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1. Introduction
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1. Introduction

(1) FEAKRM.

dx

EZ&(X),XE R

and initial conditions

ik

Newton’s N-body problem (N is small)

Molecular dynamics (N is very large)

Particle tracking problem in fluid dynamics

Time integration of Schroedinger\Maxwell equations (n=infinity)
More others ...



1. Introduction

]

Dynamics of the system defined by “a(x)” ?
=Long-time behavior of solutions

KR

Quadrature (very few cases)
Qualitative theory (methods of dynamical systems)
Numerical solution (necessary and practical)

for simulations and understanding to problems



1. Introduction
2) BUEFE ERSH) -

Euler (1768): Zlbt( ~ Xn+1h_ Xn _ AE.

N

Euler explicit: AE.=a(x.)

Euler implicit: AE.,=a(x,.)

X

+ Xn+l

Implicit mid-point rule: AE.= a(

Runge-Kutta (1895,1901) --- systematicaly developed by J. Butcher,...

)



1. Introduction

A simple example: Harmonic oscillator

® Hamiltonian function |H (p, q) =%(p2 T qz)

® Equations of motion:

dp _ __ dg _
at . gt~ P

® Phase orbits:

» The only equilibrium (p,q)=(0,0) (elliptic);
» Circles of any radius centered at the origin;



1. Introduction

Simple numerical methods ( h istime step):

. Explicit Euler: | P,.=P,-Nq,.q,,=9,+hp,

h

« Implicit Euler: |p .=p.-hq ..g ,=q.+hp. .

« Midpoint rule:
(p+p,)

(q"+q””)2 q,.,=Q,*h 2

P,..= P, "




Explicit Euler: orbits expand outward (wrong!)

time step h=0.1
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Implicit Euler: orbits contract inward (wrong!)

time step h=0.1
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Implicit Euler: “long time” orbits (totally wrong!)

time-step h=0.1
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Midpoint rule: almost circles for “long time”
(right)

time-step h=0.1
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Midpoint rule: almost circles for “very long time”
(right)

time-step h=0.1




1. Introduction

A nonlinear system: Pendulum

: : . 1
«  Hamiltonian function: |H(p,q) = > p° —cos(q

«  Equations of motion:

dp . dg
— =-sing,— =
dt Tt~ P

Phase orbits:

«  Equilibria (p,q)=(0,kx), elliptic (hyperbolic) for even
(odd) k;

e  Closed curves for —-1<H <1;

«  Separatrixfor H =1



Explicit Euler: orbits expand outward (wrong!)

time-step h=0.1
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Implicit Euler: orbits contract inward (wrong!)

time-step h=0.1
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Midpoint rule: closed curves for “very long time”
(right)

time-step h=0.1
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Midpoint rule: saddle separatrix for “very long time” (right)
(symplectic, area-preserving map)
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1. Introduction

Why?
. H{p,.q,) increases as n increases by Explicit Euler (wrong);

. H(pn,qn) decreses as n increases by Implicit Euler (wrong);

» H(p .q ) is (nearly) invariant as n increases by Midpoint rule
(right).

« Area of any domain in (p,q) plane (symplectic structure
of RY):

» expands under Explicit Euler (wrong) ;

» contracts under Implicit Euler (wrong);

> IS preserved by the midpoint rule (right);.
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1. Introduction
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1. Introduction

e V. BFAREE. Cartan K73, 1904-):
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1. Introduction

» BUE TR — RN -

“It is natural to look forward to those discrete
systems which preserve as many as possible intrinsic
properties of the continuous system.”

______ K. Feng (1985)



2. Hamiltonian systems

A Hamiltonian system of ordinary differential equations reads:

dg, oH dp, _oH

) _1i:1521'“1n
dt op, dt 0q.

where

4=(9.0d; )" and p=(p, P, p,)
are the position and momentum vectors (conjugate variables), respectively,

H=Haqg p :T°M = ¥ x " ¢ R" > K

Is the Hamiltonian (total energy in classical mechanics).

M is the configuration manifold.



2. Hamiltonian systems

This is a system of ordinary differential equations of special form with 2n
unkown variables, but can formulate almost all the physical processes of time
evolution of a system with 72 degrees of freedom without considering
dissipation (from classical mechanics to statistical physics).

B Two distinguished properties:
€ Hamiltonian is a conservative quantity during time evolution;

€ The phase flow preserves the symplectic structure of the phase space 7*j,
I.e., the solution map from the initial phase state to the time ¢ state is
symplectic.

Z Z

(af/; (Z)j J aaf; (z) = T

Where z = (¢, p')’



2. Hamiltonian systems

B Example (Newton’s equations): H(q, p)=T(p)+V (Q)

Question 1:

€ Solve the system with given initial states as accurately as possible in as
long as possible time intervals (e.g., motions of the planets of the solar
system --- N-body problems in which n = 3/V).

Question 2:

€ Give statistical averages of macroscopic physical quantities which are
functions of the microscopic phase states of the system of particles whose
motions are described by the Hamilton’s equations (e.g., molecular
dynamics).



2. Hamiltonian systems

B For the both “Questions”, one needs to integrate the Hamilton’s equations in
very long time, which is challenging in many interesting problems.

B For “Question 2”, in addition, ergodicity of the sample trajectories should
be verified or assumed.

1 Gmm.
@ N-body problem: T(p)==p'M7pV(q)= > ——
2 1<i<j<N ,—rj‘
d2 _
| d t F (t rl’rz' rN,),|=1,._,,N

r.—r

F trr..rn)=>G

j#i |r_r| |r_r|

q:(rlT’rT""’r;)T’ p:Mq’M :diag(mlls’mzlsi”"les)



2. Hamiltonian systems

€ N =2 (Kepler problem), solutions are conic sections.

€ N >3(unsolvable by quadrature!), Analytic solutions are not possible in
these more general cases and approximate solutions are necesary.

€ Numerical integration methods were developed greatly in the past centuries
(Euler, Adams, Runge, Kutta, Stoemer, Dahlquist, Butcher, ...);

€ Heavily depends on the perturbation theory based on the Lyapunov
stability criterion and does not suit very long term solutions of the N-body
problem before 1980’s.

€ Qualitative studies in view of dynamical systems gave rise to a completely
new way for numerical solutions of the N-body problem and more general
Hamiltonian systems (systematical studies with substantial applications
began in 1980’s).



2. Hamiltonian systems

MR3204187 Reviewed

Laskar, Jacques(F-CNRS-ADM)

Is the solar system stable? (English summary) Chaos, 239-270,
Prog. Math. Phys., 66, Birkhduser/Springer, Basel, 2013.

Summary: “Since the formulation of the problem by Newton, and during three
centuries, astronomers and mathematicians have sought to demonstrate the stability
of the Solar System. As mentioned by Poincaré& several demonstrations of the
stability of the Solar System have been published. By Laplace and Lagrange in the
first place, then by Poisson, and more recently by Arnold. Others came after

again. Were the old demonstrations insufficient, or are the new ones

unnecessary? These rigorous demonstrations are in fact various approximations of
Idealized systems, but thanks to the numerical experiments of the last two decades,
we know now that the motion of the planets in the Solar System is chaotic. This
prohibits any accurate prediction of the planetary trajectories beyond a few tens of
millions of years. The recent simulations even show that planetary collisions or
ejections are possible on a period of less than 5 billion years, before the end of the
life of the Sun.”

Here the numerical experiments used the symplectic methods to integrate the
Hamilton’s equations, which are more stable and reliable than those used before.


http://www.ams.org/mathscinet/help/fullitem_help_full.html#review
http://www.ams.org/mathscinet/search/author.html?mrauthid=110475
http://www.ams.org/mathscinet/search/institution.html?code=F-CNRS-ADM
http://www.ams.org/mathscinet/search/series.html?id=4496

3. Symplectic integration

B A symplectic integration method is a discretization method whose step-
transition maps from initial states to the computed states are symplectic
when it applies to Hamiltonian systems.

B Pioneering works:

O Symplectic Euler (generated already by Jacobi from Hamilton-Jacobi
equations, 1%t order method proved by Vogelaere in 1956 C(unpublished
report), published in 1990 by Channell and Scovel);

O Henon-Heiles (1964) : Area-preserving mappings;

O Mid-pint rule (generated already by Poincaré& 2" order method hilighted by
Kang Feng in 1984);

O A special method of 3 order for Newton’s euqations (Ruth, IEEE on
Nuclei 1983, a nontrivial construction);

O More general types of symplectic maps: generating function approach
(Kang Feng 1986, first arbitrarily high order method);



3. Symplectic integration

Foundational work——Rapid development period (1988-1993)

Symplectic Runge-Kutta (Lasagni, Sanz-Serna, Suris 1988);

Lie-Poisson integrators (Z. Ge’s Ph. D thesis in 1988, published with J.
Marsden in 1988);

Symplectic methods do not preserve the Hamiltonian (Z. Ge’s Ph. D thesis
In 1988, published with J. Marsden in 1988);

Splitting-composition methods (H. Yoshida 1990);
Backward error analysis (H. Yoshida 1990, K. Feng 1991);

Numerical KAM theorem (Z. J. Shang 1991 Ph.D thesis, published in
1999-2000);

No multistep methods are symplectic (Y. F. Tang 1993);
Partitioned Runge-Kutta methods (Geng Sun 1993).
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2. Symplectic integration

Further developments, extensions to other structures and applications
(1994-):

Symplectic methods (more useful integrators for special problems, more
extensive and deeper applications, more systematic theories) ;

Other structure-preserving methods:
Contact structure (K. Feng 1993);
Volume-preserving structure (Z. Shang 1994,1995; R. Quispel 1995);

Lie-group structures (Lewis-Simo 1994, Munthe-Kaas 1998, Owren 1999,
Iserles-Munthe-Kaas-Norsett-Zanna 2000, ...);

Variational structure (J. Marsden etc. 2001, ...);
Multi-symplectic structures for Hamiltonian PDE (Bridge-Reich 2000, ...);

Applications to various different types of equations: Schroedinger, High
oscillations, Time multiscales, Dirac, Maxwell, Plasma, ...

(C. Lubich’s plenary talk at ICM2018)



4. Stability analysis

One may hope that numerical methods are able to simulate stable
solutions in a stable way, and moreover, are able to simulate
stable dynamics structures in a stable way.



Typical dynamics of systems
of differential equations

Skeleton of dynamics
(Steady states In time-invariant sense):
® Equilibrium: elliptic, hyperbolic, mixed...
® Periodic solutions: closed trajectories
® Quasi-periodic solutions: invariant tori,Cantori,...
€ Homoclinic/heteroclinic solutions: stable/unstable manifolds
@ Irregular solutions: diffusions (no recurrent property),...

Theme of the dynamical system:

B Foliations of the phase space by (minimal) invariant
manifolds/sets and the stability under perturbations?



Dynamics match between continuous and discrete systems
(Numerical stability analysis for symplectic methods):

B Continuous system B Discretized system
- Phase space (R*",0) = Phase space (R",m)
*  Phase flow gy = Discrete flow Gt <~ gt

« Symplecticity: (g%* o= o)
+ Phaseorbit
. r(@={g, @)teR}

« Invariantset S =y(z)

= Symplecticity: (G',)* o=o
=  Numerical orbit:
v(2)={z, 2,= G'y(2), Z,=

N Gy(zy), .-}
(minimal in many cases) :
= Invariant set S;—S as t—0
e Invariant foliation I =US (has the same topology as S)

= Invariant foliation [",=US,



Preservation and breakdown of invariant curves
by the midpoint rule as time step size changes




Time-stepsize resonance
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i LUDWICG GAUCKLER, ERNST HAIRER, AND CHRISTIAN LUBICH

ex[ﬂitit Euler, a =0,8=10 S‘r"l]lpll?l:‘[.] Euler, o = l] F=1
= 150
symplectic Euler, o = 1,8 =0 implicit Euler, a=1,8 =1
T B = 150 B — h=15
'./__.-" . : 3
I:l ., | . ""-\‘\ n 1 i B . g"
\&%_ Ny _ \ L '“..% U
— = | —

Froure 2.1, Numerical simulation of the outer solar system.

- relative error of the Hamiltonian

axplicit Euler, h = 2

---------------------------------------

From L. Gauckler, E. Hairer, C. Lubich, Dynamics, Numerical analysis, and some geometry,
preprint for the plenary talk at ICM 2018 by C. Lubich.

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto



Preservation of equilibia
------ Linear Stability analysis
(Thinking in Dahlquist’s way)

Test equation: Harmonic oscillator

1
H(g, p) = 5 o(qg® + p*)

» Analytic methods (RK, Multi-step, Composition, B-series):

Dahlquist analysis works for scalar test equation in the
complex plane!

= Nonanalytic methods (PRK, Splitting, Lobattol11A-111B):
Harmonic oscillator systems in the real plane



B Test Hamiltonian

H(p,q):%w( p2+q2),a)e R

 Step transition map of numerical method applied to
the test system

[ pnﬂJ - L(Z)L pn} o
d... q.

o Stability matrix
L(2) ~ exp(2)) :(cosz —sin z}J :KO —1]

SINnz COSZ 1 O




 Stability set:

A=izeR1, =1 4,,=0(L@)]
* Eigenvalues satisfy the equation:
X —tr(l(z)A+1 =0

e The trace of the matrix z(») Is a rational function of =
It is a hard job to estimate the eigenvalues!



« Symplectic Euler:

p,.-p,-%(p,.a)q,.-q.+S(p,,q)

where s, Is the k—th truncation of the formal solution of the
Hamilton-Jacobi equation of type (P,q) and (p_.q_)is the initial
value.

A-b22 A ACA-|- 25|




« Lobatto Il A-111B pairs:

--------- Non-analytic symmetric methods

A.=-2.2]
AL =24 -12|J -8, V8] V12, v 24

« Conjecture (-Shang, Oberwolfach 2006, FoCM 2008):

AZk CA2k+2

/\... = R (proved by McLachlan, Sun and Tse SIAM Numer Anal. 2011)



Linear stability analysis
---- equilibrium analysis

« Analytic symplectic methods (SRK): A = R
If the stability function is meroholomorphic.
(JCM 2020 in Chinese, S-Song)

« Splitting symplectic methods with as big as possible stability set
to apply in some problems (N-body problem)

(Blanes, Casas, Murua, McLachlan, Laskar,...)



Preservation of equilibria

 All the existing methods preserve equilibrium points of the
systems;

« Symplectic methods preserve the type of elliptic equilibrium
points and, therefore, preserve the linear stability of
Hamiltonian systems at elliptic equilibrium points when the
step size is in the stability set;

« Symplectic methods preserve the type of hyperbolic
equilibrium points and hence preserve chaotic structure of
Hamiltonian systems near the hyperbolic equilibrium points
except for some exceptional step sizes.



Preservation of invariant tori: Numerical KAM
------ An approach of nonlinear stability analysis

KAM theorem (Kolmogorov-Arnold-Moser, 1954-1963):

Completely integrable Hamiltonian systems have only
periodic or quasi-periodic solutions which densely fill on the
Invariant tori foliating the phase space. Most of invariant tori
survive under small Hamiltonian perturbations.

Dynamics is ergodic on every surviving invariant torus.




* Numerical KAM theorem (Shang 1999, 2000):

v" Preserve most of foliations by invariant tori of phase space of
general completely integrable systems in measure sense;

v' Perpetual stability of any numerical solution of completely
Integrable systems of one degree of freedom by symplectic
methods (e.g., simple pendulum);

v" Perpetual stability of most of numerical solutions of
completely integrable systems of many degrees of freedom by
symplectic methods in measure sense;

v Time-step-size resonance occurs even when the degree of
freedom equal to 1.



- - n
Time-step size resonance set: for € R,

D(w)={heR:3ke 7" 1eZ,|k hw)+2a |=0}

Lemmal: D(g) IsdenseinRforany oeR"!

This lemma shows that it seems not possible to compute
Invariant tori with any given frequency (even diophantine)

---------- contradict the numerical observations!

“KAM tori are very stiff” and can be simulated numerically stably.




Ergodicity-preservation

 With an rationally independent frequency vector, the solutions
of the continuous system are ergodic on the whole invariant
torus!

« But with resonant time steps, the numerical orbits can only be
ergodic on a lower dimensional torus (an invariant measure
concentrates on it)!

[t is important to preserve the ergodicity of dynamics of the
system on the invariant tori!



Diophantine step-sizes:

For any given Diophantine frequency o=(p,.q, @, -

a2

lzv,wz(kl,...,kn)ez”,k;to

« Diophantine step size set:

| (@) =+

-

heR:

h—

27

(k@)

>

i

K

)

,O;tkezn,0<|eZ

'




« |Large measure of the diophantine step size set:

meas(l(a))l‘[( 0,0)) _1

Ilm meas(—o,0)

o0 —0

If suitably choose the indecies £ and v

€0., A>0,u=>-Lv>nu+v>n+l.




HA7Diophantinef [B] 2 K HIEUEAN AL TH HIAF L

(from a survey article by R. McLachlan-Quispel
In Acta Numerica 2002 ):

Theorem 2. (Shang 2000) Let there be an &I..llyi.i.'l.\’i'it". |‘nmtl("gll_"'.u'l‘;ul.«." and
tegrable ralniitoTi [ SYSLeTI of n (‘.l'.!.‘;l'("l?ﬁ of freedom, 'UL’?""”I('II '\‘\‘:‘Hl |
frequency w, in the domain of frequencies of the system, which satisfies a
Diophantine condition of the form

~y

| '::k“*"‘:: | 2 D‘f‘“ 0# k= (kg ooy Rn) € ’ A
for some ~ > 0 and v > 0. Then there exists a Cantol .-\'M [{w) of .‘...\".JI ;n'..._lw
symplectic algorithm applied to the system, ;Ll'n.l & POsitive .‘.l\llliln'l ‘r 0 .s!u...
t'h:'.t’ if the step size 7 of the algorithm falls into the set .|_,‘\"J\“‘l “* \
then the algorithm, I applied to the integrable -"\’ﬁl("ll\l-‘li;us all 111\";1.1".:1!”.
torus of frequency 7w, The invariant torus of ﬂ’". “h:m.““'_m ‘fl’l’l"\lllli.ah‘:i
the invariant torus of the system in the sense of Hausdorff, with the orde:

accuracy of the algor The Cantor set J(w) has
equal to the order of accuracy of the algorithm. Th .

y




|t is easy to prove that “good” time step sizes are

h=—"1,N=12.3,...
N

for most of dionphantine frequency vectors, which was
already checked numerically by E. Faou etc.

(Oberwolfach workshop “Geometric numerical

integration” , March 19-25, 2006, Numer. Math. 2008 and
their other papers)



Mumer. Math, (2007) 108:223-262 Mgt erISC v e

DOI 10.1007/50021 1-007-0119-5 emati

Normal form and long time analysis of splitting schemes
for the linear Schridinger equation with small potential

Guillaume Dujardin » Erwan Faou

2.3 Numerical experiments

‘We consider the case where the potential function and the initial wave function are
given by

Vix —é and ¢”(x —#
R g e Ml P
We use two different time steps:
h=02 and h= 6;—22 =0.196.... (2.17)

The first time step satisfies the non-resonance condition” { 1.7) while the second one
is obviously resonant. We use fast Fourier transformations to compute the solution of
(1.3). InFig. 1, we take 27 + 1 = 129 Fourier modes. We make 10° iterations, and we
set & = 0.1 We plot the first 5 energies |¢®|¢. k = 0, ..., 4 in logarithmic scale. We
see that if the non-resonance condition is not satisfied, the conservation properties are
lost.

3 We thank Z. Shang who showed us this fact.

‘a Springer
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] 2 4 & = 10
lherations x10° Iterations x 10°

Fig. 1 Energics of the 5 first modes in logarithmic scale, & = 001, Non-resonant stepaize (fgf ) and reaonant
stepsize (right)
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bbb

Iterations x40t fte rations x1o*

Fig. 2 Energiesin logarithmic scale. & = 0.0]. Mon-resonant stepesize (lff) and resonant ste psize (right)

In Fig. 2. weuse 2° + | = 513 Fourier modes and plot all the energies for 107 iter-
ations with A = 0.01. We see the growth of high order modes (recall that the L2-norm
15 conserved).



Quantitative estimates:
d,, (T, T,) <o(h®)

Numerical first integrals F, = H. F, ... F, existand

well defined on the union of the numerical invariant tori, in the
Whitney’s sense, with large Lebesgue measure in the phase
space. The numerical tori are the level sets of these first
Integrals.

H is the backward Hamiltonian of the symplectic integrator.



® A numerical KAM theorem for nearly integrable systems
(Yang Xu’s thesis, 2022)

® The results can be extended to systems with Ruessman’s
nondegeneracy condition, which is the most weak
nondegeneracy condition guaranteeing invariant tori.



Periodic points and lower-dimensional tori

« Some studies of preservation and destruction of lower
dimensional invariant tor1 (P. Moan 2004, DR J O’
Neale and R. McLachlan 2010).



More numerical KAM results

« Exponential (Effective) stability (Hairer & Lubich (1997)

------ in the exponentially close sense, numerical invariant tori exist and
approximate the invariant tori of the discretized nearly integrable systems

« Nekhoroshev stability (Moan (2004, ? incorrect statement and proof)

------ Any numerical solution is still “very stable” even after “very long” time steps.
------- Proved by Zhaodong Ding and —S.

* Problem: the step size is required to be “very small” and stability
conditions are checked “very difficultly”!

(dissipative invariant tori: Stoffer (1998), Hairer & Lubich (1999))

Nonlinear stability analysis in the KAM setting is numerically not
useful!



Nonlinear analysis based on the backward analysis

« Backward Hamiltonian (formal power series in the time step)

H,(q,p) = H(g, p)+ Y hHIq p): £} . Fy

k=p+1

 If the formal Hamiltonian were convergent, then the symplectic integrator
would preserve this Hamiltonian function.

» In general, however, the formal Hamiltonian is not convergent!
» Numerical KAM=—> convergent in a large set of the phase space!



A conjecture about the formal Hamiltonian

* Numerical results showed that the modified Hamiltonian
function is still bounded in many typical cases;

e The formal Hamiltonian function should still be a “good
function” in some generalized sense (KAM theorem gives an

Indirect proof)!

Conjecture: Take truncations

We have
,,(a, p) - Hlg, p)‘ < Cn”



» Nonlinear stability by R. I. McLachlan, M.
Perlmutter, and G. R. W. Quispel (BIT, 2004):

The level set of H (in stead, some finite truncation) is
compact if original energy surface is compact.

(Example: nonlinear oscillation)

--- it is still difficult to give out an effective bound of time
step size guaranteeing the numerical stability!



Nonlinear stability analysis ---
backward-+homoclinic analysis

« Backward/homoclinic criterion (-L. Song’s thesis, 2009):
--- Model example H(p,q):%(p2+q2)_%q3

« Theorem. As the time step size increases from zero, the
energy of the modified system at the augmented saddle point
Increases from minus infinity. When the energy equals to the
energy at the preserved saddle point, then the homoclinic
trajectory is totally destroyed. This gives a time step size
bound which is not too small and when the time step size is
below this bound, then there will be full of invariant curves
Inside the homoclinic trajectory for the modified system.

« Symplectic Euler (first order truncation of the modified
Hamiltonian): >3
h*="3 <2



« Remark: as the truncation order of the modified
system increases, the stability bound decreases. The
convergent limit Is the nonlinear stability bound of

the symplectic integrator.
e This bound can be easier verified for concrete

symplectic integrators, and even can be applied to
more general systems with stable motions.



Homoclinic/heteroclinic splitting under symplectic
Integrators

Theorem (L. Song’s thesis, 2009). Assume that a Hamiltonian
system of one degrees of freedom has a homoclinic trajectory.
When a symplectic integrator applies to this system, then the
homoclinic trajectory of the system will be split into stable and
unstable trajectories of the integrator which intersect
transversally in general and span a chaotic web with
exponentially small maximal width with respect to the p-th
power of time-step size of the integrator, where p is the
accuracy order of the integrator.



Conclusions

« Symplectic integrators can simulate foliation structure of
dynamics of integrable and nearly integrable Hamiltonian
systems in a relatively correct way;

 In general, a homoclinic/heteroclinic trajectory (separatrix) of a
Hamiltonian system splits under a symplectic integrator and
forms a chaotic web of some width near the separatrix. It is
fortunate, however, symplectic methods can give a smaller
width of the chaotic web than other generally-purposed methods
do.

« Combining the KAM theorem and the homoclinic splitting
results, we know that symplectic discretization generates
numerical chaos, in general, but the chaotic part is very small in
the phase space in significantly long time if the step-size is
sufficiently small.



Thank you for your attention!



