李琼玲 研究员
办公楼:省身楼 508
Email:qiongling.li@nankai.edu.cn
教育背景
2010-2014 博士 美国莱斯大学
2006-2010 学士 南开大学
工作经历
2024.1至今 研究员 南开大学陈省身数学研究所
2019.1-2023.12 特聘研究员 南开大学陈省身数学研究所
2019.8-2019.10 Research Member 美国数学科学研究所(MSRI)
2018.10-2018.12 特聘副研究员 南开大学陈省身数学研究所
2015-2018 博士后 美国加州理工学院和丹麦奥胡斯大学QGM研究所
2015春季 Cha-Chern博士后 美国数学科学研究所(MSRI)
研究方向:Higher Teichmuller theory, Higgs bundles, Harmonic maps
招生专业:微分几何,复分析
发表论文:
18. Hamonic metrics of generically regular nilpotent Higgs bundles over non-compact surfaces, with Song Dai, arXiv: 2410.14429.
17. Every closed surface of genus at least 18 is Loewner, with Weixu Su, arXiv: 2401.00720.
16. Harmonic metrics of Higgs bundles in the Hitchin section over non-compact hyperbolic surfaces, with Takuro Mochizuki, accepted in Proceedings of the London Mathematical Society, arXiv:2307.03365.
15. Harmonic metrics of generically regular semisimple Higgs bundles on non-compact Riemann surfaces, with Takuro Mochizuki, Tunisian Journal of Mathematics, Vol. 5 (2023), No. 4, 663–711.
14. Bounded differentials on unit disk and the associated geometry, with Song Dai, Transactions of the American Mathematical Society, Volume 377, Number 8, August 2024, Pages 5445-5481.
13. Projective structures with (Quasi-)Hitchin holonomy, with Daniele Alessandrini, Colin Davalo, accepted in Journal of the London Mathematical Society, arXiv:2110.15407.
12. Isolated singularities of Toda equations and cyclic Higgs bundles, with Takuro Mochizuki, arXiv:2010.06129.
11. Complete solutions of Toda equations and cyclic Higgs bundles over non-compact surfaces, with Takuro Mochizuki, accepted in International Mathematics Reserach Notices, arXiv:2010.05401.
10. Domination results in n-Fuchsian fibers in the moduli space of Higgs bundles, with Song Dai, Proceedings of the London Mathematical Society, (3) 2022;124:427–477, arXiv:2005.13960.
9. Nilpotent Higgs bundles and the Hodge metric on the Calabi-Yau moduli, International Mathematics Research Notices,Volume 2022, Issue 9, May 2022, Pages 6705–6741, arXiv:2005.13939.
8. An introduction to Higgs bundles via harmonic maps, SIGMA 15 (2019), 035, 30 pages.
7. Harmonic maps for Hitchin representations, Geometric and Functional Analysis, (2019) 29 (2), 539-560.
6. On cyclic Higgs bundles, with Song Dai, Mathematische Annalen volume 376, pp. 1225–1260(2020), arXiv:1710.10725.
5. On the uniqueness of vortex equations and its geometric applications, The Journal of Geometric Analysis (2019) 29:105–120, arXiv:1710.10729.
4. Minimal surfaces for Hitchin representations, with Song Dai, Journal of Differential Geometry, Vol. 112, No. 1 (2019), pp. 47-77, arXiv:1605.09596.
3. AdS 3-manifolds and Higgs bundles, with Daniele Alessandrini, Proc. Amer. Math. Soc. 146 (2018), pp. 845-860, arXiv:1510.07745.
2. Asymptotics of Higgs bundles in Hitchin Components, with Brian Collier, Advances in Mathematics, Vol 307 (2017), pp. 488–558, arXiv:1405.116.
1. Teichmueller space is totally geodesic in Goldman space, Asian Journal of Mathematics, Vol20 (2016) No. 1, pp. 21-46, arXiv:1301.1442.
2022年4-6月曾在中俄数学中心教授一门在线课程:
Higgs bundles and related topics
过去组织的活动:
Joint Seminar on Teichmüller Theory and Related Topics (JSTeichR)
2022年暑期短期课程(1. 刘雨晨:Introduction to K-stability; 2. 楚健春:Introduction to partial differential equations; 3. 黄鹏飞:Short course on Higgs bundles and local systems)
2021年暑期短期课程 (1.徐彬斌: 双曲曲面介绍; 2. 杨文元:几何群论; 3. 张若冰:度量黎曼几何初步)
2020年暑期短期课程(何思奇:An Introduction to Gauge Theory;苏伟旭:Teichmüller空间简介)