Flows and symplectic structure on the higher Teichmuller space

Zhe Sun，IHES

Joint work with Anna Wienhard，Tengren Zhang

陈省身数学研究所几何与拓扑讨论班，2021年5月20日

Teichmuller theory

Let S be a connected closed surface of genus $g \geq 2$.

定理

Riemann Uniformization Theorem: Complex structure J on S \Longleftrightarrow a discrete faithful representation $\pi_{1}(S) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ such that (S, J) is conformal to $\mathbb{H}^{2} / \rho\left(\pi_{1}(S)\right)$.

Teichmuller theory

Let S be a connected closed surface of genus $g \geq 2$.

定理

Riemann Uniformization Theorem: Complex structure J on S
\Longleftrightarrow a discrete faithful representation $\pi_{1}(S) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ such that (S, J) is conformal to $\mathbb{H}^{2} / \rho\left(\pi_{1}(S)\right)$.

Teichmuller space $\mathcal{T}(S)$ is

- the space of complex structures on S up to equivalence;
- or the space of hyperbolic structures on S up to equivalence;
- or a special connected component of $\operatorname{Hom}\left(\pi_{1}(S), \operatorname{PSL}(2, \mathbb{R})\right) / \operatorname{PSL}(2, \mathbb{R})$.

Teichmuller theory

Let S be a connected closed surface of genus $g \geq 2$.

定理

Riemann Uniformization Theorem: Complex structure J on S
\Longleftrightarrow a discrete faithful representation $\pi_{1}(S) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ such that (S, J) is conformal to $\mathbb{H}^{2} / \rho\left(\pi_{1}(S)\right)$.

Teichmuller space $\mathcal{T}(S)$ is

- the space of complex structures on S up to equivalence;
- or the space of hyperbolic structures on S up to equivalence;
- or a special connected component of $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \operatorname{PSL}(2, \mathbb{R})\right) / \operatorname{PSL}(2, \mathbb{R})$.
$\mathcal{T}(S) / \operatorname{Mod}(S)$ is the moduli space of the Riemann surface.

Teichmuller theory

Let S be a connected closed surface of genus $g \geq 2$.

定理

Riemann Uniformization Theorem: Complex structure J on S
\Longleftrightarrow a discrete faithful representation $\pi_{1}(S) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ such that (S, J) is conformal to $\mathbb{H}^{2} / \rho\left(\pi_{1}(S)\right)$.

Teichmuller space $\mathcal{T}(S)$ is

- the space of complex structures on S up to equivalence;
- or the space of hyperbolic structures on S up to equivalence;
- or a special connected component of $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \operatorname{PSL}(2, \mathbb{R})\right) / \operatorname{PSL}(2, \mathbb{R})$.
$\mathcal{T}(S) / \operatorname{Mod}(S)$ is the moduli space of the Riemann surface. Teichmuller theory is a crossroad of complex analysis, algebraic/hyperbolic geometry, dynamical system etc.

Higher Teichmuller theory

- Let G be a semisimple reductive algebraic group, e.g. GL_{n}, $\mathrm{PGL}_{n}, \mathrm{SL}_{n}, \mathrm{Sp}_{2 n}$.

Higher Teichmuller theory

- Let G be a semisimple reductive algebraic group, e.g. GL_{n}, $P G L_{n}, S L_{n}, S p_{2 n}$.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right)=\mathrm{G}^{\mathrm{k}} / \sim$ is an algebraic variety equipped with compact-open topology.

Higher Teichmuller theory

- Let G be a semisimple reductive algebraic group, e.g. GL_{n}, $P G L_{n}, S L_{n}, S p_{2 n}$.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right)=\mathrm{G}^{\mathrm{k}} / \sim$ is an algebraic variety equipped with compact-open topology.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}$ is not Hausdorff where G acts by conjugation and we take only the closed G-orbit.

Higher Teichmuller theory

- Let G be a semisimple reductive algebraic group, e.g. GL_{n}, $\mathrm{PGL}_{n}, \mathrm{SL}_{n}, \mathrm{Sp}_{2 n}$.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right)=\mathrm{G}^{\mathrm{k}} / \sim$ is an algebraic variety equipped with compact-open topology.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}$ is not Hausdorff where G acts by conjugation and we take only the closed G-orbit.
- Higher Teichmuller theory is the study of special components of $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}$ which are nice.

Higher Teichmuller theory

- Let G be a semisimple reductive algebraic group, e.g. GL_{n}, $P G L_{n}, S L_{n}, S p_{2 n}$.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right)=\mathrm{G}^{\mathrm{k}} / \sim$ is an algebraic variety equipped with compact-open topology.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}$ is not Hausdorff where G acts by conjugation and we take only the closed G-orbit.
- Higher Teichmuller theory is the study of special components of $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}$ which are nice.
- $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}$ can be viewed as the space of G-flat connections on principal G-bundle over S up to gauge transformations, the space of flat connections on certain vector bundle of S, or the space of certain geometric structures up to equivalence depending on G.

Higher Teichmuller theory

- n-Fuchsian representation
$\rho: \pi_{1}(S) \xrightarrow{\text { d.f. }} \operatorname{PSL}(2, \mathbb{R}) \xrightarrow{\text { irr. }} \operatorname{PGL}(n, \mathbb{R})$. $\iota: \operatorname{PSL}(2, \mathbb{R}) \rightarrow \operatorname{PGL}(n, \mathbb{R})$ is defined by

$$
v\left(M \cdot[x, y]^{T}\right)=\iota(M) \cdot v\left([x, y]^{T}\right)
$$

where $v: \mathbb{R} \mathbb{P}^{1} \rightarrow \mathbb{R} \mathbb{P}^{n-1}$ is the Veronese curve:
$[x, y] \mapsto\left[x^{n-1}, x^{n-2} y, \cdots, y^{n-1}\right]$.

Higher Teichmuller theory

- n-Fuchsian representation
$\rho: \pi_{1}(S) \xrightarrow{\text { d.f. }} \operatorname{PSL}(2, \mathbb{R}) \xrightarrow{\text { irr.L }} \operatorname{PGL}(n, \mathbb{R})$.
$\iota: \operatorname{PSL}(2, \mathbb{R}) \rightarrow \operatorname{PGL}(n, \mathbb{R})$ is defined by

$$
v\left(M \cdot[x, y]^{T}\right)=\iota(M) \cdot v\left([x, y]^{T}\right)
$$

where $v: \mathbb{R} \mathbb{P}^{1} \rightarrow \mathbb{R} \mathbb{P}^{n-1}$ is the Veronese curve:
$[x, y] \mapsto\left[x^{n-1}, x^{n-2} y, \cdots, y^{n-1}\right]$.

- (Hitchin) A representation is called Hitchin if it can be deformed from a n-Fuchsian representation.
The collection of Hitchin representations up to conjugations is the Hitchin component $\operatorname{Hit}_{n}(S)$.

Higher Teichmuller theory

- n-Fuchsian representation
$\rho: \pi_{1}(S) \xrightarrow{\text { d.f. }} \operatorname{PSL}(2, \mathbb{R}) \xrightarrow{\text { irr.L }} \operatorname{PGL}(n, \mathbb{R})$.
$\iota: \operatorname{PSL}(2, \mathbb{R}) \rightarrow \operatorname{PGL}(n, \mathbb{R})$ is defined by

$$
v\left(M \cdot[x, y]^{T}\right)=\iota(M) \cdot v\left([x, y]^{T}\right)
$$

where $v: \mathbb{R} \mathbb{P}^{1} \rightarrow \mathbb{R} \mathbb{P}^{n-1}$ is the Veronese curve: $[x, y] \mapsto\left[x^{n-1}, x^{n-2} y, \cdots, y^{n-1}\right]$.

- (Hitchin) A representation is called Hitchin if it can be deformed from a n-Fuchsian representation.
The collection of Hitchin representations up to conjugations is the Hitchin component $\operatorname{Hit}_{n}(S)$.
Using Higgs bundle technique

定理

(Hitchin 92') The Hitchin component $\operatorname{Hit}_{n}(S)$ is topologically a unit ball.

Geometric structures

定理

(Fock-Goncharov 06'(positive), Labourie 06'(Anosov)) Any Hitchin representation is discrete and faithful, $\pi_{1}(S)$ into G is a quasi-isometric embedding. There is a lift $\widetilde{\rho}$ of ρ into $\operatorname{SL}(n, \mathbb{R})$, such that any non-peripheral $\gamma \in \pi_{1}(S)$ is loxodromic: the eigenvalues are $\lambda_{1}>\cdots>\lambda_{n}>0$

Geometric structures

定理

(Fock-Goncharov 06'(positive), Labourie 06'(Anosov)) Any Hitchin representation is discrete and faithful, $\pi_{1}(S)$ into G is a quasi-isometric embedding. There is a lift $\widetilde{\rho}$ of ρ into $\operatorname{SL}(n, \mathbb{R})$, such that any non-peripheral $\gamma \in \pi_{1}(S)$ is loxodromic: the eigenvalues are $\lambda_{1}>\cdots>\lambda_{n}>0$

- When $n=2, \operatorname{Hit}_{2}(S)$ is Teichmuller space $\mathcal{T}(S)$-the space of hyperbolic metrics on S up to isotopy.

Geometric structures

定理

(Fock-Goncharov 06'(positive), Labourie 06'(Anosov)) Any Hitchin representation is discrete and faithful, $\pi_{1}(S)$ into G is a quasi-isometric embedding. There is a lift $\widetilde{\rho}$ of ρ into $\operatorname{SL}(n, \mathbb{R})$, such that any non-peripheral $\gamma \in \pi_{1}(S)$ is loxodromic: the eigenvalues are $\lambda_{1}>\cdots>\lambda_{n}>0$

- When $n=2, \operatorname{Hit}_{2}(S)$ is Teichmuller space $\mathcal{T}(S)$-the space of hyperbolic metrics on S up to isotopy.
- (Goldman-Choi) When $n=3, \operatorname{Hit}_{3}(S)=$ $\left\{\right.$ strictly convex connected \mathbb{R}^{2} structure on $\left.S\right\} / \sim$.

Geometric structures

定理

(Fock-Goncharov 06'(positive), Labourie 06'(Anosov)) Any Hitchin representation is discrete and faithful, $\pi_{1}(S)$ into G is a quasi-isometric embedding. There is a lift $\widetilde{\rho}$ of ρ into $\operatorname{SL}(n, \mathbb{R})$, such that any non-peripheral $\gamma \in \pi_{1}(S)$ is loxodromic: the eigenvalues are $\lambda_{1}>\cdots>\lambda_{n}>0$

- When $n=2, \operatorname{Hit}_{2}(S)$ is Teichmuller space $\mathcal{T}(S)$-the space of hyperbolic metrics on S up to isotopy.
- (Goldman-Choi) When $n=3, \operatorname{Hit}_{3}(S)=$ $\left\{\right.$ strictly convex connected $\mathbb{R P}^{2}$ structure on $\left.S\right\} / \sim$.
- (Guichard-Wienhard) When $n=4, \operatorname{Hit}_{4}(S)=$ $\left\{\right.$ strictly convex connected foliated $\mathbb{R} \mathbb{P}^{3}$ structure on $\left.T^{1} S\right\} / \sim$.

Geometric structures

定理

(Fock-Goncharov 06'(positive), Labourie 06'(Anosov)) Any Hitchin representation is discrete and faithful, $\pi_{1}(S)$ into G is a quasi-isometric embedding. There is a lift $\tilde{\rho}$ of ρ into $\operatorname{SL}(n, \mathbb{R})$, such that any non-peripheral $\gamma \in \pi_{1}(S)$ is loxodromic: the eigenvalues are $\lambda_{1}>\cdots>\lambda_{n}>0$

- When $n=2, \operatorname{Hit}_{2}(S)$ is Teichmuller space $\mathcal{T}(S)$-the space of hyperbolic metrics on S up to isotopy.
- (Goldman-Choi) When $n=3, \operatorname{Hit}_{3}(S)=$ $\left\{\right.$ strictly convex connected $\mathbb{R}^{2} \mathbb{P}^{2}$ structure on $\left.S\right\} / \sim$.
- (Guichard-Wienhard) When $n=4, \operatorname{Hit}_{4}(S)=$ $\left\{\right.$ strictly convex connected foliated $\mathbb{R} \mathbb{P}^{3}$ structure on $\left.T^{1} S\right\} / \sim$.
- n in general, Guichard-Wienhard, domain of discontinuity.

Atiyah-Bott-Goldman symplectic structure

- $\mathbb{T}_{\rho} \operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}=\mathrm{H}_{\rho}^{1}\left(\pi_{1}(\mathrm{~S}), \mathfrak{g}\right)$.
$\left(\phi_{t}(x)=\exp \left(t u(x)+O\left(t^{2}\right)\right) \cdot \phi(x) \Rightarrow\right.$ $u(x y)=u(x)+A d \phi(x) u(y))$

Atiyah-Bott-Goldman symplectic structure

- $\mathbb{T}_{\rho} \operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}=\mathrm{H}_{\rho}^{1}\left(\pi_{1}(\mathrm{~S}), \mathfrak{g}\right)$.
$\left(\phi_{t}(x)=\exp \left(t u(x)+O\left(t^{2}\right)\right) \cdot \phi(x) \Rightarrow\right.$ $u(x y)=u(x)+\operatorname{Ad\phi }(x) u(y))$
- Group cohomology $H_{\rho}^{1}\left(\pi_{1}(S), \mathfrak{g}\right)$ is isomorphic to De Rham cohomology $H_{\rho}^{1}(S, \mathfrak{g})$, extending Hurewicz theorem for $\mathfrak{g}=\mathbb{R}$.

Atiyah-Bott-Goldman symplectic structure

- $\mathbb{T}_{\rho} \operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}=\mathrm{H}_{\rho}^{1}\left(\pi_{1}(\mathrm{~S}), \mathfrak{g}\right)$.
$\left(\phi_{t}(x)=\exp \left(t u(x)+O\left(t^{2}\right)\right) \cdot \phi(x) \Rightarrow\right.$ $u(x y)=u(x)+\operatorname{Ad\phi }(x) u(y))$
- Group cohomology $H_{\rho}^{1}\left(\pi_{1}(S), \mathfrak{g}\right)$ is isomorphic to De Rham cohomology $H_{\rho}^{1}(S, \mathfrak{g})$, extending Hurewicz theorem for $\mathfrak{g}=\mathbb{R}$.

定义

(Atiyah-Bott 83') The Atiyah-Bott-Goldman symplectic structure on $\operatorname{Hom}\left(\pi_{1}(\mathrm{~S}), \mathrm{G}\right) / \mathrm{G}$ is defined to be:

$$
\begin{gathered}
H_{\rho}^{1}(S, \mathfrak{g}) \times H_{\rho}^{1}(S, \mathfrak{g}) \rightarrow \mathbb{R} \\
\omega(\alpha, \beta)=\int_{S} \alpha \wedge \beta
\end{gathered}
$$

Atiyah-Bott-Goldman symplectic structure

定义

(Goldman 84') View from group cohomology $\omega: H_{\rho}^{1}(S, \mathfrak{g}) \times H_{\rho}^{1}(S, \mathfrak{g}) \xrightarrow{\cup} H_{\rho}^{2}(S, \mathfrak{g} \otimes \mathfrak{g}) \xrightarrow{B} H_{\rho}^{2}(S, \mathbb{R}) \xrightarrow{[S]} \mathbb{R}$.

Atiyah-Bott-Goldman symplectic structure

定义

(Goldman 84') View from group cohomology $\omega: H_{\rho}^{1}(S, \mathfrak{g}) \times H_{\rho}^{1}(S, \mathfrak{g}) \xrightarrow{\cup} H_{\rho}^{2}(S, \mathfrak{g} \otimes \mathfrak{g}) \xrightarrow{B} H_{\rho}^{2}(S, \mathbb{R}) \xrightarrow{[S]} \mathbb{R}$.

- (Goldman 86') Poisson bracket

$$
\left\{\operatorname{Tr}_{\alpha}, \operatorname{Tr}_{\beta}\right\}=\sum_{p \in \alpha \cap \beta} \epsilon(p, \alpha, \beta)\left(\operatorname{Tr}_{\alpha_{\rho} \beta_{p}}-\frac{1}{n} \operatorname{Tr}_{\alpha} \operatorname{Tr}_{\beta}\right) .
$$

Atiyah-Bott-Goldman symplectic structure

定义

(Goldman 84') View from group cohomology
$\omega: H_{\rho}^{1}(S, \mathfrak{g}) \times H_{\rho}^{1}(S, \mathfrak{g}) \xrightarrow{\cup} H_{\rho}^{2}(S, \mathfrak{g} \otimes \mathfrak{g}) \xrightarrow{B} H_{\rho}^{2}(S, \mathbb{R}) \xrightarrow{[S]} \mathbb{R}$.

- (Goldman 86') Poisson bracket $\left\{T_{\alpha}, \operatorname{Tr}_{\beta}\right\}=\sum_{p \in \alpha \cap \beta} \epsilon(p, \alpha, \beta)\left(\operatorname{Tr}_{\alpha_{\rho} \beta_{p}}-\frac{1}{n} \operatorname{Tr}_{\alpha} \operatorname{Tr}_{\beta}\right)$.
- The space of holomorphic quadratic differentials ($\mathbb{T}^{*} \mathcal{T}(S)$) is naturally dual to the space of harmonic Beltrami differentials ($\mathbb{T} \mathcal{T}(S)$). The Hermitian inner product on $\mathbb{T}^{*} \mathcal{T}(S)$ induces the Weil-Petersson Kähler metric on $\mathcal{T}(S)$, its imaginary part is the Weil-Petersson symplectic structure.

Atiyah-Bott-Goldman symplectic structure

定义

(Goldman 84') View from group cohomology
$\omega: H_{\rho}^{1}(S, \mathfrak{g}) \times H_{\rho}^{1}(S, \mathfrak{g}) \xrightarrow{\cup} H_{\rho}^{2}(S, \mathfrak{g} \otimes \mathfrak{g}) \xrightarrow{B} H_{\rho}^{2}(S, \mathbb{R}) \xrightarrow{[S]} \mathbb{R}$.

- (Goldman 86') Poisson bracket $\left\{T_{\alpha}, \operatorname{Tr}_{\beta}\right\}=\sum_{p \in \alpha \cap \beta} \epsilon(p, \alpha, \beta)\left(\operatorname{Tr}_{\alpha_{\rho} \beta_{p}}-\frac{1}{n} T_{r_{\alpha}} \operatorname{Tr}_{\beta}\right)$.
- The space of holomorphic quadratic differentials ($\left.\mathbb{T}^{*} \mathcal{T}(S)\right)$ is naturally dual to the space of harmonic Beltrami differentials ($\mathbb{T} \mathcal{T}(S)$). The Hermitian inner product on $\mathbb{T}^{*} \mathcal{T}(S)$ induces the Weil-Petersson Kähler metric on $\mathcal{T}(S)$, its imaginary part is the Weil-Petersson symplectic structure.
- (Goldman $\left.84^{\prime}\right) \ln \mathcal{T}(S)$, ABG symplectic structure ω is a constant multiple of the Weil-Petersson symplectic form.

Atiyah－Bott－Goldman symplectic structure

定义

（Goldman 84＇）View from group cohomology
$\omega: H_{\rho}^{1}(S, \mathfrak{g}) \times H_{\rho}^{1}(S, \mathfrak{g}) \xrightarrow{\cup} H_{\rho}^{2}(S, \mathfrak{g} \otimes \mathfrak{g}) \xrightarrow{B} H_{\rho}^{2}(S, \mathbb{R}) \xrightarrow{[S]} \mathbb{R}$.
－（Goldman 86＇）Poisson bracket $\left\{\operatorname{Tr}_{\alpha}, \operatorname{Tr}_{\beta}\right\}=\sum_{p \in \alpha \cap \beta} \epsilon(p, \alpha, \beta)\left(\operatorname{Tr}_{\alpha_{p} \beta_{p}}-\frac{1}{n} \operatorname{Tr}_{\alpha} \operatorname{Tr}_{\beta}\right)$ ．
－The space of holomorphic quadratic differentials $\left(\mathbb{T}^{*} \mathcal{T}(S)\right)$ is naturally dual to the space of harmonic Beltrami differentials （ $\mathbb{T} \mathcal{T}(S)$ ）．The Hermitian inner product on $\mathbb{T}^{*} \mathcal{T}(S)$ induces the Weil－Petersson Kähler metric on $\mathcal{T}(S)$ ，its imaginary part is the Weil－Petersson symplectic structure．
－（Goldman 84＇）In $\mathcal{T}(S)$ ，ABG symplectic structure ω is a constant multiple of the Weil－Petersson symplectic form．

猜想

ω is Kählerian for $\operatorname{Hit}_{n}(S)$ when $n \geq 3$ ．

Wolpert formula

- Given a pants decomposition and transverse arcs to the pants curves, Fenchel-Nielsen coordinates $\left\{\ell_{i}, \theta_{i}\right\}_{i=1}^{3 g-3}$ are the lengths and twists around the pants curves.
- Wolpert formula 83 ': $\omega=\sum_{i=1}^{3 g-3} d l_{i} \wedge d \theta_{i}$.

Wolpert formula

- Given a pants decomposition and transverse arcs to the pants curves, Fenchel-Nielsen coordinates $\left\{\ell_{i}, \theta_{i}\right\}_{i=1}^{3 g-3}$ are the lengths and twists around the pants curves.
- Wolpert formula 83': $\omega=\sum_{i=1}^{3 g-3} d l_{i} \wedge d \theta_{i}$.
- (Goldman 86 '): Generalized Hamiltonian twist flow and length function for general G.

Wolpert formula

- Given a pants decomposition and transverse arcs to the pants curves, Fenchel-Nielsen coordinates $\left\{\ell_{i}, \theta_{i}\right\}_{i=1}^{3 g-3}$ are the lengths and twists around the pants curves.
- Wolpert formula $83^{\prime}: \omega=\sum_{i=1}^{3 g-3} d l_{i} \wedge d \theta_{i}$.
- (Goldman 86'): Generalized Hamiltonian twist flow and length function for general G.
- (Kim 99'+Choi-Jung-Kim 21') Generalize Wolpert formula for $\mathrm{Hit}_{3}(S)$ using Fox calculus. Latter paper fixed the twisted functions.

Wolpert formula

- Given a pants decomposition and transverse arcs to the pants curves, Fenchel-Nielsen coordinates $\left\{\ell_{i}, \theta_{i}\right\}_{i=1}^{3 g-3}$ are the lengths and twists around the pants curves.
- Wolpert formula $83^{\prime}: \omega=\sum_{i=1}^{3 g-3} d l_{i} \wedge d \theta_{i}$.
- (Goldman 86'): Generalized Hamiltonian twist flow and length function for general G.
- (Kim 99'+Choi-Jung-Kim 21') Generalize Wolpert formula for $\mathrm{Hit}_{3}(S)$ using Fox calculus. Latter paper fixed the twisted functions.
- We generalize Wolpert formula for $\operatorname{Hit}_{n}(S)$.

Limit curve

- The space of (complete) flags

$$
\begin{aligned}
& \mathcal{B}=\left\{F=\left(0 \subset F_{1} \subset \cdots \subset F_{n-1}\right) \mid \operatorname{dim} F_{i}=i\right\} \simeq G / B . \\
& \mathcal{F} \mathcal{R}_{n}=\left\{\text { continous } \xi: S^{1} \rightarrow \mathcal{B} \text { Frenet }\right\} / \operatorname{PGL}(n, \mathbb{R}) .
\end{aligned}
$$

- Frenet: Firstly $\xi\left(x_{1}\right)_{n_{1}} \oplus \cdots \oplus \xi\left(x_{k}\right)_{n_{k}}, n_{1}+\cdots+n_{k} \leq n$.
- Secondly $x \in S^{1},\left\{\left(x_{i, 1}, \ldots, x_{i, k}\right)\right\}_{i=1}^{\infty}$ pairwise distinct, $\forall j$, $\lim _{i \rightarrow \infty} x_{i, j}=x$, we have

$$
\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi\left(x_{i, j}\right)_{n_{j}}=\xi^{(d)}(x)
$$

Limit curve

- The space of (complete) flags

$$
\mathcal{B}=\left\{F=\left(0 \subset F_{1} \subset \cdots \subset F_{n-1}\right) \mid \operatorname{dim} F_{i}=i\right\} \simeq G / B
$$

$\mathcal{F} \mathcal{R}_{n}=\left\{\right.$ continous $\xi: S^{1} \rightarrow \mathcal{B}$ Frenet $\} / \operatorname{PGL}(n, \mathbb{R})$.

- Frenet: Firstly $\xi\left(x_{1}\right)_{n_{1}} \oplus \cdots \oplus \xi\left(x_{k}\right)_{n_{k}}, n_{1}+\cdots+n_{k} \leq n$.
- Secondly $x \in S^{1},\left\{\left(x_{i, 1}, \ldots, x_{i, k}\right)\right\}_{i=1}^{\infty}$ pairwise distinct, $\forall j$, $\lim _{i \rightarrow \infty} x_{i, j}=x$, we have

$$
\lim _{i \rightarrow \infty} \sum_{j=1}^{k} \xi\left(x_{i, j}\right)_{n_{j}}=\xi^{(d)}(x)
$$

定理

(Labourie 06', Guichard 08')
$\rho \in \operatorname{Hit}_{n}(S) \Leftrightarrow \exists!\xi_{\rho}: \partial_{\infty} \pi_{1}(S) \cong S^{1} \rightarrow \mathcal{B} \rho$-equivariant Frenet up to $\operatorname{PGL}(n, \mathbb{R})$, we call ξ_{ρ} a limit curve.
$\operatorname{Hit}_{n}(S)$ " \subset " $\mathcal{F} \mathcal{R}_{n}$, we study the deformation of $\operatorname{Hit}_{n}(S)$ via deforming $\mathcal{F} \mathcal{R}_{n}$.

图: The flags are $F=(a, \overline{y z}), G=(b, \overline{z x}), H=(c, \overline{x y})$. Let $|\cdot|$ be the Euclidean norm. Then the triple ratio $T(F, G, H)=\frac{|y a|}{|a z|} \frac{|z b|}{|b x|} \frac{|x c|}{|c y|}$. By Ceva theorem, $T(F, G, H)=1$ if and only if $\overline{a x}, \overline{b y}$ and $\overline{c z}$ are colinear.

图: The flags are $X=(a, \overline{b h}), W=(c, \overline{b d}), Y=(e, \overline{d f}), Z=(g, \overline{f h})$. Up to $\operatorname{PGL}(3, \mathbb{R})$, the position of (X, W, Y) is decided by the triple ratio $T(X, W, Y)$. The convention for cross ratio in $\mathbb{R P}^{1}$ is $C R(\alpha, \beta, \gamma, \delta):=\frac{\alpha-\gamma}{\alpha-\delta} \cdot \frac{\beta-\delta}{\beta-\gamma}$. The cross ratio $C R(\overline{a b}, \overline{a e}, \overline{a g}, \overline{a c})$ decides the line $\overline{a g}$ and $C R(\overline{e f}, \overline{e a}, \overline{e c}, \overline{e g})$ decides the line $\overline{e g}$, which fix the point G. In the end, the line $\overline{h f}$ is decided by the triple ratio $T(X, Y, Z)$.

Parameterizing $\mathcal{B}^{N} / \mathrm{PGL}_{n}\left(\mathbb{R}_{>0}\right)$

- For $\mathcal{B}^{N} / \operatorname{PGL}_{n}\left(\mathbb{R}_{>0}\right)$, fix a triangulation \mathcal{T} and its n-triangulation \mathcal{T}_{n} of a N-gon, fix quiver ϵ.
- $\left\{f_{i}\right\}_{i=1}^{n}$ a base of a flag F in $\mathbb{R}^{n} . f^{0}:=1$,

$$
f^{k}:=f_{1} \wedge \cdots \wedge f_{k} .
$$

- Each vertex $I \in V\left(\mathcal{T}_{n}\right) \backslash V(\mathcal{T})$ associates with three flags X, Y, Z and $a, b, c \geq 0$ such that $a+b+c=n, \Omega$ volume form of \mathbb{R}^{n}

$$
A_{I}= \pm \Omega\left(x^{a} \wedge y^{b} \wedge z^{c}\right)
$$

- For $I \in V\left(\mathcal{T}_{n}\right) \backslash V(\mathcal{T})$ not on the boundary, Fock-Goncharov \mathcal{X} coordinate at $/$ is

$$
X_{I}=\prod_{J} A_{J}^{\epsilon_{I J}}
$$

Fock－Goncharov and ABG Poisson algebras

图：$\epsilon_{i j}=\#\{$ arrow i to $j\}-\#\{$ arrow j to $i\} . X_{k}=\prod_{i} A_{i}^{\epsilon_{k i}}$ ．
Fock－Goncharov Poisson bracket $\left\{X_{i}, X_{j}\right\}=\epsilon_{i j} X_{i} X_{j}$ ．

定理

（Labourie 18＇）ABG Poisson algebra is Poisson embedded into the rank n swapping multifraction algebra for \tilde{S} ．
（S．20＇）Fock－Goncharov Poisson algebra is Poisson embedded into Rank n swapping multifraction algebra．

When I is in the interior of a triangle, the triple ratio is

$$
\begin{aligned}
& T_{a, b, c}(X, Y, Z):=X_{I} \\
= & \frac{\Omega\left(x^{a+1} \wedge y^{b} \wedge z^{c-1}\right) \Omega\left(x^{a-1} \wedge y^{b+1} \wedge z^{c}\right) \Omega\left(x^{a} \wedge y^{b-1} \wedge z^{c+1}\right)}{\Omega\left(x^{a+1} \wedge y^{b-1} \wedge z^{c}\right) \Omega\left(x^{a} \wedge y^{b+1} \wedge z^{c-1}\right) \Omega\left(x^{a-1} \wedge y^{b} \wedge z^{c+1}\right)}>0 .
\end{aligned}
$$

When I is on an edge, suppose $x>y>z>t$, the edge function is

$$
\begin{aligned}
& C_{a}(X, Y, T, Z):=-X_{I} \\
= & \frac{\Omega\left(x^{a} \wedge z^{n-a-1} \wedge t^{1}\right) \cdot \Omega\left(x^{a-1} \wedge z^{n-a} \wedge y^{1}\right)}{\Omega\left(x^{a} \wedge z^{n-a-1} \wedge y^{1}\right) \cdot \Omega\left(x^{a-1} \wedge z^{n-a} \wedge t^{1}\right)}<0
\end{aligned}
$$

Elementary eruption flow

$$
\begin{gathered}
B_{F_{1}, F_{2}, F_{3}}^{i_{1}, i_{2}, i_{3}}:=\left\{f_{1,1}, \ldots, f_{1, i_{1}}, f_{2,1}, \ldots, f_{2, i_{2}}, f_{3,1}, \ldots, f_{3, i_{3}}\right\} \\
b_{F_{1}, F_{2}, F_{3}}^{i_{1}, i_{2}, i_{3}}(t):=e^{\frac{\left(-i_{2}+i_{3}\right) t}{3 n}} \cdot\left[\begin{array}{ccc}
\mathrm{id}_{i_{1}} & 0 & 0 \\
0 & e^{\frac{t}{3}} \cdot \mathrm{id}_{i_{2}} & 0 \\
0 & 0 & e^{-\frac{t}{3}} \cdot \mathrm{id}_{i_{3}}
\end{array}\right], \\
b_{F_{2}, F_{3}, F_{1}}^{i_{2}, i_{3}, i_{1}}(t):=e^{\frac{\left(-i_{3}+i_{1}\right) t}{3 n}} \cdot\left[\begin{array}{ccc}
e^{-\frac{t}{3}} \cdot \mathrm{id}_{i_{1}} & 0 & 0 \\
0 & \mathrm{id}_{i_{2}} & 0 \\
0 & 0 & e^{\frac{t}{3}} \cdot \mathrm{id}_{i_{3}}
\end{array}\right], \\
b_{F_{3}, F_{1}, F_{2}}^{i_{3}, i_{1}, i_{2}}(t):=e^{\frac{\left(-i_{1}+i_{2}\right) t}{3 n}} \cdot\left[\begin{array}{ccc}
e^{\frac{t}{3}} \cdot \mathrm{id}_{i_{1}} & 0 & 0 \\
0 & e^{-\frac{t}{3}} \cdot \mathrm{id}_{i_{2}} & 0 \\
0 & 0 & \mathrm{id}_{i_{3}}
\end{array}\right],
\end{gathered}
$$

- with respect to the basis $B_{F_{1}, F_{2}, F_{3}}^{i_{1}, i_{2}, i_{3}}$.
- $x_{1}<x_{2}<x_{3}<x_{1} \in S^{1}$, the $\left(i_{1}, i_{2}, i_{3}\right)$-elementary eruption flow is

$$
\left(\epsilon_{x_{1}, x_{2}, x_{3}}^{i_{1}, i_{2}, i_{3}}\right)_{t}: \mathcal{F} \mathcal{R}_{n} \rightarrow \mathcal{F} \mathcal{R}_{n}
$$

defined by
where $b_{m}(t):=b_{\xi\left(x_{m}\right), \xi\left(x_{m+1}\right), \xi\left(x_{m-1}\right)}^{i_{m}, i_{m+1}, i_{m-1}}(t)$ for $m=1,2,3$.

Elementary eruption flow

Properties of elementary eruption flow

定理
 (S.-Wienhard-Zhang 20') ξ_{t} is Frenet for any t.

Properties of elementary eruption flow

定理

（S．－Wienhard－Zhang 20＇）ξ_{t} is Frenet for any t ．

引理

$(S W Z)$ Let $\delta\left(j_{1}, j_{2}, j_{3}\right)=\left\{\begin{array}{ll}1 & \text { if }\left(i_{1}, i_{2}, i_{3}\right)=\left(j_{1}, j_{2}, j_{3}\right) \\ 0 & \text { otherwise }\end{array}\right.$ Then

$$
T_{j_{1}, j_{2}, j_{3}}\left(\xi_{t}\left(x_{1}\right), \xi_{t}\left(x_{2}\right), \xi_{t}\left(x_{3}\right)\right)=e^{t \delta\left(j_{1}, j_{2}, j_{3}\right)} \cdot T_{j_{1}, j_{2}, j_{3}}\left(\xi\left(x_{1}\right), \xi\left(x_{2}\right), \xi\left(x_{3}\right)\right) .
$$

$$
b_{F_{1}, F_{2}}^{i, n-i}(t):=e^{\frac{(2 n-3 i) t}{6 n}} \cdot\left[\begin{array}{cc}
e^{\frac{t}{6}} \mathrm{id}_{i} & 0 \\
0 & e^{-\frac{2 t}{6}} \cdot \mathrm{id}_{n-i}
\end{array}\right]
$$

with basis $B_{F_{1}, F_{2}}^{i, n-i}$.

- Let $x_{1}, x_{2} \in S^{1}$, the $(i, n-i)$-elementary shearing flow is

$$
\left(\psi_{x_{1}, x_{2}}^{i, n-i}\right)_{t}: \mathcal{F} \mathcal{R}(V) \rightarrow \mathcal{B}
$$

defined by

$$
\begin{gathered}
\xi_{t}(p)= \begin{cases}b(-t) \cdot \xi(p) & \text { if } p \in \overline{\left[x_{2}, x_{1}\right]} \\
b(t) \cdot \xi(p) & \text { if } p \in\left[x_{1}, x_{2}\right]\end{cases} \\
\text { where } \xi_{t}:=\left(\psi_{x_{1}, x_{2}}^{i, n-i}\right)_{t}(\xi) \text {, and } b(t):=b_{\xi\left(x_{1}\right), \xi\left(x_{2}\right)}^{i, n-i}(t) .
\end{gathered}
$$

Properties of elementary shearing flow

定理

（SWZ）ξ_{t} is Frenet for any t ．

引理

$(S W Z) x_{1}<x_{2}<x_{3}<x_{4}$ in S^{1} ，

$$
C_{j}\left(\xi_{t}\left(x_{1}\right), \xi_{t}\left(x_{2}\right), \xi_{t}\left(x_{4}\right), \xi_{t}\left(x_{3}\right)\right)=e^{t \delta(j)} \cdot C_{j}\left(\xi\left(x_{1}\right), \xi\left(x_{2}\right), \xi\left(x_{4}\right), \xi\left(x_{3}\right)\right) .
$$

We have commutativity for the flows with disjoint associated geometric figure（triangles，lines）．

Ideal triangulation

Given an ideal triangulation $\mathcal{T}, \mathcal{Q}=\{$ isolated edge $\}$ where $\# \mathcal{Q}=6 g-6, \mathcal{P}=\{$ closed edge $\}$ where $1 \leq \# \mathcal{P} \leq 3 g-3$, $\Theta=\{$ ideal triangle $\}$ where $\# \Theta=4 g-4$.

Bridge system

图: A bridge $\left\{T_{1}, T_{2}\right\} \in \widetilde{\mathcal{J}}$ is a pair of ideal triangles "across" a closed edge (green line). $\mathcal{J}=\widetilde{\mathcal{J}} / \pi_{1}(S)$ is a bridge system compatible with \mathcal{T}.

Bonahon-Dreyer parameterization

Given an ideal triangulation \mathcal{T}, fix a representative ξ of $[\xi] \in \operatorname{Hit}_{n}(S)$, one can associate ξ invariant flags to all the vertices of \mathcal{T}. Then one can define the Fock-Goncharov \mathcal{X} coordinates in each polygon of the fundamental domain as before. The problem is along the closed edge of \mathcal{T}.

Bonahon-Dreyer parameterization

Given an ideal triangulation \mathcal{T}, fix a representative ξ of $[\xi] \in \operatorname{Hit}_{n}(S)$, one can associate ξ invariant flags to all the vertices of \mathcal{T}. Then one can define the Fock-Goncharov \mathcal{X} coordinates in each polygon of the fundamental domain as before. The problem is along the closed edge of \mathcal{T}.

定理

(Bonahon-Dreyer 14') Given an ideal triangulation \mathcal{T} and a bridge system, adding the edge invariant along the closed edges with respect to the bridge system, there is a polytope $P_{\mathcal{T}}$ satisfying closed leaf equations and closed leaf inequalities and a homeomorphism

$$
\Phi_{\mathcal{T}, \mathcal{J}}: \operatorname{Hit}_{n}(S) \rightarrow P_{\mathcal{T}} .
$$

Bonahon-Dreyer parameterization

- For $\xi \in \operatorname{Hit}_{n}(S)$ and closed edge $\gamma \in \mathcal{T}$, we have $\lambda_{1}(\xi(\gamma))>\cdots>\lambda_{n}(\xi(\gamma))>0$, then $\ell_{\xi}^{i}(\gamma):=\log \left|\frac{\lambda_{i}(\xi(\gamma))}{\lambda_{i+1}(\xi(\gamma))}\right|$.

Bonahon-Dreyer parameterization

- For $\xi \in \operatorname{Hit}_{n}(S)$ and closed edge $\gamma \in \mathcal{T}$, we have

$$
\lambda_{1}(\xi(\gamma))>\cdots>\lambda_{n}(\xi(\gamma))>0, \text { then } \ell_{\xi}^{i}(\gamma):=\log \left|\frac{\lambda_{i}(\xi(\gamma))}{\lambda_{i+1}(\xi(\gamma))}\right|
$$

- $\ell_{\xi}^{i}(\gamma)$ can be written as a linear combination of Fock-Goncharov \mathcal{X} coordinates.

Bonahon-Dreyer parameterization

- For $\xi \in \operatorname{Hit}_{n}(S)$ and closed edge $\gamma \in \mathcal{T}$, we have

$$
\lambda_{1}(\xi(\gamma))>\cdots>\lambda_{n}(\xi(\gamma))>0, \text { then } \ell_{\xi}^{i}(\gamma):=\log \left|\frac{\lambda_{i}(\xi(\gamma))}{\lambda_{i+1}(\xi(\gamma))}\right| .
$$

- $\ell_{\xi}^{i}(\gamma)$ can be written as a linear combination of Fock-Goncharov \mathcal{X} coordinates.
- Closed leaf equation: $\ell_{\xi}^{i}(\gamma)$ can be written in two ways for both sides of γ.

Bonahon-Dreyer parameterization

- For $\xi \in \operatorname{Hit}_{n}(S)$ and closed edge $\gamma \in \mathcal{T}$, we have

$$
\lambda_{1}(\xi(\gamma))>\cdots>\lambda_{n}(\xi(\gamma))>0, \text { then } \ell_{\xi}^{i}(\gamma):=\log \left|\frac{\lambda_{i}(\xi(\gamma))}{\lambda_{i+1}(\xi(\gamma))}\right| .
$$

- $\ell_{\xi}^{i}(\gamma)$ can be written as a linear combination of Fock-Goncharov \mathcal{X} coordinates.
- Closed leaf equation: $\ell_{\xi}^{i}(\gamma)$ can be written in two ways for both sides of γ.
- Closed leaf inequalities: $\ell_{\xi}^{i}(\gamma)>0$.

Bonahon-Dreyer parameterization

Symplectic closed-edge invariants

For a bridge J connecting two ideal triangles $\left(p_{1}, w_{1}, z_{1}\right)$ and (p_{2}, w_{2}, z_{2}) on two sides of the closed edge (x_{1}, x_{2}), let $u_{m} \in \operatorname{PGL}(V)$ be the unique unipotent projective transformation that fixes the flag $\xi\left(p_{m}\right)$ and sends the flag $\xi\left(z_{m}\right)$ to $\xi\left(q_{m}\right)$ where $\left[p_{m}, q_{m}\right]=\left[x_{1}, x_{2}\right]$.

定义

(SWZ) The symplectic closed-edge invariants of $\left\{x_{1}, x_{2}\right\} \in \widetilde{\mathcal{P}}$ is

$$
\alpha_{x_{1}, x_{2}, J}^{i, n-i}[\xi]:=\log \left(-C_{i}\left(\xi\left(x_{1}\right), u_{2} \cdot \xi\left(w_{2}\right), u_{1} \cdot \xi\left(w_{1}\right), \xi\left(x_{2}\right)\right)\right) .
$$

Symplectic closed－edge invariants

For a bridge J connecting two ideal triangles $\left(p_{1}, w_{1}, z_{1}\right)$ and $\left(p_{2}, w_{2}, z_{2}\right)$ on two sides of the closed edge $\left(x_{1}, x_{2}\right)$ ，let $u_{m} \in \operatorname{PGL}(V)$ be the unique unipotent projective transformation that fixes the flag $\xi\left(p_{m}\right)$ and sends the flag $\xi\left(z_{m}\right)$ to $\xi\left(q_{m}\right)$ where $\left[p_{m}, q_{m}\right]=\left[x_{1}, x_{2}\right]$ ．

定义

（SWZ）The symplectic closed－edge invariants of $\left\{x_{1}, x_{2}\right\} \in \widetilde{\mathcal{P}}$ is

$$
\alpha_{x_{1}, x_{2}, J}^{i, n-i}[\xi]:=\log \left(-C_{i}\left(\xi\left(x_{1}\right), u_{2} \cdot \xi\left(w_{2}\right), u_{1} \cdot \xi\left(w_{1}\right), \xi\left(x_{2}\right)\right)\right) .
$$

定理

（SWZ）Given \mathcal{T} and \mathcal{J} ，by replacing the edge invariants along the closed edges of Bonahon－Dreyer by the symplectic closed－edge invariants，we have a homeomorphism

$$
\Omega_{\mathcal{T}, \mathcal{J}}: \operatorname{Hit}_{n}(S) \rightarrow P_{\mathcal{T}}
$$

Symplectic closed-edge invariants

引理

(SWZ) Let $\xi_{t}:=\left(\psi_{x_{1}, x_{2}}^{i, n-i}\right)_{t}(\xi)$. Then for all $i=1, \ldots, n-1$,

$$
\alpha_{x_{1}, x_{2}, J}^{i, n-i}\left[\xi_{t}\right]=\alpha_{x_{1}, x_{2}, J}^{i, n-i}[\xi]+t .
$$

Symplectic closed-edge invariants

引理

(SWZ) Let $\xi_{t}:=\left(\psi_{x_{1}, x_{2}}^{i, n-i}\right)_{t}(\xi)$. Then for all $i=1, \ldots, n-1$,

$$
\alpha_{x_{1}, x_{2}, J}^{i, n-i}\left[\xi_{t}\right]=\alpha_{x_{1}, x_{2}, J}^{i, n-i}[\xi]+t .
$$

Let $W_{\mathcal{T}} \subset P_{\mathcal{T}}$ be the vector space satisfying the closed leaf equations. The above theorem provides $W_{\mathcal{T}} \cong \mathbb{T}_{\xi} \operatorname{Hit}_{n}(S)$.

Symplectic closed－edge invariants

引理

（SWZ）Let $\xi_{t}:=\left(\psi_{x_{1}, x_{2}}^{i, n-i}\right)_{t}(\xi)$ ．Then for all $i=1, \ldots, n-1$ ，

$$
\alpha_{x_{1}, x_{2}, J}^{i, n-i}\left[\xi_{t}\right]=\alpha_{x_{1}, x_{2}, J}^{i, n-i}[\xi]+t .
$$

Let $W_{\mathcal{T}} \subset P_{\mathcal{T}}$ be the vector space satisfying the closed leaf equations．The above theorem provides $W_{\mathcal{T}} \cong \mathbb{T}_{\xi} \operatorname{Hit}_{n}(S)$ ．

定义

（SWZ）The $(\mathcal{T}, \mathcal{J})$－parallel flow associated to μ is $\phi_{t}^{\mu}: \operatorname{Hit}_{n}(S) \rightarrow \operatorname{Hit}_{n}(S)$

$$
\phi_{t}^{\mu}:=\left(\prod_{c \in \mathcal{P}}\left(\phi_{c}^{\mu}\right)_{t}\right) \circ\left(\phi_{\mathcal{Q}, \Theta}^{\mu}\right)_{t}
$$

Main Theorem

定理

(SWZ) Given \mathcal{T} and \mathcal{J}, for any $\xi \in \operatorname{Hit}_{n}(S)$ and $\mu \in W_{\mathcal{T}}, \phi_{t}^{\mu}$ is well-defined. Let

$$
I_{[\xi], \mu}:=\{t \in \mathbb{R}: \Omega[\xi]+t \cdot \mu \text { satisfy the closed leaf inequalities }\}
$$

For any $t \in I_{[\xi], \mu}$, let

$$
\left[\xi_{t}\right]:=\Omega^{-1}(\Omega[\xi]+t \mu)
$$

Then $\phi_{t}^{\mu}[\xi]=\left[\xi_{t}\right]$.
Consequence: Every pair of $(\mathcal{T}, \mathcal{J})$-parallel flows on $\operatorname{Hit}_{n}(S)$ commute, and the space of $(\mathcal{T}, \mathcal{J})$-parallel flows on $\operatorname{Hit}_{n}(S)$ is naturally in bijection with $\mathbb{T}_{[\xi]} \operatorname{Hit}_{n}(S)$. In particular, the pair $(\mathcal{T}, \mathcal{J})$ determines a trivialization of $\mathbb{T H i t}_{n}(S)$.

Reason of convergence

- View the cohomology classes in $[\nu] \in H_{\xi}^{1}\left(S, \mathfrak{s l}(n, \mathbb{R})_{\text {Ad } \circ \xi}\right)$ as describing infinitesimal deformations of Frenet curves instead of representations.

Tangent cocycle

- View the cohomology classes in $[\nu] \in H_{\xi}^{1}\left(S, \mathfrak{s l}(n, \mathbb{R})_{\text {Ad } \circ \xi}\right)$ as describing infinitesimal deformations of Frenet curves instead of representations.
- $\xi_{t}\left(x_{h, 0}\right)=\xi_{0}\left(x_{h, 0}\right), \xi_{t}\left(y_{h, 0}\right)=\xi_{0}\left(y_{h, 0}\right), \xi_{t}^{(1)}\left(z_{h, 0}\right)=\xi_{0}^{(1)}\left(z_{h, 0}\right)$, $\exists!g_{h, t} \in \operatorname{PGL}(n, \mathbb{R})$ so that

$$
\begin{gathered}
g_{h, t} \cdot \xi_{0}\left(x_{h, 1}\right)=\xi_{t}\left(x_{h, 1}\right), \quad g_{h, t} \cdot \xi_{0}\left(y_{h, 1}\right)=\xi_{t}\left(y_{h, 1}\right), \\
g_{h, t} \cdot \xi_{0}^{(1)}\left(z_{h, 1}\right)=\xi_{t}^{(1)}\left(z_{h, 1}\right)
\end{gathered}
$$

$t \mapsto g_{h, t}$ with $g_{h, 0}=\mathrm{id}$. We define

$$
\widetilde{\mu}_{\xi,[l]}(h):=\left.\frac{d}{d t}\right|_{t=0} g_{h, t} .
$$

Tangent cocycle

图: 1-simplices considered in Step 1.

Barrier system $\tilde{\mathcal{B}}$

Admissible labellings

- For $F, G, H \in \mathcal{B}$,

$$
A_{F, G, H}^{i, j, k}=\left[\begin{array}{cc}
\frac{n-i}{n} \cdot \mathrm{id}_{i} & 0 \\
0 & -\frac{i}{n} \cdot \mathrm{id}_{n-i}
\end{array}\right]
$$

with basis $B_{F, G, H}^{i, j, k}$.

- An admissible labelling is a $A d \circ \xi$-equivariant map $L: \tilde{\mathcal{B}} \rightarrow \mathfrak{s l}(n, \mathbb{R})$ satisfying certain symmetries w.r.t. triple ratios and edge functions and the "tangent version of closed leaf equation". The images are linear combinations of $A_{F, G, H}^{i, j, k}$.
- Denote the set of admissible labellings at ξ by $\mathcal{A}(\xi, \mathcal{T})$.

Admissible labellings and tangent cocycles

- Define $A d \circ \xi$-equivariant $\widetilde{\mu}_{L}$ on piecewise $h:[0,1] \rightarrow \widetilde{S}$

$$
\widetilde{\mu}_{L}(h):=\sum_{b \in \widetilde{\mathcal{B}}} \hat{i}(h, b) L(b)
$$

where h cross closed edge $e \in \widetilde{\mathcal{P}}$ via a bridge $J \in \widetilde{\mathcal{J}}$.

- Ad $\circ \xi$-equivariant $\widetilde{\mu}_{L}$ induce $\mu_{L} \in C^{1}\left(S, \mathfrak{s l}(n, \mathbb{R})_{\text {Ad } \circ \xi}\right)$.

Admissible labellings and tangent cocycles

- Define $\operatorname{Ad} \circ \xi$-equivariant $\widetilde{\mu}_{L}$ on piecewise $h:[0,1] \rightarrow \widetilde{S}$

$$
\widetilde{\mu}_{L}(h):=\sum_{b \in \widetilde{\mathcal{B}}} \hat{i}(h, b) L(b)
$$

where h cross closed edge $e \in \widetilde{\mathcal{P}}$ via a bridge $J \in \widetilde{\mathcal{J}}$.

- Ad $\circ \xi$-equivariant $\widetilde{\mu}_{L}$ induce $\mu_{L} \in C^{1}\left(S, \mathfrak{s l}(n, \mathbb{R})_{\mathrm{Ad} \circ \xi}\right)$.

定理

(S.-Zhang) $\Phi_{\xi, \mathcal{T}, \mathcal{J}}: \mathcal{A}(\xi, \mathcal{T}) \rightarrow H^{1}\left(S, \mathfrak{s l}(n, \mathbb{R})_{\mathrm{Ad} \circ \xi}\right): L \mapsto\left[\mu_{L}\right]$ is an isomorphism.

Note that we identify both $\mathcal{A}(\xi, \mathcal{T})$ and the space of $(\mathcal{T}, \mathcal{J})$-vector fields at ξ with $\mathbb{T}_{\xi} \operatorname{Hit}_{n}(S)$.

Simplicial complex

图: Pick one point in each isolated edge, two points in each closed edge. \mathbb{T} cuts S into triangles and cylinders.

Triangle

Cylinder

Simplicial complex

- Choose triangulation \mathbb{T} based on \mathcal{T}
- Label on all the vertices \mathbb{T}.
- The Goldman symplectic pairings:

$$
\omega\left(\left[\mu_{L_{1}}\right],\left[\mu_{L_{2}}\right]\right)=\sum_{\delta \in \mathbb{T}} \operatorname{sgn}(\delta) \operatorname{tr}\left(\widetilde{\mu}_{L_{1}}\left(e_{\widetilde{\delta}, 1}\right) \cdot \widetilde{\mu}_{L_{2}}\left(e_{\tilde{\delta}, 2}\right)\right)
$$

Simplicial complex

- Choose triangulation \mathbb{T} based on \mathcal{T}
- Label on all the vertices \mathbb{T}.
- The Goldman symplectic pairings:

$$
\omega\left(\left[\mu_{L_{1}}\right],\left[\mu_{L_{2}}\right]\right)=\sum_{\delta \in \mathbb{T}} \operatorname{sgn}(\delta) \operatorname{tr}\left(\widetilde{\mu}_{L_{1}}\left(e_{\widetilde{\delta}, 1}\right) \cdot \widetilde{\mu}_{L_{2}}\left(e_{\tilde{\delta}, 2}\right)\right)
$$

定理

(S.-Zhang) Given \mathcal{T}, \mathcal{J}. Let X_{1} and X_{2} be a pair of $(\mathcal{T}, \mathcal{J})$-parallel vector fields on $\operatorname{Hit}_{n}(S)$, then the map $\operatorname{Hit}_{n}(S) \rightarrow \mathbb{R}$ given by

$$
[\xi] \mapsto \omega\left(X_{1}[\xi], X_{2}[\xi]\right)
$$

is constant.

\mathcal{T} subordinate to a pants decomposition

图: $\# \mathcal{P}=3 g-3$.

Special admissible labellings

Special admissible labellings

- The (i, j, k)-eruption labelling associated to P is

$$
E_{x, y, z}^{i, j, k}=E_{y, z, x}^{j, k, i}=E_{z, x, y}^{k, i, j}:=\frac{1}{2}\left(L_{x, y, z}^{i, j, k}-L_{x^{\prime}, z^{\prime}, y^{\prime}}^{i, k, j}\right) .
$$

- The (i, j, k)-hexagon labelling associated to P is

$$
\begin{aligned}
& H_{x}^{i, j, y, z}=H_{y, z, x}^{j, k, i}=H_{z, x}^{k, i, j}:= \\
& L_{x, y, z}^{i, j+1, k-1}-L_{x, y, z}^{i-1, j+1, k}+L_{x, y, z}^{i-1, j, k+1}-L_{x, y, z}^{i, j-1, k+1}+L_{x, y, z}^{i+1, j-1, k}-L_{x, y, z}^{i+1, j, k-1} \\
& +L_{x^{\prime}, z^{\prime}, y^{\prime}}^{i, k-1, j+1}-L_{x^{\prime}, z^{\prime}, y^{\prime}}^{i-1, k, j+1}+L_{x^{\prime}, z^{\prime}, y^{\prime}}^{i-1, k+1}-L_{x^{\prime}, z^{\prime}, y^{\prime}}^{i, k+1, j-1}+L_{x^{\prime}, z^{\prime}, y^{\prime}}^{i+1, k, j-1}-L_{x^{\prime}, z^{\prime}, y^{\prime}}^{i+1, k-1, j} .
\end{aligned}
$$

Special admissible labellings

- The i-twist labelling associated to \hat{e} is

$$
S_{x_{1}, x_{2}}^{i}=-\frac{1}{2} L_{x_{1}, x_{2}}^{i, n-i} .
$$

- The i-length labelling associated to \hat{e} is

$$
Y_{x_{1}, x_{2}}^{i}:=Z_{x_{1}, x_{2}}^{i}+E_{x_{1}, y_{1}, z_{1}}^{i, n-i, 1}-E_{x_{1}, y_{1}, z_{1}}^{i-1, n-i+1,1}-E_{x_{2}, y_{2}, z_{2}}^{n-i, i, 1}+E_{x_{2}, y_{2}, z_{2}}^{n-i-1, i+1,1}
$$

- where the i-lozenge labelling $Z_{x_{1}, x_{2}}^{i}$ is

$$
\begin{aligned}
Z_{x_{1}, x_{2}}^{i}:= & -L_{x_{1}, y_{1}, z_{1}}^{i+1, n-i-1,0}+L_{x_{1}, y_{1}, z_{1}}^{i, n-i, 0}+L_{x_{1}, y_{1}, z_{1}}^{i, n-i, 1}-L_{x_{1}, y_{1}, z_{1}}^{i-1, n-i} \\
& -L_{x_{1}^{\prime}, z_{1}^{\prime}, y_{1}^{\prime}}^{i+1, i-1}+L_{x_{1}^{\prime}, z_{1}^{\prime}, y_{1}^{\prime}}^{i, 0, n-}+L_{x_{1}^{\prime}, z_{1}^{\prime}, y_{1}^{\prime}}^{i, 1}-L_{x_{1}^{\prime}, z_{1}^{\prime}, y_{1}^{\prime}}^{i-1,1} \\
& -L_{x_{2}, y_{2}, z_{2}}^{n+1, i-1,0}+L_{x_{2}, y_{2}, z_{2}}^{n-i, 0}+L_{x_{2}, y_{2}, z_{2}}^{n-i, i}-L_{x_{2}, y_{2}, z_{2}}^{n-i, 1} \\
& -L_{x_{2}^{\prime}, z_{2}^{\prime}, y_{2}^{\prime}, z_{2}^{\prime}, i-1}^{n-i, y_{2}^{\prime}}+L_{x_{2}^{\prime}, i, 0, i}^{n-i, y_{2}^{\prime}}+L_{x_{2}^{\prime}, z_{2}^{\prime}, y_{2}^{\prime}}^{n-i}-L_{x_{2}^{\prime}, z_{2}^{\prime}, y_{2}^{\prime}}^{n-1, i} .
\end{aligned}
$$

Global Darboux vector fields

定理

(S.-Zhang) Fix an ideal triangulation \mathcal{T} subordinate to a pants decomposition and a bridge system.
If $L_{1}=S_{x_{1}, x_{2}}^{i}$, then

$$
\omega\left(\left[\mu_{L_{1}}\right],\left[\mu_{L_{2}}\right]\right)= \begin{cases}1 & \text { if } L_{2}=Y_{x_{1}, x_{2}}^{i} ; \\ 0 & \text { otherwise. }\end{cases}
$$

If $L_{1}=H_{x, y, y}^{i, j, k}$, then

$$
\omega\left(\left[\mu_{L_{1}}\right],\left[\mu_{L_{2}}\right]\right)= \begin{cases}1 & \text { if } L_{2}=E_{\chi_{X}, j, j, k, z}^{i} ; \\ 0 & \text { otherwise } .\end{cases}
$$

Global Darboux vector fields

- If $L_{1}=Y_{x_{1}, x_{2}}^{i}$, then

$$
\omega\left(\left[\mu_{L_{1}}\right],\left[\mu_{L_{2}}\right]\right)= \begin{cases}-1 & \text { if } L_{2}=S_{x_{1}, x_{2}}^{i} \\ 0 & \text { otherwise }\end{cases}
$$

- If $L_{1}=E_{x, y, z}^{i, j, k}$, then

$$
\omega\left(\left[\mu_{L_{1}}\right],\left[\mu_{L_{2}}\right]\right)= \begin{cases}-1 & \text { if } L_{2}=H_{x, y, z}^{i, j, k} \\ 0 & \text { otherwise }\end{cases}
$$

Global Darboux basis

定理

(SWZ)

$$
H\left(\mathcal{S}_{X_{1}, x_{2}}^{i}\right)=\sum_{k=1}^{i} \frac{(i-n) k}{2 n} \cdot \ell_{[\gamma]}^{k}+\sum_{k=i+1}^{n-1} \frac{i(k-n)}{2 n} \cdot \ell_{[\gamma]]}^{k} .
$$

$$
\begin{aligned}
& H\left(\mathcal{H}_{x, y, z}^{i j, j, k}\right)=\tau_{x, y, z}^{i, j, k}-\tau_{x^{\prime}, z^{\prime}, y^{\prime}}^{i, k, j}+\delta_{k, 1}\left(H\left(\mathcal{S}_{x, x_{0}}^{i-1}\right)-H\left(\mathcal{S}_{x, x_{0}}^{i}\right)\right) \\
& +\delta_{i, 1}\left(H\left(\mathcal{S}_{y, y_{0}}^{j-1}\right)-H\left(\mathcal{S}_{y, y_{0}}^{j}\right)\right)+\delta_{j, 1}\left(H\left(\mathcal{S}_{z, z_{0}}^{k}\right)-H\left(\mathcal{S}_{z, z_{0}}^{k}\right)\right) \\
& H\left(\mathcal{Y}_{x_{1}, x_{2}}^{i}\right)=-2 \alpha_{x_{1}, x_{2}}^{i, n-i} .
\end{aligned}
$$

$$
\begin{aligned}
& (p, q, r) \in \mathbb{T}_{n}
\end{aligned}
$$

Global Darboux basis

- where

$$
\begin{aligned}
& T_{x}:=\left\{(p, q, r) \in \mathbb{T}^{n}: p \geq i \text { and } q \leq j\right\} \\
& T_{y}:=\left\{(p, q, r) \in \mathbb{T}^{n}: q \geq j \text { and } r \leq k\right\}, \\
& T_{z}:=\left\{(p, q, r) \in \mathbb{T}^{n}: r \geq k \text { and } p \leq i\right\},
\end{aligned}
$$

- and

$$
c_{i, j, k}^{p, q, r}:= \begin{cases}\frac{i r+i q+k q}{2 n} & \text { if }(p, q, r) \in T_{x} \\ \frac{j p+j r+i r}{2 n} & \text { if }(p, q, r) \in T_{y} \\ \frac{k q+k p+j p}{2 n} & \text { if }(p, q, r) \in T_{z}\end{cases}
$$

Global Darboux basis

$$
\text { 图: } T_{x} \cup T_{y} \cup T_{z}
$$

Thanks!

