李琼玲

作者:李琼玲(2019-01-10)


姓名:李琼玲

招生专业:微分几何,复分析

主要职务:特聘研究员

  

简历:

20069月至20107南开大学数学试点班学士学位

20108月至201412美国莱斯大学数学系博士学位

20151月至20155美国数学科学研究所(伯克利MSRI博士后

20158月至20187联合博士后: 丹麦奥胡斯大学QGM研究所和美国加州理工学院

201810月至2018年12月 南开大学陈省身数学研究所,特聘副研究员

20191月至今 南开大学陈省身数学研究所,特聘研究员

  

研究方向:Higher Teichmuller theory, Higgs bundles, Harmonic maps

  

研究成果:

12. Isolated singularities of Toda equations and cyclic Higgs bundles, with Takuro Mochizuki, arXiv:2010.06129.

11. Complete solutions of Toda equations and cyclic Higgs bundles over non-compact surfaces, with Takuro Mochizuki, arXiv:2010.05401.

10. Domination results in n-Fuchsian fibers in the moduli space of Higgs bundles, with Song Dai, arXiv:2005.13960.

9. Nilpotent Higgs bundles and the Hodge metric on the Calabi-Yau moduli, International Mathematics Research Noticeshttps://doi.org/10.1093/imrn/rnab038, arXiv:2005.13939.

8. An introduction to Higgs bundles via harmonic maps, SIGMA 15 (2019), 035, 30 pages.

7. Harmonic maps for Hitchin representations, Geometric and Functional Analysis, (2019) 29 (2), 539-560.

6. On cyclic Higgs bundles, with Song DaiMathematische Annalen volume 376, pp. 1225–1260(2020), arXiv:1710.10725.

5. On the uniqueness of vortex equations and its geometric applications, The Journal of Geometric Analysis (2019) 29:105–120.

4. Minimal surfaces for Hitchin representations, with Song Dai,  Journal of Differential Geometry, Vol. 112, No. 1 (2019), pp. 47-77, arXiv:1605.09596.

3. AdS 3-manifolds and Higgs bundles, with Daniele Alessandrini, Proc. Amer. Math. Soc. 146 (2018), pp. 845-860, arXiv:1510.07745.

2. Asymptotics of Higgs bundles in Hitchin Components, with Brian Collier, Advances in Mathematics, Vol 307 (2017), pp. 488–558, arXiv:1405.116.

1. Teichmueller space is totally geodesic in Goldman space, Asian Journal of Mathematics, Vol20 (2016) No. 1, pp. 21-46.


联系方式:办公楼:省身楼 508电话: 022-23509391 Emailqiongling.li@nankai.edu.cn  



目前组织的活动有:

2021年春季,几何与拓扑讨论班


过去组织的活动:

2020年暑期短期课程(何思奇:An Introduction to Gauge Theory;苏伟旭:Teichmüller空间简介