µ̃L2(e

δ̃,2
)
)
.

定理

(S.–Zhang) Given T ,J . Let X1 and X2 be a pair of (T ,J )-parallel
vector fields on Hitn(S), then the map Hitn(S)→ R given by

[ξ] 7→ ω(X1[ξ],X2[ξ])

is constant.
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T subordinate to a pants decomposition

图: #P = 3g − 3.
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Special admissible labellings
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Special admissible labellings

The (i , j , k)-eruption labelling associated to P is

E i ,j ,k
x ,y ,z = E j ,k,i

y ,z,x = E k,i ,j
z,x ,y :=

1

2

(
Li ,j ,kx ,y ,z − Li ,k,jx ′,z ′,y ′

)
.

The (i , j , k)-hexagon labelling associated to P is

H i,j,k
x,y,z = H j,k,i

y,z,x = Hk,i,j
z,x,y :=

Li,j+1,k−1
x,y,z − Li−1,j+1,k

x,y,z + Li−1,j,k+1
x,y,z − Li,j−1,k+1

x,y,z + Li+1,j−1,k
x,y,z − Li+1,j,k−1

x,y,z

+ Li,k−1,j+1
x′,z′,y′ − Li−1,k,j+1

x′,z′,y′ + Li−1,k+1,j
x′,z′,y′ − Li,k+1,j−1

x′,z′,y′ + Li+1,k,j−1
x′,z′,y′ − Li+1,k−1,j

x′,z′,y′ .
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Special admissible labellings

The i-twist labelling associated to ê is

S i
x1,x2

= −1

2
Li ,n−ix1,x2

.

The i-length labelling associated to ê is

Y i
x1,x2

:= Z i
x1,x2

+E i ,n−i ,1
x1,y1,z1

−E i−1,n−i+1,1
x1,y1,z1

−En−i ,i ,1
x2,y2,z2

+En−i−1,i+1,1
x2,y2,z2

,

where the i-lozenge labelling Z i
x1,x2

is

Z i
x1,x2

:=− Li+1,n−i−1,0
x1,y1,z1

+ Li,n−i,0
x1,y1,z1

+ Li,n−i−1,1
x1,y1,z1

− Li−1,n−i,1
x1,y1,z1

− Li+1,0,n−i−1
x′1,z

′
1,y

′
1

+ Li,0,n−i
x′1,z

′
1,y

′
1

+ Li,1,n−i−1
x′1,z

′
1,y

′
1
− Li−1,1,n−i

x′1,z
′
1,y

′
1

− Ln−i+1,i−1,0
x2,y2,z2

+ Ln−i,i,0
x2,y2,z2

+ Ln−i,i−1,1
x2,y2,z2

− Ln−i−1,i,1
x2,y2,z2

− Ln−i+1,0,i−1
x′2,z

′
2,y

′
2

+ Ln−i,0,i
x′2,z

′
2,y

′
2

+ Ln−i,1,i−1
x′2,z

′
2,y

′
2
− Ln−i−1,1,i

x′2,z
′
2,y

′
2
.
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Global Darboux vector fields

定理

(S.–Zhang) Fix an ideal triangulation T subordinate to a pants
decomposition and a bridge system.
If L1 = S i

x1,x2
, then

ω([µL1 ], [µL2 ]) =

{
1 if L2 = Y i

x1,x2
;

0 otherwise.

If L1 = H i ,j ,k
x ,y ,z , then

ω([µL1 ], [µL2 ]) =

{
1 if L2 = E i ,j ,k

x ,y ,z ;
0 otherwise.
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Global Darboux vector fields

If L1 = Y i
x1,x2

, then

ω([µL1 ], [µL2 ]) =

{
−1 if L2 = S i

x1,x2
;

0 otherwise.

If L1 = E i ,j ,k
x ,y ,z , then

ω([µL1 ], [µL2 ]) =

{
−1 if L2 = H i ,j ,k

x ,y ,z ;
0 otherwise.
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Global Darboux basis

定理

(SWZ)

H(S ix1,x2
) =

i∑
k=1

(i − n)k

2n
· `k[γ] +

n−1∑
k=i+1

i(k − n)

2n
· `k[γ].

H(Hi,j,k
x,y ,z) = τ i,j,kx,y ,z − τ

i,k,j
x′,z′,y ′ + δk,1

(
H(S i−1

x,x0
)− H(S ix,x0

)
)

+δi,1
(
H(S j−1

y ,y0
)− H(S jy ,y0

)
)

+ δj,1
(
H(Sk−1

z,z0
)− H(Skz,z0

)
)

H(Y i
x1,x2

) = −2αi ,n−i
x1,x2

.

H(E i ,j ,kx ,y ,z) =
∑

(p,q,r)∈Tn

cp,q,ri ,j ,k ·
(
τp,q,rx ,y ,z + τp,r ,qx ′,z ′,y ′

)
,
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Global Darboux basis

where

Tx := {(p, q, r) ∈ Tn : p ≥ i and q ≤ j},
Ty := {(p, q, r) ∈ Tn : q ≥ j and r ≤ k},
Tz := {(p, q, r) ∈ Tn : r ≥ k and p ≤ i},

and

cp,q,ri ,j ,k :=


ir + iq + kq

2n
if (p, q, r) ∈ Tx ;

jp + jr + ir

2n
if (p, q, r) ∈ Ty ;

kq + kp + jp

2n
if (p, q, r) ∈ Tz .
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Global Darboux basis

图: Tx ∪ Ty ∪ Tz
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Thanks!
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