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Clean Numerical Simulation (CNS)
and its applications
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1. Motivations

Characteristics of chaos

 Sensitivity on initial condition (Poincare 1890s)

a small change 1n one state of a deterministic nonlinear system can
result 1n large differences 1n a later state

* Butterfly-effect (Lorenz 1963)

a tornado (the exact time of formation, the exact path taken) might
be influenced by minor perturbations such as a distant
butterfly flapping its wings several weeks earlier.

+ long-term prediction of chaos is impossible |



Chaos: sensitivity on numerical algorithms

* CP: Computational Periodicity (2006)
e CC: Computational Chaos (1989)



1. Motivations

Sensitivity on initial condition is physically acceptable,
since difference of initial condition has physical
meanings

Sensitivity on numerical algorithms is physically
unacceptable, since numerical algorithms are artificial
factors and have no physical meanings at all!



Very pessimistic viewpoint

Teixeira, et al. JOURNAL OF THE ATMOSPHERIC
SCIENCES,64,175-189 (2007)

Their main conclusions:

merical convergence. In this paper it is illustrated how,

for fullx chaotic systems, numerical convergence cannot

be guaranteed forever and that for reeimes that are not

fully chaotic, different time steps may lead to different

model climates and even different regimes of the solu-
tion.




Intense debate
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“It would be an exciting
LETTER TO THE EDITOR contribution if a
convergent chaotic
simulation of Lorenz
model is obtained”

Comment on “Computational periodicity as observed
in a simple system,” by Edward N. Lorenz (2006a)

By LUN-SHIN YAO'* and DAN HUGHES?, Mechanical and Aerospace Engineering, Arizona State
University, Tempe, AR 852876106, USA, *Hughes and Associates, Porter Corners, NY 12859, USA

i Manuscript received 14 September 2007; in final form 14 November 2007)

ABSTRACT

(11 s
all chaotic responses
Systems of ordinary differential equations that exhibit chaotic responses have yet to be correctly integrated. So far no L l L l
‘convergent’ computational results have been determined for chaotic differential equations. Various computed numbers are Slmp y nu m erlc a

are not solutions of the continuous differential equations; all chaotic responses are simply numerical noise and have o -
nothing to do with the solutions of differential equations. It would be an exciting contribution if a convergent computed nOISeS !
chaotic solution for a Lorenz model could be obtained.




2. Basic ideas of Clean Numerical Simulation (CNS)

(1)Due to butterfly-effect, numerical noises increases
exponentially, so that numerical simulations of chaos quickly
become a mixture of “true” physical solution and “false”

numerical noises, which are mostly at the same order of
magnitude.

E(t)=¢C exp(ut),  tel0, Tcl,

(2) There exists the so-called “critical predictable time” Tc, within
it the numerical noises are negligible compared to the “true”

physical solution so that the simulation is reliable and
“convergent” in 0 <t < Tc.



2. Basic ideas of Clean Numerical Simulation (CNS)

Key problems of the CNS:
(1) How to determined Tc ?

(2) How to enlarge Tc ?
(3) How to use CNS results?




2. Basic ideas of Clean Numerical Simulation (CNS)

4 . .
Numerical noises

= maximum{truncation error, round-off error}

\_

\

J

(a) Reduce truncation error:

Time: High-order Taylor expansion

Space: High-order Fourier spectral Method
(b) Reduce round-off error:

multiple-precision with many enough digits

Key point: reduce both of truncation and round-off errors!




2. Basic ideas of Clean Numerical Simulation (CNS)

For a given time-step:

E.=Evexp(k T,),
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2. Clean Numerical Simulation

Tellus

FURLISHED BY THE INTEANATIONAL METEOROLOQICAL INSTITUTE IN STOCKHOLM

Tellus (2009), 61A, 550-564 © 2009 The Author
Prinied in Singapore. All rights reserved Jowrnal compilation © 2009 Blackwell Munksgaard

TELLUS

On the reliability of computed chaotic solutions of
non-linear differential equations

By SHIJUN LIAO*,  State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University,
Shanghai 200030, China

(Manuscript received 14 October 2008; in final form 5 March 2009)



2. Basic ideas of Clean Numerical Simulation (CNS)

Journal of Computational Physics 418 (2020) 109629

Contents lists available at ScienceDirect 2 a%"n?lltg:mnal

Journal of Computational Physics

www.elsevier.com/locate/jcp

On the risks of using double precision in numerical R |
simulations of|spatio-temporal chaos oy

Tianli Hu?, Shijun Liao ¢ ¢*



3. Applications of the CNS

(1) Convergent trajectory of chaotic systems
(2 Origin of macroscopic randomness
@ Influences of small disturbances to turbulent flow

(4 Periodic orbits of three-body systems



(1) Convergent trajectory of fully chaotic systems

Reliable & convergent chaotic solution of Lorenz EQ

S.J. Liao (2009) : [0,1100]

method: CNS order: M=400 data precision: N = 800
P.F. Wang (2011) : [0,2500]

method: CNS order: M=1000 data precision: N =2100
B. Kehlet & A. Logg (2013): [0, 1000]

method: FEM order : M=200 data precision : N=400

S.J. Liao & P.F. Wang (2013) : [0,10000]
method: CNS order: M=3500 data precision: N =4180

It is possible to gain convergent/reliable chaotic result.!




(1) Convergent trajectory of chaotic systems

Scientific meanings

(1) Some pessimistic viewpoints such as “all chaotic responses are
simply numerical noises” (Yao and Hu%hes) “for fully chaotic
systems, numerical convergence cannot be guaranteed forever”
(Teixeira et al) and so on, are wrong.

(2) Convergent CNS results can be used as benchmark solutions to
investigate

(A) the propagation of micro-level physical uncertainty
(B) the influence of numerical noises on statistics of chaos



(2) Origin of macroscopic randomness

Body 1 &3

Governing equation of 3-body problem:

3

- Xki — Xki
Xei = j{: PG( kJﬁg_ k),
j

j=1ji

p=—, i=1,2,3

denotes the ratio of the mass.

Initial conditions:

r; = (0,0,—1) T2=(0,0,0),r3 = —(r1 +r2),
i = (0,-1,0),f = (1,1,0),F3 = —(f; + ),

k=123,

()

0
(1)

5 0 3 1 15 2 25 e T R T e T 05
x(t) x(1)

Fig. 3. x—y and x — z of Body 2 (0 < t < 1000) in the case of 5 = 0.



(2) origin of macroscopic randomness

i.l = (0~ _130)91..2 = (1~ 1,0),?3 = _(i.l T i'Z)a
Uncertainty of position:
Initial position: I, = ((), 0, _1) + 5(1, 0, ()),
r,=(0,0,0), r,=—(r, +r,)
Three cases:
1) 5=0 (2)5=+10" (3)6=-10"

This uncertainty is less than Planck length 1.62E-35 m, and thus is
negligible in physics, say, the same initial conditions in physics!



Trajectory of Body-1

+107%%; Right: 5 = ~107%°.

Fig. 12. Orbit of Body 1 (0 < t < 1000). Left: &

5=10""



Trajectory of Body-2
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5=-10"%°,

5 = +107%%; Right:

Fig. 13. Orbit of Body 2 (0 < t < 1000). Left:

5=10""

S=-10""



Trajectory of Body-3

Fig. 14. Orbit of Body 3 (0 < t < 1000). Left: 5 = +10°%; Right: 5 = —10°%,

S=-10""

5=10""



(2) origin of macroscopic randomness
6i0) = T(0) +x(0),  F(0) = (r(0)  (1}(0)) = 0 and /(P(0)) = o

r = (0,0,—1), To=(0,0,0), 3= —(T1 +T2), . , —60
Variance : o9 = 10

;= (0,—1,0), o= (1,1,0), t3=—(f1+ ).
10000 samples:
Boby-1: red
Body-2: yellow

Body-3: blue




Statistic sensitivity to micro-level uncertainty
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(2) Origin of macroscopic randomness

* micro-level uncertainty might be an origin of some
macroscopic uncertainty

* Macroscopic statistics are sensitive to statistics of
micro-level uncertainty

escape and symmetry breaking of 3-body system
are self-excited without any external disturbances

*an universe could randomly evolve by itself into
complicated structures, without any external forces.



(3) Influence of small disturbances to turbulence

J. Fluid Mech. (2022), vol. 948, A7, doi:10.1017/jfm.2022.710

Large-scale influence of numerical noises as
artificial stochastic disturbances on a
sustained turbulence

Shijie Qin' and Shijun Liao!:%+



(3) Influence of small disturbances to turbulence
Two types of Rayleigh—Bénard flows

(a) typical vortical / roll-like flow (b) zonal flow

(a) T, (b) 7

N
=

|

T, + AT

L

Figure 1. Schematic drawings of 2-D turbulent RBC in two totally different flow types: (a) typical
vortical/roll-like flow, and (b) zonal flow. The fluid layer between two parallel plates that are separated by
a height H obtains heat from the bottom boundary surface because of the constant temperature difference
AT > 0, where L is the horizontal length of the computational domain, and the downward direction of gravity
acceleration g is indicated.



(3) Influence of small disturbances to turbulence

The NS equations with the same initial/boundary condition
and the same physical parameters are solved by means of

the DNS with double precision and the CNS with multiple
precision.

CNS: always typical vorticl/roll-like flow

DNS: first typical vortical/roll-like flow, but then zonal flow



(3) Influence of small disturbances to turbulence
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(c)

(e)

(&)

(3) Influence of small disturbances to turbulence
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(3) Influence of small disturbances to turbulence
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Figure 4. Comparisons of the instantaneous Nusselt number Nu and Reynolds number Re in the case Pr = 6.8,
Ra = 6.8 x 108 and L/H = 24/2: (a) the Nusselt number Nu; (b) the Reynolds number Re. Solid line in red
denotes the CNS benchmark solution; dashed line in black denotes the RKwD simulation using At = 10~4.



isturbances to turbulence

(3) Influence of small d

I
have
quantitatively and

Ica
qualitatively

Numer
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Noises

large-scale
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sustained

turbulence!




Chaos = normal-chaos + ultra-chaos

* Normal-chaos: whose statistics is stable to small disturbances
e Ultra-chaos: whose statistics is sensitive to small disturbances

Advances in Applied Mathematics and Mechanics DOI: 10.4208 /aamm.OA-2021-0364
Adv. Appl. Math. Mech., Vol. 14, No. 4, pp. 799-815 August 2022

Ultra-Chaos: an Insurmountable Objective Obstacle of
Reproducibility and Replication

Shijun Liao'-?>* and Shijie Qin?



(4) New periodic orbits of 3-body problem

1. Are there living beings
outside of earth?

2. Stable periodic planets
can provide a stable
space-time background
for evolution of living
beings




(4) New periodic orbits of 3-body problem

1. The 3-body problem was
proposed by Newton (1687)

2. Many mathematicians and
physicists, such as Euler,
Lagrange, Laplace,
Poincaré, and Hilbert, have
studied it

3. Itis still an open question

Scientists who have studied the three-body problem (clockwise
from left): Newton, Euler, Poincaré, Laplace, Lagrange



(4) New periodic orbits of 3-body problem
Euler (1767) and Lagrange (1772)

According to Chenciner and Montgomery (2000) in Annals of
Mathematics, only three family of periodic orbits of three-body
problem with 3 equal mass were found in 300 years after Newton!



Why is it so difficult ?

Poincaré (1890) :

(A)The uniform first integral does not exist
in general. Thus, one had to use numerical
methods to gain periodic orbits

(B) Buttertly-etfect:
extremely sensitive to the initial conditions

Founder of “Chaotic Dynamics”

Poincaré
(1854-1912)



M. Suvakov and V. Dmitrasinovic, Phys. Rev. Lett. 110, 114301 (2013).
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5 Physicists Discover a Whopping 13 New
Solutions to Three-Body Problem

By Jon Cartwright | Mar. 8, 2013, 4:30 PM

Why so few were found ? Supercomputer + ?



(4) New periodic orbits of 3-body problem

New strategy:. supercomputer + CNS

Guarantee that trajectories of three-body problems are

convergent/reliable in a long enough interval of time by the
CNS

Find some candidates by grid search method

Modify the initial conditions of these candidates by Newton-
Raphson



Published papers

. X.M. L1 and S.J. Liao, “More than six hundred new families of
Newtonian periodic planar collisionless three-body orbits”, Science

China - Physics Mechanics & Astronomy, Vol. 60, No. 12, 129511 (2017)

. X.M. L1, Y.P. Jing and S.J. Liao, “Over a thousand new periodic orbits of
planar three-body system with unequal mass”, Publications of
Astronomical Society of Japan, 70 (4), 64 (1-7) (2018)

. X.M. L1 and S.J. Liao, “Collisionless periodic orbits in the free-fall three-
body problem”, New Astronomy, vol. 70, pp. 22-26 (2019)

. X.M. L1 and S.J. Liao, “One family of 13315 stable periodic orbits of the
non-hierarchical unequal-mass triple system”, Science China — Physics,

Mechanics & Astronomy vol. 64, 219511 (2021)

. Shijun Liao, Xiaoming L1 and Yu Yang, “Three-body problem: from
Newton to supercomputer plus machine learning”, New Astronomy 96

(2022) 101850.
http://mnumericaltank.sjtu.edu.cn/three-body/three-body.htm



(a) Periodic orbits of 3-body with three equal masses

http://mumericaltank.sjtu.edu.cn/three-body/three-body.htm
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http://numericaltank.sjtu.edu.cn/three-body/three-body.htm

(a) Periodic orbits of 3-body with three equal masses

A generalized Kepler law PR
_ | ;
was found ! 2 os /
|
S v/ SO

They all satisfy a generalized Kepler law |




(c) Road map for periodic orbits with arbitrary mass

New Astronomy 96 (2022) 101850

Contents lists available at ScienceDirect

= new
astronomy

New Astronomy

journal homepage: www.elsevier.com/locate/newast

Three-body problem — From Newton to supercomputer plus machine
learning

Shijun Liao »>* Xiaoming Li%¢, Yu Yang"

@ State Key Lab of Ocean Engineering, Shanghai 200240, China

b Center of Marine Numerical Experiment, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
¢School of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China

dSchool of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China

€ MOE Key Laboratory of Disaster Forecast and Control in Engineering, Guangzhou 510632, China



(c) Road map for periodic orbits with arbitrary mass

Using machine learning to S—
predict a good S——
approximation of initial guess SSSvE
and applying the CNS to gain

convergent trajectory, we TR |
propose a road map to gain
periodic orbits of three-body
system with arbitrary masses

Fig. 9. A roadmap for searching the periodic orbits of three-body problem



(c) Road mabp for periodic orbits with arbitrary mass

initial periodic orbits
the 1st expansion
the 2nd expansion
the 3rd expansion
the 4th expansion
the 5th expansion
the 6th expansion
» the 7th expansion
the 8th expansion
the 9th expansion
the 10th expansion
» the 11th expansion

. & & @& @

s stable
¢ unstable

T T T

0 5 10 15 20 25
0 5 10 15 20 25 m,

Fig. 7. The linear stability of the relatively periodic orbits in the second case with the

i o . i i rotation angle 8 = 0.0105056462558377. Red domain: stable; blue domain: unstable.
Fig. 5. The relatively periodic orbits with the same rotation angle 6 =

0.0105056462558377 of reference frame, found in each extrapolation/expansion on the
various mass regions. Red dot: initial periodic orbits; black dot: 1st expansion; dark
blue dot: 2nd expansion; dark green dot: the 3rd expansion; dark purple dot: the 4th
expansion; light blue dot: the 5th expansion; light green dot: the 6th expansion; light
purple dot: the 7th expansion; yellow dot the 8th expansion; orange dot: the 9th
expansion; pink dot: the 10th expansion; gray dot: the 11th expansion.



(s) Road map for periodic orbits with arbitrary mass
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New strategy. supercomputer + CNS + Al

Roadma
* Xiaoming Li and Liao (2017): P

Three equal masses . 695 families of periodic orbits,
more than 600 are totally new

* Xiaoming Li, Yipeng Jing & Shijun Liao (2017):

Two equal masses . 1349 families of new periodic orbits
* Xiaoming Li, X.C. Li & Shijun Liao (2020):

Arbitrary masses . From a known periodic orbit of 3-body problem,

new periodic orbits with various masses can be obtained.

For example, we obtained 135445 new unequal masses periodic solutions.
e Shijun Liao, Xiaoming Li & Yu Yang (2022):

A road map to gain periodic orbits with arbitrary mass by means of Al




The discovery of new orbits were reported twice by New Scientists

NewSdentist - Q

DAILY NEWS20 September 2017

Infamous three-body problem has over a
thousand new solutions

So many possibilities
DeAgostini/Getty

By Leah Crane

For more than 300 years, mathematicians have puzzled over the three-body problem — the
question of how three objects orbit one another according to Newton’s laws. Now, there are

NewsScientist a Q

DAILY NEWS25 May 2018

Watch the weird new solutions to the baffling
three-body problem

It takes three to tango
NASA/JPL-CalTech/T. Pyle

By Chelsea Whyte

The infamous three-body problem — the mathematical puzzle of how three objects can orbit
one another according to Newton’s laws — now has hundreds of new solutions.

Last year, Shijun Liao at Shanghai Jiaotong University in China and his colleagues used a
supercomputer to calculate more than a thousand new solutions, nearly doubling the known



Scientific meanings

. Propose a new strategy : supercomputer + CNS

. Increases the number of periodic orbits by

several orders of magnitude

. Propose an effective roadmap: from three/two

equal masses to arbitrary masses



Scientific meanings

hierarchical : non-hierarchical : OETEE ISKEY
KIE , e

* Michel Mayor and Didier Queloz won the 2019 Nobel Prize in Physics for
discovering the first planet (hierarchical structure) orbiting a sun-like star outside
the solar system.

Michel Mayor Didier Queloz

It 1s expected that some non-hierarchical planets can be actually observed in
the future.



A short Review

* Newton (1687):  the three-body problem proposed

* Euler (1767): a closed-form solution (collinear)

* Lagrange (1772): a closed-form solution (equivalence)

* Poincare (1890):  Non-existence of first integral

Founder of “Chaos Dynamics”

« BHH (1970s): BHH periodic solution (computer) /O
ot _ ur strategy an

* Moore (1993): periodic solution “figure-8” (computer) el (o

* Suvakov et al. (2013): 11 new periodic solution (computer)

* L1, Jing & Liao : 2035 new periodic solutions flnd.lng. s )
periodic solutions

A

(2017) (computer + CNS)
* LI & Liao: 135445 new periodic solutions to three-body
(2020) (computer + CNS) problem work
* Liao, Liand Yang A road map for 3-body problem quite well !

(2022) ( computer + CNS + Al) \ /




Today, nothing can prevent human beings from obtaining massive periodic
solutions of three-body problem. This is due to the great contributions of

some great mathematicians, scientists and engineers in more than three
hundred years!

Newton Poincaré Turing

Von Neumann Jack Kilby
(1642-1727) (1854-1912) (1912-1954) (1903-1957) (1923-2005)



4. Concluding remarks and discussions

Clean Numerical Simulation (CNS) provides us a new
tool and benchmark solution to study chaos and
turbulence and to attack some open questions

Micro-level uncertainty might be the origin of some
macroscopic randomness: the whole world is essentially
random

A new concept ultra-chaos is proposed, which is a high
disorder than normal-chaos

For an ultra-chaos, all numerical & experimental
methods are invalid: a great challenge in science



4. Concluding remarks and discussions

* Modern science is based on
experiments

nF BE ELEERIE

* Repeatability of experiment is
very important and necessary

* For an ultra-chaos, repeatability
is impossible even in statistics

e How and what can we do for an

ultra-chaos? modern science

= experiments + theory




4. Concluding remarks and discussions

CNS: a new tool for chaos and turbulence

A truly new method can always

bring something new and different!




(A) Can we build a data-

- : - OB
base of periodic orbits of : %%\ f_';lg
. IBAE
three-body system so as ) 109003

to find a non-hierarchical
triple system ?

(B) Can we apply the CNS
to solve N-body problem?
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