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Volume and discrete volume

P a polytope in RY with integral vertices

vol(P) is normalized volume with respect to underlying lattice

#P N ZY number of lattice points (discrete volume)

Lp(t) :=#tPNZ~ Ehrhart polynomial of P

volume and number of lattice points of P are related:

vol(P)/dim(P)! = leading coefficient Lp(t)
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Flow polytopes
GG directed graph on n + 1 vertices

a=(ar,as,...,a,) € Z%, netflow
Fa(a) = {flows x(€) € R>q, € € E(G) | netflow(i) = a;}

Example

T12 + T13 + T14 =Q1

T23 + T4 — T12 =02

X34 — X13 — XL23 =Aa3

Lattice points of F(a) are integral flows on G with netflow a.
Let Kg(a) = L]—"G(a)(l)-
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Kostant partition function

When G is complete graph k, 1, Ky, ., (a) is called the Kostant
partition function.

Ky, ., (a) = # of ways of writing a as an N-combination of vectors
e, —¢ej, 1 <it<j<n+l1

1 0
e L
L0 -l I 0 =1

Formulas for Kostka nhumbers and Littlewood-Richardson coefficients
in terms of Ky, ., (a).
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Examples of flow polytopes
Fa(a) = {flows x(€) € R>q, € € E(G) | netflow(i) = a;}

Example

$1—|—5132—|—5133—|—l’4:1 G
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Fa(a) is a simplex
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Example

GG is the complete graph k,, 11

a=(1,0,...,0,—1)

Frensr(1,0,...,0,—1) is called the Chan-Robbins-Yuen (C'RY,,) polytope

has 27! vertices, dimension (3)




Examples of flow polytopes
Fa(a) = {flows x(€) € R>q, € € E(G) | netflow(i) = a;}

Example

GG is the complete graph k,, 11

a=(1,0,...,0,—1)

Frensr(1,0,...,0,—1) is called the Chan-Robbins-Yuen (C'RY,,) polytope

(conjecture Chan-Robbins-Yuen 99)
e vol(CRY,,)=C1---C)p_o (Zeilberger 99)
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Example

G is the complete graph £, 41 T14

a=(1,1,...,1,—n)

Fror (1,1,...,1,—n) is called the Tesler polytope

has n! vertices, dimension (g) Q

Theorem (M, Morales, Rhoades 2014)
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More examples of flow polytopes

Example
G is the complete graph £, 41 T14
a=(1,1,...,1,—n)

L1 L2 L34

Theorem (M, Morales, Rhoades 2014)

volume equals #SYT(n —1,n—2,...,2,1)-C1Cy---Cp_1

Combinatorial proof? “
Relation to CRY? e\
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Example (Baldoni-Vergne 2008)

r1t+y1=a1 — X1 < g
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Example (Baldoni-Vergne 2008)
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Examples of flow polytopes
Fa(a) = {flows x(€) € R>q, € € E(G) | netflow(i) = a;}

Example (Baldoni-Vergne 2008)

r1T T~y =a —

To+Y2— Y =a2 —— T1+xT2<ap+as

T3 +Ys3 — Y =a3 — T1+T2+2x3=< a1 +ag+as

F1,,., (&) is the Pitman-Stanley polytope
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Pitman-Stanley polytope

a=(a1,as,...,an) € ZY,

(

PS,(a) = ¢ (z1,...,2,) € R,

\

Example

PSy(1,1)

r1 < a1

1+ 22 < ap + a2
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Pitman-Stanley polytope

a=(a1,as,...,an) € ZY,

r1 < a1
4 N\

r1+x2 < ai + a
PS,(a) = { (%1,...,7,) € RY,
\ y

Qj1_|_..._|_ajn§a1_|_..._|_an

Example
A
® >
PS5(1,1) PS3(1,1,1)

e 2" vertices, n dimensional, is a generalized permutahedron



Generalized permutahedra
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Theorem (Pitman-Stanley 01)
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Example
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2
= @102 + asa1 + ay

J1+732=2,71,92 20,71 > 1,51 + J2 > 2




Volume of the Pitman-Stanley polytope
Theorem (Pitman-Stanley 01)

vol PS,(a) = Z ( " ,)a{l---aff

jt(]‘7"'71) ]1’...,]n

]1++]n:n7]177]n20

Example

volPSs (a1, as) = 2a1as + af

2
= @102 + asa1 + ay

volPS3(ay,as, as) = 6ajasaz + 3atas + 3aias + 3ajas + a3




Volume of the Pitman-Stanley polytope
Theorem (Pitman-Stanley 01)

wlPS,(a) = 3 (j L ])
ly -5 Jn

j=(1,...,1)
j1_|_'”_|_jn:naj17°'°7jn ZO

Example

volPSs (a1, as) = 2a1as + af

2
= @102 + asa1 + ay

volPS3(ay,as, as) = 6ajasaz + 3atas + 3aias + 3ajas + a3

Proof via a subdivision where each term corresponds to the
volume of a cell in subdivision
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Lattice points of the Pitman-Stanley polytope
Theorem (Pitman-Stanley, Gessel 01)

= 3 (M) () ()

((ZZ’)) is “m multichoose k"
(3) = 6, counting {1,1},{1,2}, {1,3},{2,2},{2,3},{3,3}
()= (")



Lattice points of the Pitman-Stanley polytope
Theorem (Pitman-Stanley, Gessel 01)

= 3 (M) () ()

Corollary
Lps, (a)(t) € N[t]



Summary
Fa(a) = {flows x(€) € R>q, € € E(G) | netflow(i) = a;}

Examples

e Fi..,(a): CRY polytope (a = (1,0,...,0,—1)),
Tesler polytope (a = (1,1,...,1,—n));
volumes divisible by C ---C,,_o

e Fu,,,(a): Pitman-Stanley polytope, explicit volume and lattice
point formulas related to parking functions.

Question

e |s there a formula for volume and lattice points of Fg(a)?



Lidskii volume formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
G m edges, n + 1 vertices, a; > 0

volFa(ay,...,an) :Z( e )a{i ool

j>_0 j]-’...,jn

XKG(jl _017-°°7jn_0n70)
| where 0 = (01,...,0p), 0, = outdeg(v) — 1 and |j| = m — n.




Lidskii volume formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
G m edges, n + 1 vertices, a; > 0

volFg(ay,...,an,) :Z( m—n' )a‘{l °~-a%”

- J1s---5]Jn

XKG(jl _017-°°7jn_0n70)
| where 0 = (01,...,0p), 0, = outdeg(v) — 1 and |j| = m — n.

Pitman-Stanley polytope: 11, Z

volFir,,,(a) = Y ( n .>a{1,..a%n.1

jt(]‘?"'?]‘) Jlj...,jn



Lidskii volume formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
G m edges, n + 1 vertices, a; > 0

volFa(ay,...,an) :Z( e )a{i ool

- J1s---5]Jn

XKG(jl _017-°°7jn_0n70)
| where 0 = (01,...,0p), 0, = outdeg(v) — 1 and |j| = m — n.

7

Corollary:

volF(1,0,...,0,—1)=1- Kg(m —n —01,—02,...,—0y,0).




Lidskii volume formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley - unpublished)
G m edges, n + 1 vertices, a; > 0

volFa(ay,...,an) :Z( e )a{i ool

j>_0 j]-’...’jn

X KG(jl — 01, ... 7jn — Onao)

| where 0 = (01,...,0p), 0, = outdeg(v) — 1 and |j| = m — n.
Corollary:
volF(1,0,...,0,—1)=1- Kg(m —n —01,—02,...,—0y,0).

Example: (CRY polytope)

volFy, ,,(1,0,...,0,—-1) = Ky, ((","),—n+2,...,-2,-1,0)



Lidskii lattice point formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley — unpublished)
G m edges, n + 1 vertices, a; > 0

| where j| = m —n, o, = outdeg(v) — 1, i, = indeg(v) — 1

ai — 1 Ay — i,

Koo e =3 (") ()
jro N /! e

XK(;(jl—Ol,...,jn—On,O)




Lidskii lattice point formula

(Theorem (Baldoni-Vergne 08, Postnikov-Stanley — unpublished)
G m edges, n + 1 vertices, a; > 0

Kolay, ... an) = Z ((aljz i1>) ((an]; Zn))

jro

X KG(jl — 01, ... 7jn — Onao)
| where j| = m —n, o, = outdeg(v) — 1, i, = indeg(v) — 1

tman-Staley poytope N
(") G) -6



About the proofs

Klat,. .. an) =Y (alj i1)> (an]; zn>)

j=o
X KG(jl — 01,y Jn — On,O)

e proof by Baldoni and Vergne uses residues

e proof by Postnikov-Stanley uses the Elliott-MacMahon
algorithm
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About the proofs

Ke(ar, .. an) =Y (aljz z‘l)) ((anj; Zn))

jro
X KG(jl — 01, ... 7jn — On,O)

proof by Baldoni and Vergne uses residues

proof by Postnikov-Stanley uses the Elliott-MacMahon
algorithm

proof by M-Morales (2019) via polytope subdivision and
generating functions

proof by Kapoor-M-Setiabrata (2021) completely polytopal

type D analogue by Maris-M (2023+) generalizing both of
the above approaches




Subdivision proof of Lidskii formulas

volFqg(ay,...,an) :Z( e )a{i ool

- J1s---5]Jn

X KG(jl — 01, ... 7jn — Onao)

G

Subdivide Fg(a) into cells of types indexed by j.

71 + 1 multiple edges _p
j2 + 1 multiple edges
ai as as

m—n - -
volume of each type j cell : ( | )a{l coalr
J1ye- -y Jn

# times type j cell appears: Kg(j1 — 01,...,Jn — 0p,0)



Example subdivision
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Example subdivision

BN




SYayay - |:

Example subdivision

J

volume:

lattice points:
04 3-2=06.

-1-2=14.




Flow Polytopes - again

Start with a graph G.




Flow Polytopes - again

Start with a graph G.

Fix an acyclic orientation of G.

»
>

\
[ J



Flow Polytopes

Add a source s and a sink t connected to all the original vertices of
G. Call the new graph G.




Flow Polytopes

Add a source s and a sink t connected to all the original vertices of

G. Call the new graph G.

$ L 4 > L > @ t

Assign the source s netflow 1, the sink t netflow —1, and all other

vertices netflow 0.




Flow Polytopes

A flow on G is an assignment of nonnegative real numbers to each
edge of G so that at every vertex, outflow minus inflow equals

netflow.

1/4 1/6

The flow polytope F is the convex hull in RE(G) of all flows on

G.
11111 7 1

(2’4’47376’0’12’4> <7e



An Example Flow Polytope




Recall: Volumes of Flow Polytopes

Theorem (Baldoni-Vergne 2008, Postnikov-Stanley unpublished)

If G is a graph on vertices [0, n+ 1],

Vol F¢(1,0,...,0,—1) = K¢ (o, di, ..., dn, Zd,-)
i=1

where d; = indeg (i) — 1 for each vertex i.

Kg(ai,...,ap) is the Kostant partition function from
representation theory. It equals the number of ways to write « as a

sum of the positive roots {e; — ¢ : (i,j) € G}.



Subdividing Flow Polytopes

Flow polytopes can be subdivided combinatorially by performing a
sequence of changes to the original graph.

A reduction on a graph G is a construction of two new graphs G;
and G, from a choice of two adjacent edges (i,), (j, k) € G:




Subdividing Flow Polytopes

G:P4. L L 4 @
o
o
Fs o
[}
@
o
[ J

*Not technically a picture of F, but the root polytope of G.
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More compactly, this subdivision procedure can be represented by
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Subdividing Flow Polytopes

More compactly, this subdivision procedure can be represented by

a reduction tree.

—eo o —o

ST

7\

V= =N



Subdividing Flow Polytopes

The individual graphs appearing in a reduction tree depend on the
choice of cuts used to subdivide the flow polytope.

——o— oo

AN
PRGN

N\

N Ao



Are there subdivision invariants?

On the one hand, we have seen the leaves of a reduction tree are
dependent on choices made.

On the other hand, the simplices produced by the reduction
process are always unimodular, so the number of leaves in any
reduction tree is always the normalized volume of the flow

polytope regardless of any choices.

Is there any stronger invariant across all the different ways to fully

subdivide a flow polytope using reductions?




Subdivisions to Degree Sequences

Is there an invariant of different subdivisions of a flow polytope?
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Subdivisions to Degree Sequences

Is there an invariant of different subdivisions of a flow polytope?




Subdivisions to Degree Sequences

3 0 0 2 0 1 2 1 0
1 2 0 1 1 1
3 0 0 2 0 1 2 1 0



Subdivisions to Degree Sequences

3 0 0 2 0 1 2 1 0
1 2 0 1 1 1

Is {(3,0,0), (2,0,1), (2,1,0), (1,2,0), (1,1,1)} dependent only
on the original graph?



Subdivisions to Degree Sequences

Is {(3,0,0), (2,0,1), (2,1,0), (1,2,0), (1,1,1)} dependent only
on the original graph?

Theorem (Grinberg 2017, M-St. Dizier 2017)

Yes!




Right-Degree Sequences

Definition

For a graph G, let RD(G) denote the multiset of right-degree

sequences of the leaves in any reduction tree of G.

3 0 0 2 0 1 2 1 0
1 2 0 1 1 1

RD(G) ={(3,0,0), (2,0,1), (2,1,0), (1,2,0), (1,1,1)}.



Right-Degree Polynomial

Definition

Define the right-degree polynomial of G by

a€RD(G)

RD(Ps) = {(3,0,0), (2,0,1), (2,1,0), (1,2,0), (1,1,1)}

+ T125 + X1T2T3



Trees & Pipe Dreams

] ] / ] / ] /
Y avaraBvara Yanna
v fp/ v
) )
pa / pa /
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Schubert Polynomials (geometrically)

Geometrically, Schubert polynomials arise as distinguished
representatives of the cohomology classes of the Schubert varieties

in the flag variety of C".



A pipe dream for w € 5, is a tiling of an n X n matrix with
crosses + and elbows Jf such that

o All tiles in the weak south-east triangle are elbows, and

o If you write 1,2,...,n on the top and follow the strands
(ignoring second crossings among the same strands), they

come out on the left and read w from top to bottom.

A pipe dream is reduced if no two strands cross twice.

1 2 3 4

T D
_/[J
j A
g
w,

W = = N

Figure: A reduced pipe dream for w = 2143.



Schubert Polynomial of 1432

vpvivvaliivsvsn el J
|Fafafash gy fafa 1]
L/ J
4 4 r 4 Vs
Ny s/ 3Jf/
2/ 2/ 2J
ZL‘%;L‘g T1T9T3 UL%LQ
Jl 2 JS J4 Jl 2 3 4
'r f 4
4 J/jf/
J
e
Ay v,
T3 T3y

G143 = X3x3 + x1x0x3 + XEx2 + X153 + xPx3






Noncrossing and Alternating Trees

SN A

A tree is alternating if it has A tree is noncrossing if it has

no pair of edges no pair of edges

e N



Noncrossing and Alternating Trees

Theorem (M 2009)

Every tree T has a canonical reduction tree whose leaves are

exactly the alternating noncrossing spanning trees of the directed
transitive closure T of T.

: e




Noncrossing Alternating Spanning Trees to Permutations

Theorem (Escobar-M 2015)

For permutations of the form w = 1w’ where w' is dominant
(132-avoiding), there is an tree T,, such that the reduced pipe
dreams of w are in bijection with the noncrossing alternating
spanning trees of the directed transitive closure T, .




Pipe dreams to noncrossing alternating spanning trees
















Pipe Dreams to Trees
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Right-Degree and Schubert Polynomials

Theorem (Escobar-M 2015)

For permutations of the form w = 1w’, where w' is 132-avoiding,

there is a tree T,, such that the right-degree polynomial R, is a
reparameterization of G, .
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G1432 = X5 X3 + X1X0X3 + X1%X5 + X1 X3 + X{ X2
RTis = X3 4+ XExo 4 x2x3 + x1x5 + X1X2X3
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S1432(x1, X2, X3) = X7 X5 X3 RT3, (X1 75X T, x37)



Right-Degree and Schubert Polynomials

Schubert Right-Degree
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Similar properties?



Schubert Polynomial Newton Polytopes

What kind of polytopes are the Newton polytopes of Schubert
polynomials?
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1243 = X1+X2+X3 175 TiT2

_ 2 2 2
S13524 = XoX5 +X1X5 + X7 X3+
X12x2 + X1X22 + X22X3 + 2x1X2X3



Schubert Polynomial Newton Polytopes
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Go1543 = Xix2 + X X3 + Xpxa + XPX3 + XPX3 + 2xxox3 + XExoXa +

X12X3X4 + x1x2x32 + X1X22X3 + X1X22X4 + X1x32X4 + X1X0X3X4



Generalized Permutahedra

@ The standard permutahedron in R” is the convex hull of all

rearrangements of the vector (1,2,...,n).

Definition (Postnikov 2005, Edmonds 1970)

A generalized permutahedron is any polytope obtained by

deforming the standard permutahedron by moving the vertices in

any way so that all edge directions are preserved.
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An Answer For R¢

Theorem (M-St. Dizier 2017)

For any graph G, Newton(Rg) is a generalized permutahedron.

Ti132 @ PY PY °

Newton(R7,,,,) =
(1,1,1)

(3,0,0)



Schubert Newton Polytopes

Conjecture (Monical-Tokcan-Yong 2017)

For any w € S,, Newton(&,,) is a generalized permutahedron.




Schubert Newton Polytopes

Conjecture (Monical-Tokcan-Yong 2017)

For any w € S,, Newton(&,,) is a generalized permutahedron.

@ {Schubert polynomials &,,} O {Schur polynomials sy}



Schubert Newton Polytopes

Conjecture (Monical-Tokcan-Yong 2017)

For any w € S,, Newton(&,,) is a generalized permutahedron.

@ {Schubert polynomials &,,} O {Schur polynomials sy}

e Newton(sy) = Conv(all permutations of \) = permutahedron



Schubert Newton Polytopes

Conjecture (Monical-Tokcan-Yong 2017)

For any w € S,, Newton(&,,) is a generalized permutahedron.

@ {Schubert polynomials &,,} O {Schur polynomials sy}
e Newton(sy) = Conv(all permutations of \) = permutahedron

e Newton(S,,) should be a generalized permutahedron



Schubert Newton Polytopes

Conjecture (Monical-Tokcan-Yong 2017)

For any w € S,, Newton(&,,) is a generalized permutahedron.

@ {Schubert polynomials &,,} O {Schur polynomials sy}
e Newton(sy) = Conv(all permutations of \) = permutahedron

e Newton(S,,) should be a generalized permutahedron

Theorem (Fink-M-St. Dizier 2017)

The Newton polytopes of the Schubert polynomials are generalized
permutahedra.




A Saturation Property of Rg

What does RD(G) look like? Specifically, how do the points in
RD(G) sit inside the Newton polytope of Rg?
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(1,2,0)

Newton(R7,,,,) =
(1,1,1)

(3,0,0)

Theorem (M-St. Dizier 2017)

Newton(Rg) is a generalized permutahedron whose integral points
are exactly RD(G).




Newton(S143625)
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Can there be zeros in the polytope?




Saturated Newton Polytopes

Definition (Monical-Tokcan-Yong 2017)

A polynomial f is said to have saturated Newton polytope
(SNP) if every integer point in the Newton polytope corresponds

to a monomial with nonzero coefficient in f.

G13504 = x2X§ + X1X§ + X12X3 + X12X2 + X1X22 + X22X3 + 2x1X2X3

iCQ(L'?)) 33156'% 1 1

173 T3y



SNP in Algebraic Combinatorics

Theorem (Monical-Tokcan-Yong 2017)
The following all have SNP:

@ Schur polynomials
o Skew-Schur polynomials

e Stanley symmetric functions

e (g, t) evaluations of symmetric Macdonald polynomials




SNP in Algebraic Combinatorics

Theorem (Monical-Tokcan-Yong 2017)
The following all have SNP:

@ Schur polynomials
o Skew-Schur polynomials
e Stanley symmetric functions

e (g, t) evaluations of symmetric Macdonald polynomials

Conjecture (Monical-Tokcan-Yong 2017)
The following all have SNP:

@ Schubert polynomials
o Key polynomials
@ Double Schubert polynomials

@ Grothendieck polynomials




SNP in Algebraic Combinatorics

The following all have SNP:
@ Schubert polynomials (Fink-M-St. Dizier 2017)
e Key polynomials (Fink-M-St. Dizier 2017)
1w Grothendieck polynomials (M-St. Dizier 2017)

(]

Symmetric Grothendieck polynomials (Escobar-Yong 2017)

@ Double Schubert, some K-polynomials (Castillo- Cid-Ruiz
-Mohammadi-Montafio 2021, 2022)




More About Coefficients

SNP says there are no zeros within the Newton polytope. How are
the nonzero coefficients distributed?

Newton(s(4,2,0))




More About Coefficients

SNP says there are no zeros within the Newton polytope. How are
the nonzero coefficients distributed?

Newton(s(4,2,0))
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€2 — €3 €1 — €3

Idea: look along lines in root directions!



Unimodal and Log-Concave Sequences

ap  ar - 4t Gpo1 Gn

Unimodal: ag < a; <---<ajand aj > aj41 > --- > a, for some j
Log-concave: a? > aj_1aj41 for all i.

(Positive and log-concave implies unimodal)

Do the coefficients form unimodal sequences along lines in root

directions? Even better, are they log-concave?




On the coefficients of Schubert Polynomials

Let G, = Z Crax®.

Theorem (Huh—Matherne-M-St. Dizier 2019)

For any w € S, and i,j € [n],
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On the coefficients of Schubert Polynomials

Let G, = Z Crax®.

Theorem (Huh—Matherne-M-St. Dizier 2019)

For any w € S, and i,j € [n],

2
Cwa 2 Cw,a—l—e;—ej Cw,a—e;+ej-

What other polynomials from algebraic combinatorics have

Lorentzian normalizations?




The End!

Happy Birthday Michele!
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