Papers and Preprints of Xiaonan MA

作者:dly(2024-12-19)

Analytic Torsion Forms and Eta Forms

  1. Formes de torsion analytique et familles de submersions,

Bull. Soc. Math. France 127 (1999), 541-621 [pdf],

Asian J. Math. 4 (2000), 633-667 [pdf],

announced in C. R. Acad. Sci. Paris Série I 324 (1997), 205-210.



  1. Submersions and equivariant Quillen metrics [pdf]

Ann. Inst. Fourier (Grenoble) 50 (2000), 1539-1588.



  1. Flat vector bundles and analytic torsion forms [pdf],

Séminaire de Théorie Spectrale et Géométrie,

Vol. 19, Univ. Grenoble I, Saint, 2001, 25-40.



  1. Functoriality of real analytic torsion forms [pdf],

Israel J. Math. 131 (2002), 1-50.



  1. With J.-M. Bismut

Holomorphic immersions and equivariant torsion forms [pdf],

J. Reine Angew. Math. 575 (2004), 189-235.

announced in C. R. Math. Acad. Sci. Paris 334 (2002), 893-897.



  1. With J. Brüning

An anomaly formula for Ray-Singer metrics on manifolds with boundary [pdf],

Geom. Funct. Anal. 16 (2006), 767-837.

announced in C. R. Math. Acad. Sci. Paris 335 (2002), 603-608.



  1. Formes de torsion analytique et fibrations singulières [pdf],

Nonlinear hyperbolic equations, spectral theory, and wavelet transformations,

Oper. Theory Adv. Appl., vol. 145, Birkhäuser, Basel (2003), 395-418.



  1. With U. Bunke

Index and secondary index theory for flat bundles with duality [pdf],

Aspects of boundary problems in analysis and geometry,

Oper. Theory Adv. Appl., vol. 151, Birkhäuser, Basel (2004), 265-341.



  1. Orbifolds and analytic torsions [pdf],

Trans. Amer. Math. Soc. 357 (2005), 2205--2233.



  1. With H. Feng

Transversal holomorphic section and localization of analytic torsions [pdf],

Pacific J. Math. 219 (2005), 255-271.



  1. With W. Zhang

Eta-invariants, torsion forms and flat vector bundles [pdf],

Math. Annalen. 340 (2008), 569-624.



  1. With W. Zhang

Eta-invariant and flat vector bundles [pdf],

Chinese Ann. Math. Ser. B. 27 (2006), 67-72.



  1. With W. Zhang

An anomaly formula for L^2-analytic torsions on manifolds with boundary [pdf],  

Analysis, Geometry and Topology of Elliptic Operators:

Papers in Honor of Krzysztof P Wojciechowski.  

Eds. B. Booss-Bavnbek, S. Klimek, M. Lesch and W. Zhang,  

World Scientific (2006), 235--262.



  1. With W. Zhang

Eta-invariant and flat vector bundles II [pdf],

Inspired by S. S. Chern. Ed. P. A. Griffiths,

Nankai Tracts in Mathematics. Vol. 11. World Scientific, 2006, 335-350.



  1. With J. Brüning

On the gluing formula for the analytic torsion [pdf],

Math. Z. 273 (2013), 1085-1117.



  1. With J.-M. Bismut and W. Zhang

Asymptotic torsion and Toeplitz operators [pdf],

Journal of the Institute of Mathematics of Jussieu 16 (2017), 223-349.

announced in

Opérateurs de Toeplitz et torsion analytique asymptotique [pdf],

C. R. Math. Acad. Sci. Paris 349 (2011), 977-981.



  1. With  B. Liu

Differential K-theory, $\eta$-invariant and localization [pdf],

C. R. Math. Acad. Sci. Paris 357 (2019), 803-813.



  1. Remarks on the equivariant analytic torsion forms and the immersion formula [pdf],

Proceedings of the London Mathematical Society 122 (2021), 425-431.  

Appendix of 'an arithmetic Lefschetz–Riemann–Roch theorem,

by Shun Tang, 377-433, 2021.



  1. With  B. Liu

Comparison of two equivariant eta-forms  [pdf],

Adv. Math. 404 (2022), Paper No. 108163. 76pp.



  1. With  B. Liu

Differential K-theory and localization formula for $\eta$-invariants [pdf],

Invent. Math. 222 (2020), 545--613.



  1. Orbifold submersion and analytic torsions [pdf],

Arithmetic L-functions and differential geometric methods,

141-177, Progr. Math., 338, Birkhäuser/Springer, 2021.



  1. Quillen metrics and branched coverings [pdf],

International Mathematics Research Notices.   (2024), 6606-6631.



Elliptic Genera



  1. With K. Liu

On family rigidity theorems. I [pdf],

Duke Math. J. 102 (2000), 451-474.



  1. With K. Liu

On family rigidity theorems for Spin^c manifolds [pdf],

Mirror symmetry, IV (Montreal, QC, 2000),

AMS/IP Stud. Adv. Math. vol. 33,

Amer. Math. Soc., Providence, RI (2002), 343-360.



  1. With K. Liu and W. Zhang

Rigidity and vanishing theorems in K-theory [pdf],

Comm. Anal. Geom. 11 (2003), 121-180.

announced in C. R. Acad. Sci. Paris Série I 330 (2000), 301-305.



  1. With K. Liu and W. Zhang

Spin^c manifolds and rigidity theorems in K-theory [pdf],

Asian J. Math. 4 (2000), 933-959.





  1. With K. Liu and W. Zhang

On elliptic genera and foliations [pdf],

Math. Res. Lett. 8 (2001), 361-376.





  1. With C. Dong and K. Liu

On orbifold elliptic genus [pdf],

Orbifolds in mathematics and physics (Madison, WI, 2001),

Contemp. Math., vol. 310,

Amer. Math. Soc., Providence, RI (2002), 87-105.



  1. With C. Dong and K. Liu

Elliptic genus and vertex operator algebras [pdf],

Pure and Applied Mathematics Quarterly. 1 (2005), 791-815.



  1. With C. Dong,  K. Liu and J. Zhou

K-theory associated to vertex operator algebras [pdf],

Math. Res. Lett. 11 (2004), 629-647.



Bergman Kernels and Geometric quantization

  1. With G. Marinescu

The Spin^c Dirac operator on high tensor powers of a line bundle [pdf],

Math. Z. 240 (2002), 651-664.



  1. With X. Dai and K. Liu

On the asymptotic expansion of Bergman kernel [pdf],

J. Differential Geom. 72 (2006), 1-41.

announced in C. R. Math. Acad. Sci. Paris 339 (2004), 193-198.



  1. With G. Marinescu

Generalized Bergman kernels on symplectic manifolds [pdf],

Adv. Math.  217 (2008), 1756-1815.

announced in C. R. Math. Acad. Sci. Paris 339 (2004), 493-498.



  1. With G. Marinescu

Toeplitz operators on symplectic manifolds, [pdf],

J. Geom. Anal.  18 (2008), 565-611.



  1. With G. Marinescu

The first coefficients of the asymptotic expansion of the

Bergman kernel of the spin^c Dirac operator [pdf],

Internat. J. Math. 17 (2006), 737--759.



  1. With W. Zhang

Bergman kernels and symplectic reduction [pdf],

Astérisque 318 (2008), 154 pp.

announced in C. R. Math. Acad. Sci. Paris 341 (2005), 297-302.



  1. With W. Zhang

Toeplitz quantization and symplectic reduction [pdf],

Differential Geometry and Physics. Eds. M.-L. Ge and W. Zhang,

Nankai Tracts in Mathematics Vol. 10, World Scientific, 2006, 343-349.



  1. With K. Liu

A remark on 'Some numerical results in complex differential geometry' [pdf].

Math. Res. Lett. 14 (2007), 165-171.



  1. With W. Zhang

Superconnection and family Bergman kernels [pdf],

announced in C. R. Math. Acad. Sci. Paris 344 (2007), 41-44.

Math. Annalen. 386 (2023), 2207-2253.



  1. With K. Liu

Asymptotic of the operators Q_k [pdf],

Appendix to "Calabi flow and projective embeddings"

by J. Fine, J. Differential Geom. 84 (2010), 489-523.



  1. With W. Zhang

Geometric quantization for proper moment maps: the

Vergne conjecture [pdf],

Acta Mathematica 212 (2014), 11-57.

announced in

Geometric quantization for proper moment maps [pdf],

C. R. Math. Acad. Sci. Paris 247 (2009), 389-394.



  1. With W. Zhang

Transversal index and $L^2$-index for manifolds with boundary [pdf],

Metric and Differential Geometry,

a volume in honor of Jeff Cheeger for his 65th birthday.

Edited by X. Dai and X. Rong. Progress in Mathematics 297,

Birkhäuser Boston, Inc., Boston, MA. 2012, 299-316.



  1. With G. Marinescu

Berezin-Toeplitz quantization of Kahler manifolds [pdf],

J. Reine Angew. Math. 662 (2012), 1-58.



  1. Geometric quantization on Kahler and symplectic manifolds [pdf],  

Proceedings of the International Congress of Mathematicians.

Volume II, 785--810, Hindustan Book Agency, New Delhi, 2010.



  1. With G. Marinescu

Berezin-Toeplitz quantization and its kernel expansion [pdf],

the Proceedings of GEOQUANT school 2009 (Luxembourg).

Travaux mathématiques 19 (2011), 125-166.



  1. With X. Dai and K. Liu

A remark on weighted Bergman kernels on orbifolds [pdf],

Math. Res. Lett. 19 (2012), 143-148.



  1. With G. Marinescu

Remark on the off-diagonal expansion of the Bergman kernel on

compact Kahler manifolds [pdf],

Communications in Mathematics and Statistics. 1 (2013), 37-41.



  1. With J. Daniel

Characteristic Laplacian in sub-Riemannian geometry [pdf].

International Mathematics Research Notices. 24 (2015), 13290-13323.



  1. With T. Barron, G. Marinescu and M. Pinsonnault

Semi-classical properties of Berezin--Toeplitz

operators with C^k symbol [pdf],

Journal of Mathematical Physics 55 (2014), no.4, 042108, 25pp.



  1. With G. Marinescu

Exponential Estimate for the asymptotics of Bergman

kernels [pdf],

Math. Annalen. 362 (2015), 1327-1347.



  1. With G. Marinescu and S. Zelditch

Scaling asymptotics of heat kernels of line bundles [pdf],

Contemp. Math. 644 (2015), 275-202, volume in honor

of Phong for his 60th birthday (Paul Feehand, ed.).



  1. With Tien-Cuong Dinh and G. Marinescu

Equidistribution and convergence speed of zeros of

holomorphic sections of singular Hermitian line bundles [pdf],

Journal of Functional Analysis 271 (2016), no.11, 3082-3110.



  1. With D. Coman and G. Marinescu

Equidistribution for sequences of line bundles on

normal Kahler spaces [pdf],

Geom. Topol. 21 (2017), 923-962.



  1. With Tien-Cuong Dinh and Viet-Anh Nguyen,

Equidistribution speed for Fekete points

associated with an ample line bundle [pdf],

Ann. Sci. Ec. Norm. Super. (4)  50 (2017), 545-578.



  1. With Semyon Klevtsov, G. Marinescu and Paul Wiegmann

Quantum Hall effect and Quillen metric [pdf]

Comm. Math. Phys. 349, (2017), 819-855.



  1. With Tien-Cuong Dinh and Viet-Anh Nguyen,

On the asymptotic behavior of Bergman kernels

for positive line bundles [pdf]

Pacific Journal of Math. 289 (2017), 71-89.



  1. With W. Lu and G. Marinescu

Donaldson's $Q$-operators for symplectic manifolds [pdf]

SCIENCE CHINA Mathematics.  60 (2017), 1047-1056.



  1. With H. Auvray and G. Marinescu

Bergman kernels on punctured Riemann surfaces [pdf]

Math. Annalen announced in

C. R. Math. Acad. Sci. Paris 354 (2016),1018-1022[pdf].



  1. With Y. Kordyukov and G. Marinescu

Generalized Bergman kernels on symplectic manifolds

of bounded geometry[pdf]

Comm. Partial Differential Equations. 44 (2019), 1037--1071.



  1. With W. Lu and G. Marinescu

Optimal convergence speed of Bergman metrics on

symplectic manifolds [pdf]

Journal of Symplectic Geometry. 18 (2020), 1091--1126.



  1. With L. Ioos, W. Lu and G. Marinescu

Berezin-Toeplitz quantization for eigenstates

of the Bochner-Laplacian on symplectic manifolds [pdf]

arXiv:1703.06420, J. Geom. Anal. 30 (2020), 2615--2646.



  1. With Chin-Yu Hsiao and G. Marinescu

Geometric quantization on CR manifolds [pdf]

Commun. Contemp. Math.  25 (2023), Paper No. 2250074, 73pp.



  1. From local index theory to Bergman kernel:

a heat kernel approach [pdf]

Progress in Mathematics, Vol. 333 (2020), 265-286.



  1. Quantization Commutes with Reduction, a Survey [pdf]

Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 1859-1872.



  1. Remarks on the equivariant analytic torsion forms

and the immersion formula [pdf]

Proceedings of the London Mathematical Society 425-431.

Appendix of 'an arithmetic Lefschetz-Riemann-Roch theorem',

by Shun Tang, 122 (2021), 377-433.



  1. With H. Auvray and G. Marinescu

Quotient of Bergman kernels on punctured Riemann surfaces [pdf]  

Math. Z. 301 (2022), 2339-2367.



  1. With D. Coman, W. Lu and G. Marinescu

Bergman kernels and equidistribution for sequences

of line bundles on Kahler manifolds [pdf],

Adv. Math. 414 (2023), Paper No. 108854, 34pp



Talks

  1. Séminaire Bourbaki, Exp. No. 1130, 11 mars 2017:

Geometric hypoelliptic Laplacian and orbital integrals,

[after Bismut, Lebeau and Shen] [pdf]

Astérisque 407 (2019), 333-389.

Books

  1. With G. Marinescu

Holomorphic Morse inequalities and Bergman kernels,

Progress in Mathematics 254,

Birkhäuser Boston, Inc., Boston, MA. 2007, 422 pp.

Award winning monograph of the 2006 Ferran Sunyer i Balaguer Prize.



  1. With W. Zhang

Bergman kernels and symplectic reduction[pdf],

Astérisque 318 (2008), 154 pp.



  1. Editor with X. Dai, R. Léandre and W. Zhang

From Probability to Geometry (I),

Volume in honor of the 60th birthday of Jean-Michel Bismut.

Astérisque 327 (2009), xxxvii+424 pp.



  1. Editor with X. Dai, R. Léandre and W. Zhang

From Probability to Geometry (II),

Volume in honor of the 60th birthday of Jean-Michel Bismut.

Astérisque 328 (2009), x+393 pp.



  1. Editor with Jean-Benoit Bost, Helmut Hofer, Francois Labourie, Yves Le Jan, Weiping Zhang,

Geometry, analysis and probability-in honor of Jean-Michel Bismut,  

Progress in Mathematics 310,

Birkhäuser Boston, Inc., Boston, MA. 2017, 365 pp.



Translation to chinese

  1. With Y.Yao

Opérateurs pseudo-différentiels et théorème de Nash-Moser

(English: Pseudo-differential Operators and the Nash-Moser Theorem)

(Chinese version)

by Serge Alinhac and Patrick Gérard

Mémoire

  1. Théorie de l'indice local et applications [pdf],

Habilitation à diriger des recherches, Paris-Sud, le 25 mai, 2005.