李琼玲

作者:李琼玲(2019-01-10)



    


李琼玲    研究员


办公楼:省身楼 508

Emailqiongling.li@nankai.edu.cn  





教育背景

2010-2014   博士   美国莱斯大学

2006-2010   学士   南开大学


工作经历

2024.1至今                          研究员                        南开大学陈省身数学研究所

2019.1-2023.12                 特聘研究员                   南开大学陈省身数学研究所

2019.8-2019.10            Research Member            美国数学科学研究所(MSRI)

2018.10-2018.12           特聘副研究员                   南开大学陈省身数学研究所

2015-2018                        博士后                           美国加州理工学院和丹麦奥胡斯大学QGM研究所

2015春季                     Cha-Chern博士后              美国数学科学研究所(MSRI)

  

研究方向Higher Teichmuller theory, Higgs bundles, Harmonic maps

招生专业:微分几何,复分析


发表论文:

18. Hamonic metrics of generically regular nilpotent Higgs bundles over non-compact surfaces, with Song Dai, arXiv: 2410.14429.

17. Every closed surface of genus at least 18 is Loewner, with Weixu Su, arXiv: 2401.00720.

16. Harmonic metrics of Higgs bundles in the Hitchin section over non-compact hyperbolic surfaces, with Takuro Mochizuki, accepted in Proceedings of the London Mathematical Society arXiv:2307.03365.

15. Harmonic metrics of generically regular semisimple Higgs bundles on non-compact Riemann surfaces, with Takuro Mochizuki, Tunisian Journal of Mathematics, Vol. 5 (2023), No. 4, 663–711.

14. Bounded differentials on unit disk and the associated geometry, with Song Dai, Transactions of the American Mathematical Society, Volume 377, Number 8, August 2024, Pages 5445-5481.

13. Projective structures with (Quasi-)Hitchin holonomy, with Daniele AlessandriniColin Davalo, accepted in Journal of the London Mathematical SocietyarXiv:2110.15407.

12. Isolated singularities of Toda equations and cyclic Higgs bundles, with Takuro Mochizuki, arXiv:2010.06129.

11. Complete solutions of Toda equations and cyclic Higgs bundles over non-compact surfaces, with Takuro Mochizuki, accepted in International Mathematics Reserach NoticesarXiv:2010.05401.

10. Domination results in n-Fuchsian fibers in the moduli space of Higgs bundles, with Song Dai, Proceedings of the London Mathematical Society, (3) 2022;124:427–477, arXiv:2005.13960.

9. Nilpotent Higgs bundles and the Hodge metric on the Calabi-Yau moduli, International Mathematics Research Notices,Volume 2022, Issue 9, May 2022, Pages 6705–6741, arXiv:2005.13939.

8. An introduction to Higgs bundles via harmonic maps, SIGMA 15 (2019), 035, 30 pages.

7. Harmonic maps for Hitchin representations, Geometric and Functional Analysis, (2019) 29 (2), 539-560.

6. On cyclic Higgs bundles, with Song DaiMathematische Annalen volume 376, pp. 1225–1260(2020), arXiv:1710.10725.

5. On the uniqueness of vortex equations and its geometric applications, The Journal of Geometric Analysis (2019) 29:105–120, arXiv:1710.10729.

4. Minimal surfaces for Hitchin representations, with Song Dai,  Journal of Differential Geometry, Vol. 112, No. 1 (2019), pp. 47-77, arXiv:1605.09596.

3. AdS 3-manifolds and Higgs bundles, with Daniele Alessandrini, Proc. Amer. Math. Soc. 146 (2018), pp. 845-860, arXiv:1510.07745.

2. Asymptotics of Higgs bundles in Hitchin Components, with Brian Collier, Advances in Mathematics, Vol 307 (2017), pp. 488–558, arXiv:1405.116.

1. Teichmueller space is totally geodesic in Goldman space, Asian Journal of Mathematics, Vol20 (2016) No. 1, pp. 21-46, arXiv:1301.1442.


2022年4-6月曾在中俄数学中心教授一门在线课程:

Higgs bundles and related topics

视频和讲义链接


过去组织的活动:

复几何青年论坛 

Joint Seminar on Teichmüller Theory and Related Topics (JSTeichR)

2022年几何与拓扑讨论班

2021年几何与拓扑讨论班

2022年暑期短期课程(1. 刘雨晨:Introduction to K-stability; 2. 楚健春:Introduction to partial differential equations; 3. 黄鹏飞:Short course on Higgs bundles and local systems)

2021年暑期短期课程 (1.徐彬斌: 双曲曲面介绍; 2. 杨文元:几何群论; 3. 张若冰:度量黎曼几何初步

2020年暑期短期课程(何思奇:An Introduction to Gauge Theory;苏伟旭:Teichmüller空间简介